

Page 1 of 10

E85: Digital Design and Computer Engineering
Lab 2: FPGA Tools and Combinatorial Logic Design

Objective
The purpose of this lab is to learn to use Field Programmable Gate Array (FPGA)
tools to simulate a SystemVerilog description of combinational logic, then
synthesize it onto the FPGA and download it onto an FPGA board. The lab tutorial
will walk you through a full adder and then you will design an instruction decoder
circuit.

1. Tutorial: Altera FPGA Tools
All of the FPGA labs in E85 will be using the Altera/Intel Quartus Prime FPGA
software (Version 17 was current as of this writing) and the Altera DE0-CV
evaluation board with the Cyclone V 5CEBA4F23C7N1 chip. You can download and
install the software on your own Windows PC to do parts of the labs from home, but
will need to go to the E85 lab to use the DE0-CV boards.
In this tutorial, you will take the full adder that you designed in Lab 1, simulate it
in ModelSim, and implement it on the DE0-CV board. You will hook up three
switches for input and two LEDs for output and check that the circuit behaves
correctly.
Make sure the DE0-CV board is powered on (with a wall adapter plugged into the
DC 9V jack) and the USB Blaster (J9) port is plugged into the computer you are
using. Press the red button to turn on power and confirm that the POWER LED is
glowing blue.
Create a new folder in your Charlie directory for this tutorial, such as lab2_xx,
where xx are your initials. Open Quartus Prime. It is found under the Start menu
under INTEL FPGA 17.xx… Lite Edition->Quartus. You will be greeted with a getting started
window. Click on the New Project Wizard.

1 5C indicates the Cyclone V family of chips. The E indicates Enhanced logic/memory. The B
indicates no hardware PCIe or memory controller. The A4 indicates the number of logic elements
(49k, a medium-sized chip). F23 indicates that the chip is in a 484-pin ball grid array package. C
indicates commercial temperature grade, and 7 is the medium speed grade for this chip. N indicates
lead-free packaging (standard these days).

Page 2 of 10

If the getting started screen is not present you can reach the same wizard by
selecting File-> New Project Wizard.

If the Introduction screen appears, click the Don’t show me this introduction again box
and click on Next.

On the Directory, Name, Top-Level Entry screen, change the working location of the
project to the folder you created, change the name of the project to something
suitable such as lab2_XX. Set the top-level design entity to fulladder.

Click Next. On the Project Type screen, select Empty project, and click Next.

Page 3 of 10

Click Next on the Add Files page as we have no files to add. The next page will set
the specific FPGA we want the tool to target.

Select Family->Cyclone V, then Pin Count->484, then Device->Cyclone V E Base; this will
greatly reduce the choices. Click 5CEBA4F23C7 in available devices and click next. On
the next page, change Simulation to ModelSim-Altera and the Format to SystemVerilog HDL,
click next, then Finish.

For this tutorial we will create a full adder. Choose File->New->SystemVerilog HDL. Copy
and paste the HDL for the full adder below into the file.

Page 4 of 10

module fulladder(input logic a, b, cin,
 output logic sum, cout);

 logic ns, n1, n2, n3, n4;

 // sum logic
 xor x1(ns, a, b);
 xor x2(sum, ns, cin);

 // carry logic
 and a1(n1, a, b);
 and a2(n2, a, cin);
 and a3(n3, b, cin);
 or o1(n4, n1, n2);
 or o2(cout, n3, n4);
endmodule

Save your file as fulladder.sv in your lab2_xx directory.

1.1 Synthesis
Having completed the code we can now synthesize it into hardware. Quartus Prime
calls this process compilation. Choose Processing->Start Compilation (or click the Start
Compilation arrow next to the STOP icon). Watch for notes, warnings, and errors in
the bottom panel. It is a good habit to learn which warnings are normal and to
track down the root cause of abnormal warnings that can signal something awry
that would otherwise take you hours to debug.

In addition to other warnings, you should get a critical warning that the pins have
not been assigned. Now you will need to assign the proper pins so that the signals
in your design connect to switches and LEDs on the board. Look at Chapter 3,
starting on Page 24, of the DE0-CV User Manual for the FPGA pin numbers for
each function on the board.

Now that synthesis has run, Quartus knows what signals are used by your top-level
module, so you can assign them to pins. Let’s assign inputs a, b, and c to SW0, SW1,
and SW2, respectively. The manual shows that SW0 is PIN_U13 on your FPGA.
Choose Assignments –> Pin Planner and set the location for input a to PIN_U13.
Likewise, set b to PIN_V13 and c to PIN_T13. Hook sum to LEDR0 (PIN_AA2), and
look up the pin assignment for LEDR1 for cout. Then close the Pin Planner and
synthesize again. You should see two critical warnings that Synopsys Design
Constraints File file not found because you have specified no timing requirements
for your circuit, but the critical warnings about pin assignments should go away.
The rest of the lab should operate properly even with the set of warnings that are
left. The file QuartusFulladderCompOut.txt contains typical output at this stage. If
you have lots of spare time, you can see how many of the remaining warnings you
can make go away.

Page 5 of 10

1.2 RTL Viewer
Now we will look at what the synthesizer created using the register transfer level
(RTL) viewer.
Tools->Netlist viewer-> RTL Viewer

You should see the following circuit that matches your code.

1.3 Simulation
Next, we will simulate our circuit to make sure it performs the intended function.
The best way to do a simulation is with a self-checking testbench written in System
Verilog. The testbench applies inputs and checks that the outputs match
expectation. If you find a mistake, you can correct the design and rerun the
simulation to confirm. This reduces the tedium and risk of introducing errors
running simulations and checking the results manually.

Create a new SystemVerilog file and paste the following code into it. Save it as
testbench.sv in your lab2_xx directory. Observe that this code is a very different
style of Verilog than you have previously seen; instead of implying physical
hardware, it reads inputs called test vectors from a file, applies them, and checks
the result. SystemVerilog is powerful in that it supports both hardware modeling
and testbenches, but you will have to be careful not to use the kinds of
programming language constructs of a testbench when you intend to imply
hardware.

Page 6 of 10

module testbench();
 logic clk, reset;
 logic a, b, cin, s, cout, sexpected, coutexpected;
 logic [31:0] vectornum, errors;
 logic [4:0] testvectors[10000:0];

// instantiate device under test
// inputs are a, b, cin.
// outputs are s and cout
fulladder dut(a, b, cin, s, cout);

// generate clock
// Clock has period of 10 units. High for 5, low for 5.
always
 begin
 clk=1; #5; clk=0; #5;
 end

// at start of test, load vectors
// and pulse reset for 2.2 clock cycles so it falls after a clock edge
// vectors are stored as 0s and 1s (binary) in fulladder.tv
// initialize count of number of vectors applied and errors detected
initial
 begin
 $readmemb("fulladder.tv", testvectors);
 vectornum = 0; errors = 0; reset = 1; #22; reset = 0;
 end

// apply test vectors on rising edge of clk
// take the current 5-bit test vector
// break it into 3 inputs and 2 expected outputs
// apply them 1 unit of time after rising edge of clock
// so they aren’t changing concurrently with the clock
always @(posedge clk)
 begin
 #1; {a, b, cin, coutexpected, sexpected} = testvectors[vectornum];
 end

// Check results on falling edge of clk
// Don’t do anything during reset
// Otherwise, check if outputs match expectations
// Use !== instead of != so that x or z are treated as mismatches
// If an error is detected, report inputs, outputs, expected outputs
// and increment the count of errors,
// In any event, increment the count of vectors,
// When the test vector becomes all x, we’ve know we’ve processed all
// the vectors that were initially loaded and the test is complete,
// Report the number of vectors applied and errors detected.
// Then stop the simulation.

always @(negedge clk)
 if (~reset) begin // skip during reset

Page 7 of 10

 if (s !== sexpected || cout !== coutexpected) begin // check result
 $display("Error: inputs = %b", {a, b, cin});
 $display(" outputs = %b %b (%b %b expected)",
 s, cout, sexpected, coutexpected);
 errors = errors + 1;
 end
 vectornum = vectornum + 1;
 if (testvectors[vectornum] === 5'bx) begin
 $display("%d tests completed with %d errors", vectornum,
errors);
 $stop;
 end
 end
endmodule

Create another file called fulladder.tv (easiest in a different text editor, not inside
Quartus) and add the following lines. Each line has 5 bits corresponding to the
three inputs and two expected outputs. Underscores in the test vector file are
ignored, so the underscores are placed between the inputs and expected outputs to
make them easier to read. For example, this test vector file indicates that a, b, and
cin should be 0 on the first test, and that s (sum) and cout are expected to both be 0.
On the second test, cin becomes 1 and the expected s becomes 1 as well.

Page 8 of 10

// a b cin _ cout s
000_00
001_01
010_01
011_10
100_01
101_10
110_10
111_11

We will use ModelSim, a commercial hardware description language (HDL)
simulator made by Mentor Graphics. You can download and install ModelSim
either as part of the Quartus Prime installation or directly from Mentor Graphics on
your computer if you wish. On the lab computers it is found under the Start menu
under INTEL FPGA 17.xx… Lite Edition->ModelSim.

Choose File -> New Project and create a project named lab2_ms_xx in your Charlie
directory. Click Add Existing File and browse to add your fulladder.sv and testbench.sv
files. Choose Compile-> Compile All. You should see a message “2 compiles, 0 failed
with no errors.” If you do get errors, click on the red errors message to bring up the
errors, and correct the bad file, then compile again.

Choose Simulate -> Start Simulation… Expand the + symbol next to the work library,
then click on your testbench module. Choose OK to simulate it. In the Objects pane,
select all of the signals, then choose Add -> To Wave -> Selected Signals so that all of your
inputs and outputs show up in a waveform viewer.

Type run 200 in the Transcript pane to run the simulation for 200 time units. You
should see a message “8 tests completed with 0 errors.” If you see a warning that
ModelSim can’t find your fulladder.tv file, move it to the same directory that you
chose for your ModelSim project (lab2_ms_xx). Then type restart –f in the Transcript
pane to restart your simulation without losing all your waveforms and run 200 to
rerun. If you ever need to stop a runaway simulation, you can use the Simulate ->
Break menu. If you make any changes to your code, be sure to choose Compile All
again before rerunning, or you’ll resimulate the old code.

1.4 Hardware Programming

Synthesis generates a bitfile indicating how each logic block and interconnection on
the FPGA should be configured. We can now program the DE0-CV board with the
bitfile to place your design on the chip.

Page 9 of 10

Tools->Programmer

If programmer window does not say USB-Blaster next to Hardware Setup, then use the
Hardware Setup button to set it to USB-Blaster. If, necessary (if the 5CEBA4F23 icon in the
above image isn’t visible), click Add File… and browse to the “output_files” folder of
your project. Select the .SOF file. It may be pre-selected. Click the Start button. It
should program the FPGA and run to 100% successful.

Now you can move the toggle switches SW[2:0] on the DE0-CV board and look at the
red LEDs just above the switches. Check that your adder adds properly.

2. DE0-CV Board
If you like to know what is happing under the hood, you may wish to familiarize
yourself with your Altera DE0-CV board, which has many nifty capabilities. Skim
through the DE0-CV User Manual on the class website. The DE0-CV_ControlPanel on
the desktop will let you test many of the features.

3. ALU Decoder
Now it is your turn to design a combinational logic circuit and build it on your
FPGA board.
Table 7.3 from the textbook describes the function of a circuit with six inputs
(ALUOp and Funct4:0) and four outputs (ALUControl1:0 and FlagW1:0). We will
use this circuit in the second part of the semester to control an arithmetic/logic unit
(ALU) in a microprocessor. For the purposes of this lab, you can assume that your

Page 10 of 10

circuit only has to correctly handle the inputs in the table, and that the output for
all other cases are don’t cares.
Write Boolean equations for the four outputs and sketch a schematic of a circuit
that implements your equations. Write structural Verilog code implementing your
schematic. Build a self-checking test-bench that applies all the interesting inputs
and checks the output. Simulate your code in your testbench and check that it
performs the function you intended; debug any discrepancies. Assign pins for your
FPGA, using SW5 through SW0 to provide inputs and LEDR3 through LEDR0 to
display the outputs. Synthesize your Verilog code and examine it in the RTL
Viewer and check that it matches your expectations. Write a self-checking
testbench with appropriate test vectors, simulate your design, and debug any
errors. Download it onto the DE0-CV board and apply the inputs with the switches
and check that the outputs match expectations.

What to Turn In
1. Please indicate how many hours you spent on this lab. This will be helpful for

calibrating the workload for next time the course is taught.
2. Boolean equations for your ALU Decoder
3. Gate-level schematic of your ALU Decoder
4. Structural Verilog code for your ALU Decoder
5. RTL Viewer schematics of your synthesized ALU Decoder
6. Self-checking test bench for your ALU Decoder with a test vector file
7. Simulation waveforms showing the ALU Decoder simulation. Did it work

correctly?
8. Did the ALU Decoder function correctly on the DE0-CV Board?

If you have suggestions for further improvements of this lab, you’re welcome to
include them at the end of your lab.

The PC Logic checks if the instruction is a write to R15 or a branch
such that the PC should be updated. The logic is:

PCS = ððRd == 15Þ & RegWÞ jBranch

PCS may be killed by the Conditional Logic before it is sent to the
datapath as PCSrc.

The Conditional Logic, shown in Figure 7.14(c), determines whether
the instruction should be executed (CondEx) based on the cond field and
the current values of the N, Z, C, and V flags (Flags3:0), as was described
in Table 6.3. If the instruction should not be executed, the write enables
and PCSrc are forced to 0 so that the instruction does not change the
architectural state. The Conditional Logic also updates some or all of
the flags from the ALUFlags when FlagW is asserted by the ALU Decoder
and the instruction’s condition is satisfied (CondEx = 1).

Table 7.2 Main Decoder truth table

Op Funct5 Funct0 Type Branch MemtoReg MemW ALUSrc ImmSrc RegW RegSrc ALUOp

00 0 X DP Reg 0 0 0 0 XX 1 00 1

00 1 X DP Imm 0 0 0 1 00 1 X0 1

01 X 0 STR 0 X 1 1 01 0 10 0

01 X 1 LDR 0 1 0 1 01 1 X0 0

10 X X B 1 0 0 1 10 0 X1 0

Table 7.3 ALU Decoder truth table

ALUOp
Funct4:1
(cmd)

Funct0
(S) Type ALUControl1:0 FlagW1:0

0 X X Not DP 00 (Add) 00

1 0100 0 ADD 00 (Add) 00

1 11

0010 0 SUB 01 (Sub) 00

1 11

0000 0 AND 10 (And) 00

1 10

1100 0 ORR 11 (Or) 00

1 10

400 CHAPTER SEVEN Microarchitecture

