
Page 1 of 16

This is a closed-book take-home exam. Electronic devices including calculators are not allowed.
You are permitted one side of two 8.5 ´ 11” sheets of paper with notes.

You are bound by the HMC Honor Code while taking this exam.
There is no time limit for this exam. You do not need to work on the exam in one contiguous block
of time. However, you should record each of your start and stop times and the total time spent on
the exam in the table below.
Return the exam as a single scanned or digitally filled PDF uploaded to Sakai no later than 12 pm
on May 14th, 2020. If you scan your exam, please ensure that your answers are legible. If possible,
we encourage you to use a scanner or a smartphone scanning app with the flash enabled.
Alongside each question, the number of points is written in brackets. All work and answers should
be written directly on this exam. Insert additional pages of work in your PDF submission as
necessary. The work for each problem should appear with its respective problem, not at the end of
your PDF. Show your work for partial credit.

Name: ___

Page Score Total Available
2 3
3 4
4 3
5 4
6 6
7 5
8 3
9 6
10 4
11 7

Total 45

Date Start Time Stop Time

Total Time: _________________ hrs

Digital Electronics & Computer Engineering (E85)

Harris & Brake Spring 2020
Final Exam

Page 2 of 16

Consider the following finite state machine.

[3] Sketch a state transition diagram for the FSM.

clk

reset

W

P

Q0

Q1

Page 3 of 16

Assume the following component delays and ignore timing issues related to P and W to answer
the following questions. The FSM schematic is repeated here for your convenience.

Cell Propagation Delay
(ps)

Contamination
Delay (ps)

Setup Time (ps) Hold Time (ps)

2-input gate 20 10
Flip-flop 40 25 30 17

[2] If the clock skew is 15 ps, what is the minimum clock period for which the system will work
reliably?

[2] How much clock skew may the system experience before it becomes unreliable at low
frequencies?

clk

reset

W

P

Q0

Q1

Page 4 of 16

[3] Write a simplified behavioral Verilog description of the FSM (repeated here for your
convenience).

module fsm(input logic clk, reset,
 input logic P,
 output logic W);

endmodule

clk

reset

W

P

Q0

Q1

Page 5 of 16

[4] Design a 2048 ´ 8 Read Only Memory (ROM) with input terminals A[10:0] and output
terminals RD[7:0] using 256 ´ 32 ROMs (input terminals A[7:0] and output terminals RD[31:0])
and N-bit 2:1 multiplexers. Draw a schematic of your design. Use no more hardware than
necessary. Blocks for your design are shown below.

(a) N-bit, 2:1 multiplexer (b) 256 ´ 32 ROM

Block diagram elements

0

1

S
D0

D1

�
�

�

RDA 256 x 32
R	

� 32

Page 6 of 16

What is the minimum number of logic elements required to build each of the following circuits
on the Cyclone IV FPGA that we used in lab and class? A block diagram of a single logic
element is attached at the end of the exam for your reference.

module mux2(input logic [31:0] d0, d1, ELEMENTS: _______ [2]
 input logic s,
 output logic [31:0] y);

 assign y = s ? d0 : d1;
endmodule

module gates(input logic a, b, c, d, ELEMENTS: _______ [2]
 output logic y);

 assign y = ((a & b) ^ (c | d)) & ~b;
endmodule

module fsm(input logic clk, reset, ELEMENTS: _______ [2]
 input logic a,
 output logic [1:0] q);

 logic [1:0] nextq;

 always_ff @(posedge clk, posedge reset)
 if (reset) q <= 2’b00;
 else q <= nextq;

 always_comb
 case(q)
 2’b00: if (a) nextq <= 2’b01;
 else nextq <= 2’b00;
 2’b01: if (a) nextq <= 2’b10;
 else nextq <= 2’b01;
 2’b10: if (a) nextq <= 2’b11;
 else nextq <= 2’b10;
 2’b11: if (a) nextq <= 2’b11;
 else nextq <= 2’b00;
 endcase
endmodule

Page 7 of 16

[2] Express the IEEE 754 floating point number C1BE0000 in base 10.

[3] Assume the array c is initialized at a base memory address of 0x2000_0000 and is running
on a 32-bit architecture to answer the following questions.

(a) What is the value of carSize?
(b) What is the value of y?

typedef struct car {
 char make[56];
 char model[16];
 unsigned int year;
 unsigned long num_seats;
} car;

car myCar;
unsigned long carSize = sizeof(myCar);

car c[10];
unsigned long *y = &c[5].year;

Page 8 of 16

[3] Translate the following RISC-V instruction from machine code to its corresponding assembly
instruction. You may refer to registers by index rather than by name (e.g., x9 instead of s1).
Selected tables from Appendix B are attached to the end of this exam for your reference.

0x012E1A93

Page 9 of 16

[6] Write RISC-V assembly code to implement the following function, which performs matrix-
vector multiplication. The code snippet computes the product of a 3´3 matrix A and a 3´1
vector x. The result is stored in a 3´1 vector y.

Use s0 for i, s1 for j, and s2 for temp. The base address of A is stored in s3, the base
address of x is stored in s4, and the base address of y is stored in s5.

int A[3][3];

int x[3];
int y[3];
int i, j, temp;

for(i = 0; i < 3; i++)
{
 temp = 0;
 for(j = 0; j < 3; j++)
 {
 temp += A[i][j]*x[j];
 }
 y[i] = temp;
}	

Page 10 of 16

Consider the 5-stage pipelined RISC-V processor with hazard unit from Chapter 7 running the
following program. The first addi instruction is issued on cycle 1.

 addi t0, zero, 42
 addi t1, zero, 12
 and t2, t0, t1
 lw t4, 0(t1)
 add t5, t4, t4
 beq ZERO, ZERO, else
if: or t3, t0, t1
 sub t3, t3, t0
 beq zero, zero, done
else: sw t2, 0(t1)

done:

[1] On which cycle is t2 written?

[1] What value is written to t2?

[1] On which cycle is t5 written?

[1] On which cycle is MemWrite asserted?

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

0
1

Data
Memory

PCF0
1

PCF' InstrD
19:15

24:20

31:7

6:0

SrcBE

19:15

11:7

Rs1E

RdE

ALUResultM ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCTargetE

ResultW

PCPlus4F

14:12

ImmSrcD

MemWriteD

ResultSrcD1:0

ALUControlD2:0

ALUSrcD

RegWriteD

funct3

op

Control
Unit

CLK CLK CLK

CLK

ALUControlE2:0

AL
U

RegWriteE RegWriteM RegWriteW

ResultSrcE1:0 ResultSrcM1:0

MemWriteE MemWriteM

ALUSrcE

00
01
10

00
01
10

S
ta
llF

S
ta
llD

Fo
rw
ar
dA
E

Fo
rw
ar
dB
E

24:20 Rs2E

Rs1D

RdD

Rs2D

Hazard Unit

Fl
us
hE

Extend

00
01
10

funct7530

ResultSrcW1:0

RdM RdW

+

PCPlus4E PCPlus4M
PCPlus4W

ZeroE

BranchD

JumpD

Fl
us
hD

PCSrcE

RD1E

RD2E

PCD PCE

ExtImmEExtImmD

BranchE

JumpE

CLK

WE

A

WD

RD

0

EN

EN C
LRC
LR

Page 11 of 16

Consider modifying the single-cycle RISC-V processor to support the lhu (load halfword
unsigned) instruction. lhu rd, imm(rs1) reads a 16-bit half-word from memory address
(rs1 + imm) and places it in the bottom 16 bits of register rd. The upper 16 bits of register
rd are filled with zeros. The address must be even. lhu has op = 3 and funct3 = 5. In
comparison, lw also has op = 3 but funct3 = 2. A table of the instruction formats is included in
the material attached to the end of the exam for your reference.

Recall that our memory reads out a 32-bit word on RD from the address specified by A[31:2].

[2] Write lhu x5, 28(x3) in machine language. Express your answer in hexadecimal.

[5] Modify the attached single-cycle processor datapath and controller to support lhu. Feel free
to add new hardware blocks, but keep your design as simple as possible.

	

Page 12 of 16

Single Cycle Processor

Single Cycle Controller

ImmExt

CLK

A RD
Instruction
Memory

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Extend

Register
File

0
1

A RD
Data

Memory
WD

WE
PC0

1

PCTarget

Instr
19:15

24:20

31:7

6:0

SrcB
11:7

ALUResult ReadData

WriteData

SrcA

14:12

MemWrite

ALUSrc

RegWrite

funct3
op

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

AL
U

ImmSrc1:0

ResultSrc1:0

+

PCPlus4+

PCNext

funct75
30

Zero

00
01
10

Result

Main
Decoder

ALUOp1:0

ALU
Decoder

op6:0

funct32:0 ALUControl2:0

ImmSrc1:0
ALUSrc

ResultSrc1:0
MemWrite

RegWrite

Branch

funct75

5

PCSrcZero

Page 13 of 16

Main Decoder truth table
Instruction Opcode RegWrite ImmSrc ALUSrc MemWrite ResultSrc Branch ALUOp Jump
lw 0000011 1 00 1 0 01 0 00 0
sw 0100011 0 01 1 1 xx 0 00 0
R-type 0110011 1 xx 0 0 00 0 10 0
beq 1100011 0 10 0 0 xx 1 01 0
addi 0010011 1 00 0 0 00 0 10 0
jal 1101111 1 11 x 0 10 0 xx 1

ALU Decoder truth table
ALUOp funct3 op5, funct75 ALUControl Instruction
00 xxx xx 010 (add) lw, sw
01 xxx xx 110 (subtract) beq
10 000 00, 01, 10 010 (add) add
10 000 11 110 (subtract) sub
10 010 xx 111 (set less than) slt
10 110 xx 001 (or) or
10 111 xx 000 (and) and

ImmSrc encoding

ImmSrc ImmExt Type Description
00 {{20{Instr[31]}}, Instr[31:20]} I 12-bit signed immediate
01 {{20{Instr[31]}}, Instr[31:25], Instr[11:7]} S 12-bit signed immediate
10 {{20{Instr[31]}}, Instr[7], Instr[30:25], Instr[11:8], 1’b0} B 13-bit signed immediate
11 {{12{Instr[31]}}, Instr[19:12], Instr[20], Instr[30:21], 1’b0} J 21-bit signed immediate

Immediate encodings

Type Bits Encoded Immediate Field Width
I imm11:0 {20{imm11}, imm11:0} 12 bits
S imm11:0 {20{imm11}, imm11:0} 12 bits
B imm12:1 {19{imm12}, imm12:0, 1’b0} 12 bits
J imm20:1 {11{imm20}, imm20:1, 1’b0} 20 bits
U imm31:12 {imm31:12, 12’b0} 20 bits
R rs24:0 shamt4:0 5 bits

Page 14 of 16

RISC-V instruction formats

RV32I instructions – sorted by opcode, then funct3

op f3 f7 Type Instruction Description Operation
3 0 - I lb rd, imm(rs1) load byte rd = SignExt([Address]7:0)

3 1 - I lh rd, imm(rs1) load half rd = SignExt([Address]15:0)

3 2 - I lw rd, imm(rs1) load word rd = [Address]

3 4 - I lbu rd, imm(rs1) load byte unsigned rd = ZeroExt([Address]7:0)

3 5 - I lhu rd, imm(rs1) load half unsigned rd = ZeroExt([Address]15:0)

19 0 - I addi rd, rs1, imm add immediate rd = rs1 + SignExt(imm)

19 1 0 R slli rd, rs1, shamt shift left logical immediate rd = rs1 << shamt

19 2 - I slti rd, rs1, imm set less than immediate rd = (rs1 < SignExt(imm))

19 3 - I sltiu rd, rs1, imm set less than immediate unsigned rd = (rs1 < SignExt(imm))
19 4 - I xori rd, rs1, imm xor immediate rd = rs1 ^ SignExt(imm)

19 5 0 R srli rd, rs1, shamt shift right logical immediate rd = rs1 >> shamt

19 5 32 R srai rd, rs1, shamt shift right arithmetic immediate rd = rs1 >>> shamt

19 6 - I ori rd, rs1, imm or immediate rd = rs1 | SignExt(imm)

19 7 - I andi rd, rs1, imm and immediate rd = rs1 & SignExt(imm)

23 - - U auipc rd, imm add upper immediate to PC rd = {imm31:12, 12’b0} + PC

35 0 - S sb rs2, imm(rs1) store byte [Address]7:0 = rs27:0

35 1 - S sh rs2, imm(rs1) store half [Address]15:0 = rs215:0

35 2 - S sw rs2, imm(rs1) store word [Address] = rs2

51 0 0 R add rd, rs1, rs2 add rd = rs1 + rs2

51 0 32 R sub rd, rs1, rs2 sub rd = rs1 - rs2

51 1 0 R sll rd, rs1, rs2 shift left logical rd = rs1 << rs24:0

51 2 0 R slt rd, rs1, rs2 set less than rd = (rs1 < rs2)

51 3 0 R sltu rd, rs1, rs2 set less than unsigned rd = (rs1 < rs2)

51 4 0 R xor rd, rs1, rs2 xor rd = rs1 ^ rs2

51 5 0 R srl rd, rs1, rs2 shift right logical rd = rs1 >> rs2

51 5 32 R sra rd, rs1, rs2 shift right arithmetic rd = rs1 >>> rs2

51 6 0 R or rd, rs1, rs2 or rd = rs1 | rs2

51 7 0 R and rd, rs1, rs2 and rd = rs1 & rs2

55 - - U lui rd, imm load upper immediate rd = {imm31:12, 12’b0}

99 0 - B beq rs1, rs2, label branch if = if (rs1==rs2) PC = BTA

99 1 - B bne rs1, rs2, label branch if != if (rs1!=rs2) PC = BTA

99 4 - B blt rs1, rs2, label branch if < if (rs1< rs2) PC = BTA

99 5 - B bge rs1, rs2, label branch if ≥ if (rs1>=rs2) PC = BTA

99 6 - B bltu rs1, rs2, label branch if < unsigned if (rs1< rs2) PC = BTA

99 7 - B bgeu rs1, rs2, label branch if ≥ unsigned if (rs1>=rs2) PC = BTA

103 0 - I jalr rd, rs1, imm jump and link register rd = PC + 4, PC = rs1 + SignExt(imm)

111 - - J jal rd, label jump and link rd = PC + 4, PC = JTA

funct7 rs2 rs1 rd op
7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

R-Typefunct3
imm11:0 rs1 rd op

imm11:5 rs2 rs1 imm4:0 op

imm31:12 rd op

funct3
funct3

imm12,10:5 rs2 rs1 imm4:1,11 opfunct3

imm20,10:1,11,19:12 rd op
20 bits 5 bits 7 bits

I-Type
S-Type
B-Type
U-Type
J-Type

Page 15 of 16

RISC-V multiply and divide instructions (RVM extension)

op f3 f7 Type Instruction Description Operation
51 0 1 R mul rd, rs1, rs2 multiply rd = {rs1 x rs2}31:0

51 1 1 R mulh rd, rs1, rs2 multiply high (signed signed) rd = {rs1 x rs2}63:32

51 2 1 R mulhsu rd, rs1, rs2 multiply high signed unsigned rd = {rs1 x rs2}63:32

51 3 1 R mulhu rd, rs1, rs2 multiply high unsigned rd = {rs1 x rs2}63:32

51 4 1 R div rd, rs1, rs2 divide (signed) rd = rs1 / rs2

51 5 1 R divu rd, rs1, rs2 divide unsigned rd = rs1 / rs2

51 6 1 R rem rd, rs1, rs2 remainder (signed) rd = rs1 % rs2

51 7 1 R remu rd, rs1, rs2 remainder unsigned rd = rs1 % rs2

Page 16 of 16

Diagram of a single Logic Element (LE) in a Cyclone IV FPGA

