

Page 1 of 18

E85: Digital Electronics and Computer Engineering
Lab 2: FPGA Tools and Combinational Logic Design

Objective
The purpose of this lab is to learn to use Field Programmable Gate Array (FPGA)
tools to simulate a SystemVerilog description of combinational logic, then
synthesize it onto the FPGA and download it onto an FPGA board. The lab tutorial
will walk you through a full adder and then you will design an instruction decoder
circuit.

1. Tutorial: Altera FPGA Tools
All of the FPGA labs in E85 will be using the Altera/Intel Quartus Prime FPGA
software (Version 23 was current as of this writing) and the Altera DE0-CV
evaluation board with the Cyclone V 5CEBA4F23C7N1 chip. You can download and
install the software on your own Windows PC to do parts of the labs from home, but
will need to go to the E85 lab to use the DE0-CV boards (unless you want to spend
the $100 to get one for yourself).
We used to keep the E85 files on a network disk that you could access from any
computer in the labs, but CIS discontinued support. Now, you will need to save
your work on the local disk of the computer you are using. When you are done with
a work session, please upload it to your Google drive. You may need some of your
solutions for later labs, and if you don’t complete your lab in a single work session,
you may need access to it from a different computer when you go back to the lab.
In this tutorial, you will take the full adder that you designed in Lab 1, simulate it
in Questa, and implement it on the DE0-CV board. You will hook up three switches
for input and two LEDs for output and check that the circuit behaves correctly. The
instruction steps are as followed:
● Make sure the DE0-CV board is powered on with a wall adapter plugged into

the DC 5V jack and the USB Blaster (J13) port is plugged into the computer
you are using. Press the red button to turn on power and confirm that the
POWER LED (D15) is glowing blue.

● Open Quartus Prime. It is found under the Start menu under Quartus (Quartus
Prime 23.1std). You will be greeted with a getting started window. Click on the
New Project Wizard.

1 5C indicates the Cyclone V family of chips. The E indicates Enhanced logic/memory. The B
indicates no hardware PCIe or memory controller. The A4 indicates the number of logic elements
(49k, a medium-sized chip). F23 indicates that the chip is in a 484-pin ball grid array package. C
indicates commercial temperature grade, and 7 is the medium speed grade for this chip. N indicates
lead-free packaging (standard these days).

Page 2 of 18

○ If the getting started screen is not present, you can reach the same
wizard by selecting File-> New Project Wizard.

○ If the Introduction screen appears, click the Don’t show me this introduction
again box and click on Next.

● On the Directory, Name, Top-Level Entry screen, change the working

location of the project to the folder you created, change the name of the
project to something suitable such as lab2_XX. Set the top-level design entity
to fulladder.

● Click Next. On the Project Type screen, select Empty project, and click Next.

Page 3 of 18

● Click Next on the Add Files page as we have no files to add. The next page will
set the specific FPGA we want the tool to target.

● Select Pin Count->484, then Device->Cyclone V E Base; this will greatly reduce the
choices. Click 5CEBA4F23C7 in available devices and click next.

● On the next page, change Simulation to Questa Intel FPGA and the Format to

SystemVerilog HDL, click next, then Finish.

Page 4 of 18

For this tutorial we will create a full adder.

● Choose File->New->SystemVerilog HDL File.

Page 5 of 18

● Enter the HDL for the full adder below into the file. Although it is not
required, it might be more useful to type up the code, instead of copy and
paste it, to get comfortable with SystemVerilog now. Then, save your file as
fulladder.sv in your lab2_xx directory.

// Behavioral Verilog explains relationships between inputs and outputs
// For example, >>> assign y = a & b;
// Structural Verilog describes structures formed by simpler components
// For example, >>> and g1(y, a, b);
// Section 4.2 & 4.3 in the book(p. 177) describes these differences in detail

// Is this module structural or behavioral?
module fulladder(input logic a,b, cin,
 output logic sum, cout);

// Declare 5 internal logic signals or local variables
 // which can only be used inside of this module

logic ns, n1, n2, n3, n4;

 // The following logic gates are part of SystemVerilog Spec
 // (built-in primitives).

// The first signal (eg. ns) is the output. The rest(eg. a, b) are
// inputs.

// sum logic

 xor x1(ns, a, b); // ns = a XOR b
 xor x2(sum, ns, cin); // sum = ns XOR cin

 // carry logic
 and a1(n1, a, b); // n1 = a & b
 and a2(n2, a, cin); // n2 = a & cin
 and a3(n3, b, cin); // n3 = b & cin
 or o1(n4, n1, n2); // n4 = n1 | n2
 or o2(cout, n3, n4); // cout = n3 | n4

// This example is Structural Verilog because the module is described
// structurally using more fundamental building blocks
endmodule

1.1 Synthesis
Having completed the code we can now synthesize it into hardware. Quartus Prime
calls this process compilation.

● Choose Processing->Start Compilation (or click the Start Compilation arrow next
to the STOP icon). Watch for warnings , critical warnings , errors ,
and other notes in the bottom panel. It is a good habit to learn which
warnings are normal and to track down the root cause of abnormal warnings
that can signal something awry that would otherwise take you hours to
debug.

Page 6 of 18

In addition to other warnings, you should get a critical warning that the pins have
not been assigned. Now you will need to assign the proper pins so that the signals
in your design connect to the desired switches and LEDs on the board.
● Look at section 3.2, starting on Page 21, of the DE0-CV User Manual for the

FPGA pin numbers for each function including push-buttons, slide-switches,
and LEDs on the board.

Now that synthesis has run, Quartus knows what signals are used by your top-level
module, so you can assign them to pins. Let’s assign inputs a, b, and c to SW0, SW1,
and SW2, respectively. The manual shows that SW0 is PIN_U13 on your FPGA.

● Choose Assignments –> Pin Planner and set Location for input a to PIN_U13.

Likewise, set b to PIN_V13 and cin to PIN_T13. Hook sum to LEDR0
(PIN_AA2), and look up the pin assignment for LEDR1 for cout. Then close
the Pin Planner and synthesize again. You should see two critical warnings
that Synopsys Design Constraints File file not found because you have
specified no timing requirements for your circuit, but the critical warnings
about pin assignments should go away. The rest of the lab should operate
properly even with the set of warnings that are left. The file
QuartusFulladderCompOut.txt on the website contains typical output at this
stage. If you have lots of spare time, you can see how many of the remaining
warnings you can make go away.

Page 7 of 18

1.2 RTL Viewer
Now we will look at what the synthesizer created using the register transfer level
(RTL) viewer.

● Choose Tools->Netlist viewer-> RTL Viewer. You should see the following circuit
that matches your code.

1.3 Simulation
Next, we will simulate our circuit to make sure it performs the intended function.
The best way to do a simulation is with a self-checking testbench written in System
Verilog. The testbench applies inputs and checks that the outputs match
expectation. If you find a mistake, you can correct the design and rerun the
simulation to confirm. This process reduces the tedium and risk of introducing
errors when running simulations and checking the results manually.

SystemVerilog is powerful in that it supports both hardware modeling and
testbenches, but you will have to be careful not to use the kinds of programming
language constructs of a testbench when you intend to imply hardware.

● Create a new SystemVerilog file and enter the following code into it. Green

lines are comments so you do not need to copy them. Again, you have an
option of copying/pasting the code or typing it up yourself. You’ll have this
option for the rest of sample codes provided in class as well. Save the code as
testbench.sv in your lab2_xx directory. Observe that this code is a very
different style of Verilog than you have previously seen; instead of implying
physical hardware, it reads inputs called test vectors from a file, applies
them, and checks the result.
○ Note that if you copy and paste the code from this document, you might

want to replace any smart quotes(‘ ’ ,“ ”) with standard quotes (',")in
Quartus

//// Testbench module tests another module called the device under test(DUT).
// It applies inputs to DUT and check if outputs are as expected.
// User provides patterns of inputs & desired outputs called testvectors.
module testbench();
 logic clk, reset;
 // 'clk' & 'reset' are common names for the clock and the reset,
 // but they're not reserved.

Page 8 of 18

 logic a, b, cin, s, cout, sexpected, coutexpected;
 // These variables or signals represent 3 inputs, 2 outputs, 2 expected

// outputs, respectively.
 logic [31:0] vectornum, errors;

// '[31:0]' indicates that the following signals, vectornum and errors
// in this case, are 32-bit long (start from bit 0 to bit 31) in little
// endian order (the least significant bit at the lowest address or
// [msb:lsb]).
// vectornum shows the number of test vectors that has been applied.
// errors represents the number of errors found.
// The size of 'int' data type is 4 bytes, thus 32 bits.

 logic [4:0] testvectors[10000:0];
 // Above is a 5-bit binary array named testvectors with index 0 to 10000

//(testvectors[0],testvectors[1],testvectors[2],...,testvectors[10000]).
// In other words, testvectors contains 10001 elements, each of which is
// a 5-bit binary number. The number of bits represent the sum of the
// number of input and output bits (eg. three 1-bit inputs + two 1-bit
// outputs = one 5-bit testvector).
// In this tutorial, we will only
// use 8 test vectors (found in .tv file below), however it doesn’t hurt
// to set up array to support more so we could easily add test vectors
// later.

//// Instantiate device under test (DUT).
// Inputs: a, b, cin. Outputs: s, cout.
fulladder dut(a, b, cin, s, cout);

//// Generate clock.
always
// 'always' statement causes the statements in the block to be
// continuously re-evaluated.
 begin
 //// Create clock with period of 10 time units.

// Set the clk signal HIGH(1) for 5 units, LOW(0) for 5 units
 clk=1; #5;

clk=0; #5;
 end

//// Start of test.
initial
// 'initial' is used only in testbench simulation.
 begin

//// Load vectors stored as 0s and 1s (binary) in .tv file.
 $readmemb("fulladder.tv", testvectors);

// $readmemb reads binarys, $readmemh reads hexadecimals.

// Initialize the number of vectors applied & the amount of
// errors detected.

 vectornum=0;
errors=0;
// Both signals hold 0 at the beginning of the test.

//// Pulse reset for 22 time units(2.2 cycles) so the reset
// signal falls after a clk edge.
reset=1; #22;

 reset=0;

Page 9 of 18

// The signal starts HIGH(1) for 22 time units then remains
LOW(0)
// for the rest of the test.

 end

//// Apply test vectors on rising edge of clk.
always @(posedge clk)
// Notice that this 'always' has the sensitivity list that controls when all
// statements in the block will start to be evaluated. '@(posedge clk)' means
// at positive or rising edge of clock.
 begin

//// Apply testvectors 1 time unit after rising edge of clock to
// avoid data changes concurrently with the clock.

 #1;
//// Break the current 5-bit test vector into 3 inputs and 2
// expected outputs.

 {a,b,cin, coutexpected,sexpected} = testvectors[vectornum];
 end

//// Check results on falling edge of clk.
always @(negedge clk)
// This line of code lets the program execute the following indented
// statements in the block at the negative edge of clock.

//// Don’t do anything during reset. Otherwise, check result.
 if (~reset) begin

//// Detect error by checking if outputs from DUT match
// expectation.
if (s !== sexpected || cout !== coutexpected) begin
// If error is detected, print all 3 inputs, 2 outputs,
// 2 expected outputs.

 $display("Error: inputs = %b", {a, b, cin});
 // '$display' prints any statement inside the quotation to

// the simulator window.
// %b, %d, and %h indicate values in binary, decimal, and
// hexadecimal, respectively.
// {a, b, cin} create a vector containing three signals.
$display(" outputs = %b %b (%b %b expected)", s, cout,

sexpected, coutexpected);
//// Increment the count of errors.

 errors = errors + 1;
 end

//// In any event, increment the count of vectors.
 vectornum = vectornum + 1;

//// When the test vector becomes all 'x', that means all the
// vectors that were initially loaded have been processed, thus
// the test is complete.

 if (testvectors[vectornum] === 5'bx) begin
// '==='&'!==' can compare unknown & floating values (X&Z),unlike
// '=='&'!=', which can only compare 0s and 1s.
// 5'bx is 5-bit binary of x's or xxxxx.
// If the current testvector is xxxxx, report the number of
// vectors applied & errors detected.

$display("%d tests completed with %d errors", vectornum,
errors);

// Then stop the simulation.
 $stop;
 end

Page 10 of 18

 end

// In summary, new inputs are applied on the positive clock edge and the
// outputs are checked against the expected outputs on the negative clock
// edge. Errors are reported simultaneously. The process repeats until there
// are no more valid test vectors in the testvectors arrays. At the end of
the
// simulation, the module prints the total number of test vectors applied and
// the total number of errors detected.
endmodule

● Create another file called fulladder.tv and add the following lines (easiest in

a different text editor, such as Notepad. Save with the “All Files” format).
Each line has 5 bits corresponding to the three inputs and two expected
outputs (essentially the truth table). Underscores in the test vector file are
ignored, so the underscores are placed between the inputs and expected
outputs to make them easier to read. The // line is a comment and is also
ignored. For example, this test vector file indicates that a, b, and cin will all
be read in as 0 and used in the simulation for the first test, and that s (sum)
and cout are expected to both be 0 on this test. On the second test, cin
becomes 1 and the expected s becomes 1 as well, but the other read-in and
expected values are still 0. Since the logic is all combinational (no flip-flops or
memory) and there are three 1-bit inputs, then there are 23 = 8 possible
inputs with their corresponding outputs.

// a b cin _ cout s
000_00
001_01
010_01
011_10
100_01
101_10
110_10
111_11

Page 11 of 18

We will use Questa, a commercial hardware description language (HDL) simulator
made by Siemens. You can download and install Questa either as part of the
Quartus Prime installation or directly from Mentor Graphics on your computer if
you wish. On the lab computers it is found under the Start menu under Questa – Intel
FPGA Starter Edition 2023.

● Choose File -> New -> Project... and create a project named lab2_ms_xx in your

Charlie directory. Click OK.

● Click Add Existing File and browse to add your fulladder.sv and testbench.sv

files. This step might take a few seconds. Choose Compile-> Compile All. You
should see a message “2 compiles, 0 failed with no errors.” If you do get
errors, click on the red errors message to bring up the errors, and correct the
bad file, then compile again.

Page 12 of 18

● Choose Simulate -> Start Simulation… Before simulating, open the Optimization

Options… and select Apply full visibility to all modules(full debug mode) and hit OK.
Expand the + symbol next to the work library, then click on your testbench
module. Choose OK to simulate it.

Page 13 of 18

● In the Objects pane, select all of the signals, then choose Add -> To Wave ->

Selected Signals so that all of your inputs and outputs show up in a waveform
viewer. If the Objects pane isn’t visible you can add it from View -> Objects.

Page 14 of 18

● Type run 200 in the Transcript pane to run the simulation for 200 time units.

You should see a message “8 tests completed with 0 errors.” You can make
the waveforms reappear by using the Wave tab at the bottom of the side
window. Click on the Zoom Full (F) icon to see the full sweep.

○ If you see a warning that Questa can’t find your fulladder.tv file, move
it to the same directory that you chose for your Questa project
(lab2_ms_xx). Then type restart –f in the Transcript pane to restart
your simulation and run 200 to rerun. restart –f forces a restart of the
simulation without recompiling. It's useful if you want to change your
test vectors without changing your simulation or testbench code. You
DO lose your waveforms. Everything starts over from 0. It lets you
save your LIST of displayed signals in the waveform window. If you
change anything but the test vectors, you need to recompile and go
through the other steps as well.

○ If you ever need to stop a runaway simulation, you can use the Simulate
-> Break menu.

○ If you make any changes to your code, be sure to choose Compile All
again before rerunning, or you’ll resimulate the old code.

Page 15 of 18

Now, let’s look closer at the waveform signals

The first column is the name of each signal, followed by the value at which you are
looking at (yellow line). In this specific example, the clk signal on the first line at 33
ps has the value of 1, so do cin, s, and sexpected.
The green waveforms on the third column indicate values of all signals over
time(‘ps’ at the bottom). Notice that the clk signal starts high for 5 ps then falls low
for 5 ps and so on, as we coded in the testbench module. This means that one clock
cycle lasts 5+5=10 ps. Recall that we pulse reset for 22 time units (ps) which is 2.2
clock cycles.
After pulsing reset, the first testvector(000_00) passes then the vectornum value
starts counting from 0 to 1 at the negative edge of clock(25ps). At the next rising
clock edge(30ps) we wait for 1 time unit before loading the next testvector(001_01) to
inputs(a, b, cin) and expected outputs(coutexpected, sexpected). At the following
falling clock edge(35ps) we compare the DUT outputs(cout, s) to our expectations.
We could see that s = sexpected = 1 and cout = coutexpected = 0 then the vectornum
counts from 1 to 2. This process continues until we reach the last testvector then the
simulation stops. Note that if there is an error, the signal will turn red.

1.4 Hardware Programming

Synthesis generates a bitfile indicating how each logic block and interconnection on
the FPGA should be configured. We can now program the DE0-CV board with the
bitfile to place your design on the chip.
Now go back to Quartus Prime.

● Choose Tools->Programmer.

○ If programmer window does not say USB-Blaster next to Hardware Setup,
then use the Hardware Setup button to set it to USB-Blaster.

○ If the 5CEBA4F23 icon in the above image isn’t visible, click Add File… and
browse to the “output_files” folder of your project. Select the .SOF file.
It may be pre-selected.

Page 16 of 18

● Click the Start button. It should program the FPGA and run to 100%
successful.

Now you can move the toggle switches SW[2:0] on the DE0-CV board and look at the
red LEDs just above the switches. Check that your adder adds properly.

2. DE0-CV Board
The Altera / Intel DE0-CV board contains an Altera Cyclone V 5CEBA4F23 FPGA,
a power supply, a USB interface to download configuration from the host computer,
and some LEDs, switches, and expansion pins.

If you like to know what is happening under the hood, skim through the DE0-CV
User Manual on the class website.

Page 17 of 18

3. ALU Decoder
Now it is your turn to design a combinational logic circuit and build it on your
FPGA board.
Table 7.3 ALU Decoder truth table from the textbook describes the function of a
circuit with seven inputs (ALUOp1:0, funct32:0, op5, funct75) and three outputs
(ALUControl2:0). We will use this circuit in the second part of the semester to
control an arithmetic/logic unit (ALU) in a microprocessor.

For the purposes of this lab, you can assume that your circuit only has to correctly
handle the inputs in the table, and that the output for all other cases are don’t
cares. The following are the steps for building the ALU Decoder:
● Write Boolean equations for the three outputs and sketch a schematic of a

circuit that implements your equations.
● Write structural Verilog code implementing your schematic.
● Build a self-checking test-bench that applies all the interesting inputs and

checks the output.
● Simulate your code in your testbench and check that it performs the function

you intended; debug any discrepancies.
● Assign pins for your FPGA, using SW6 through SW0 to provide inputs and

LEDR2 through LEDR0 to display the outputs.
● Synthesize your Verilog code and examine it in the RTL Viewer and check

that it matches your expectations.
● Download it onto the DE0-CV board and apply the inputs with the switches

and check that the outputs match expectations.

Page 18 of 18

Hints:
● Make sure there is a new line after the last vector. Questa couldn’t read one

person’s vectors when they didn’t have the new blank line.
● Make sure your lab2.tv file isn’t actually called lab2.tv.txt. Windows

sometimes adds the .txt suffix, then hides the .txt so it looks as if your file is
named lab2.tv when it isn’t.

● If Questa can’t find the path, you can try giving the full path, such as:
$readmemb(“C:/Users/harris/Documents/lab2/lab2_dh.tv”);

What to Turn In

1. Please indicate how many hours you spent on this lab. This will be helpful for

calibrating the workload for next time the course is taught.
2. Boolean equations for your ALU Decoder
3. Gate-level schematic of your ALU Decoder
4. Structural Verilog code for your ALU Decoder
5. RTL Viewer schematics of your synthesized ALU Decoder
6. Self-checking test bench for your ALU Decoder with a test vector file
7. Simulation waveforms showing the ALU Decoder simulation. Did it work

correctly?
8. Did the ALU Decoder function correctly on the DE0-CV Board?
Please indicate any bugs you found in this lab manual, or any suggestions you
would have to improve the lab.

