

Page 1 of 6

E85: Digital Electronics and Computer Engineering
Lab 10: Multicycle Controller

Objective
In Labs 10 and 11, you will design a multicycle RISC-V processor in SystemVerilog
and test it on a simple machine language program. This will tie together
everything that you have learned in E85 about digital design, hardware description
languages, assembly language, and microarchitecture, and give you the chance to
design and debug a complex system. In Lab 10, you will build and test the
controller. In Lab 11, you will build the datapath and test the whole system.

1. Multi-cycle RISC-V Controller
Before you start developing the controller, make sure to take a look at the following
diagrams. All figures and tables are provided at the end of this document.

• Figure 1 shows the multicycle controller block diagram
• Figure 2 shows the multicycle control Main FSM state diagram
• Table 1 defines the ALU Decoder logic
• Table 2 defines the Instruction Decoder logic

Write a hierarchical Verilog description of the multicycle controller. When outputs
are don’t care, set them to 0 so they have a deterministic value to simplify testing.

The controller should have the following module declaration and should follow the
hierarchy of Figure 1. Remember that op, funct3, funct7b5, are bitfields of Instr
and that zero is an output of the ALU.

module controller(input logic clk,
 input logic reset,
 input logic [6:0] op,
 input logic [2:0] funct3,
 input logic funct7b5,
 input logic zero,
 output logic [1:0] immsrc,
 output logic [1:0] alusrca, alusrcb,
 output logic [1:0] resultsrc,
 output logic adrsrc,
 output logic [2:0] alucontrol,
 output logic irwrite, pcwrite,
 output logic regwrite, memwrite);

Page 2 of 6

2. Test Bench
Generating good test vectors is often harder than writing the code you are testing.
This semester, the vectors are provided for you to increase the amount of sleep
you’ll get. Get the controller_testbench.sv and controller.tv from the
class website. Note that they may have a .txt suffix that you will need to remove
after downloading. Read them and understand what they are doing.
Compile and test your controller with Questa. Make sure you run for long enough to
get a message that all of the tests were completed with 0 errors.

3. Debugging Hints
Unless you are extraordinary unlucky, your controller won’t work perfectly on the
first try. If it did work, you would have missed out on the main learning objective of
this lab and the next, which is how to systematically debug a complex system. You
will need your controller in Lab 11, so take the time to fully debug.
Here are some tips to reduce the amount of time that debugging will take.
Minimize the number of bugs you have
Each bug takes a long time to locate, so a bit of extra time during the design phase
can save you a lot of time during the debug phase.

● Remember that you are building hardware, so sketch the hardware you want
and write the Verilog idioms that imply that hardware. Don’t fall into the
trap of writing Verilog code without thinking of the hardware it is implying.

● Proofread your code. Make sure your signal names are spelled consistently
and that module inputs/outputs are listed in the correct order.

● Synthesize your design once in Quartus and look for warnings or errors.
Make sure you understand which warnings are normal (e.g. no timing
constraints set) and which need to be fixed. Take these warnings very
seriously; they are the fastest way to detect subtle bugs in your design.

● Simulate your design with Questa and look for warnings when compiling.
Questa has a different Verilog analyzer and will detect types of mistakes that
don’t produce warnings in Quartus. Take these warnings seriously too.

Minimize the time it takes to run a test
Once you are in the debugging phase, choose a workflow that is efficient so you can
make a change to your code and rerun the test in a matter of seconds rather than
minutes.

● All testing can be done in Questa. You do not need to use Quartus, and
recompiling in Quartus is an unnecessary time-consuming step. However, if
you have made major changes, you might wish to occasionally resynthesize
the design in Quartus and look for warnings hinting that you’ve introduced
new bugs.

Page 3 of 6

● Add relevant waveforms in Questa. It’s usually worthwhile to add all the
signals in a module that you are debugging so that you don’t have to go
through the tedious process of adding more signals and re-simulating.
Change the radix to display 32-bit signals in hexadecimal.

● Remember that you don’t need to restart Questa and re-add signals each time
you change your code. Instead:

o Compile -> Compile All
o Make sure you have no warnings
o At the command line, rerun the simulation by typing

▪ restart –f

▪ run 1000 (or however long you wish to run)
Systematically find your bugs
Inexperienced designers can waste hours debugging without a clear plan in mind.
Follow a systematic process to finish quickly.

● Understand what the expected inputs and outputs should be. Write down
your expectations. This takes time but will usually save far more time than
it takes.

● Find the first place where a signal doesn’t match your expectations. One bad
signal will usually trigger others downstream, so focus your debugging on the
first known error and don’t worry yet about subsequent errors. For example,
if tests 1 and 5 fail, start debugging test 1, not test 5.

● Make sure the simulator displays all signals involved in computing the bad
signal. If necessary, add them to the simulation and re-simulate as given
above. If one of these inputs is bad, repeat this process to continue tracing it
back.

● Once all the inputs are good and the output is bad, you’ve localized your bug.
Examine the relevant Verilog module and fix the mistake.

● Repeat this process until all bugs have been fixed.

What to Turn In
1. Please indicate how many hours you spent on this lab. This will be helpful for

calibrating the workload for next time the course is taught.
2. Hierarchical SystemVerilog for your controller module matching the declaration

given above.
3. Does your controller pass your test vectors?
Please indicate any bugs you found in this lab manual, or any suggestions you
would have to improve the lab.

Page 4 of 6

Fig. 1 Multicycle control unit

Main
FSM

ALUOp1:0

ALU
Decoder

Op6:0

funct32:0 ALUControl2:0

ALUSrcA1:0

ResultSrc1:0

ALUSrcB1:0

AdrSrc

Branch

funct75

5

Zero

IRWrite

RegWrite
MemWrite

PCUpdate

ImmSrc1:0
Instr

DecoderOp6:0

PCWrite
PCUpdate

Page 5 of 6

Fig 2. Complete multicycle control Main FSM state diagram

!"#AB&DEF&
!"#ABC!D(D)*
!"#ABC+D(D)*
!"#I-D(D))

!*#A+I&DJ.&L
!"#ABC!D(D*)
!"#ABC+D(D)*
!"#I-D(D*)

.LML1

!M#A+I&DJ.&1
!"#ABC!D(D*)
!"#ABC+D(D))
!"#I-D(D*)

!O#A3&QRFS
!"#ABC!D(D*)
!"#ABC+D(D)*
!"#I-D(D))

E7AUA99999""AWlw;
<1

E7AUA9"999""AWsw;

E7AUA
99999""
Wlw;

E7AUA
9"999""
Wsw;

E7AUA
9""99""
W1=.>7&;

E7AUA
AA99"99""
AAAAAWL=.>7&AR?@;

E7AUA
AAAAA""9""""
AAAAAAAAAAWjal;

E7AUA
AAAA""999""
AAAAAAAAAAAAAAAAWbeq;

!.A.& BA.A7A.BAµ<7
C&.DB OPM1BD4RLSTU9W;DU9D4DU9<Z
B&DEF& !"#I[1D4DU9?]BAL1
3&QRFS !"#I[1D4DBM*D<DBSS
3&Q1&AF C]1]D4DRLST!"#I[1W
3&QaE BaD4DC]1]
3&QaSc.& RLST!"#I[1WD4DBa
+I&DJ.&1 !"#I[1D4DBM*DE-DBMc
+I&DJ.&L !"#I[1D4DBM*DE-DBSS
R?@aE BaD4D!"#I[1
E+d !"#.LM[d1D(DBM*eBMc;DBfDgLBEhDU9D(D!"#I[1
eR? U9D(D!"#I[1;D!"#I[1D(DU9<Z

!I#AeR?
!"#ABC!D(D)*
!"#ABC+D(D*)
!"#I-D(D))
.LM[d1ABCD(D))
U9#-a]1L

!J#A3&QaE
.LM[d1ABCD(D)*
.LAiBB1L

!h#AR?@aE
.LM[d1ABCD(D))
.LAiBB1L

!"9#AE+d
!"#ABC!D(D*)
!"#ABC+D(D))
!"#I-D(D)*
.LM[d1ABCD(D))

+B]PCM

!9#AC&.DB
!aBABCD(D)
O.iBB1L

!"#ABC!D(D))
!"#ABC+D(*)
!"#I-D(D))
.LM[d1ABCD(D*)
U9#-a]1L

!i#A3&Q1&AF
.LM[d1ABCD(D))
!aBABCD(D*

!M#A3&QaSc.&
.LM[d1ABCD(D))
!aBABCD(D*
RLSiBB1L

Page 6 of 6

ALUOp op5 funct75 funct3 Instruction ALUControl2:0
00 X X X lw, sw 000 (add)
01 X X X beq 001 (subtract)
10 00, 01, 10 000 add 000 (add)

1 1 000 sub 001 (subtract)
X 0 010 slt 101 (set less than)
X 0 110 or 011 (or)
X 0 111 and 010 (and)

Table 1. ALU Decoder logic

Instruction Opcode
(op)

ImmSrc1:0

R-type 0110011 XX
I-type 0010011 00
lw 0000011 00
sw 0100011 01
beq 1100011 10
jal 1101111 11

Table 2. Instr Decoder logic for ImmSrc

