
E85 Digital Design & Computer Engineering

Lecture 01011:
Midterm Review

Lecture 11 <2> Digital Design and Computer Architecture: ARM® Edition © 2019

• Logic Levels
• Number Systems
• CMOS Transistors
• Power Consumption
• Combinational Logic Design
• Finite State Machines
• Timing
• Verilog
• Arithmetic Circuits

Midterm Review

Lecture 11 <3> Digital Design and Computer Architecture: ARM® Edition © 2019

• Assign VIH, VIL, VOH, VOL to maximize noise margins
|VOH – VIH|, |VOL – VIL|
• Normally at the unity gain points
• If the curve has many bends, pick the ones to

maximize noise margins

Logic Levels

Lecture 11 <4> Digital Design and Computer Architecture: ARM® Edition © 2019

• What is the logic function?
OR

• What are the logic levels?
 VIL = 2 VIH = 2.7
 VOL = 0.2 VOH = 2.8
• What are the noise margins?

 NML = 1.8 NMH = 0.1

Logic Levels: Example

0

1

2

3

A

0

1

2

3

B

0

1

2

3

Y

0

1

2

3

A

0

1

2

3

Y

Lecture 11 <5> Digital Design and Computer Architecture: ARM® Edition © 2019

• Consider two logic families
 A: VIL = 1, VIH = 2.3, VOL = 0.4, VOH = 2.9
 B: VIL = 2, VIH = 3, VOL = 1.1, VOH = 3.2
Can A drive itself? YES
Can B drive itself? YES
Can A drive B? NO: VOH of 2.9 < VIH of 3
Can B drive A? NO: VOL of 1.1 > VIL of 1

Logic Levels: Compatibility

Lecture 11 <6> Digital Design and Computer Architecture: ARM® Edition © 2019

Find decimal value of 1012 interpreted as:
 Unsigned: 1x4 + 0x2 + 1x1 = 5
 Sign/Magnitude: (-1)1 x (0x2+1x1) = -1
 Two’s Complement: 1x-4 + 0x2 + 1x1 = -3

Number Systems: Signed and Unsigned

Lecture 11 <7> Digital Design and Computer Architecture: ARM® Edition © 2019

Write 19 as a 6-bit binary number:
 19 = 0100112

Write -19 as a 6-bit binary number
 Two’s complement
 Invert the bits and add 1
 101100+1 = 1011012

 Sign/Magnitude
 1100112

Number Systems: Negative Numbers

Lecture 11 <8> Digital Design and Computer Architecture: ARM® Edition © 2019

Write 3710 in other bases

 Hexadecimal: 2516

 Binary: 1001012

Number Systems: Bases

Lecture 11 <9> Digital Design and Computer Architecture: ARM® Edition © 2019

• Design nMOS pull-down network
• Series for AND, parallel for OR

• pMOS pull-up network is complement
• CMOS gates are inherently inverting
• Add another stage to get non-inverting

CMOS Transistors

Lecture 11 <10> Digital Design and Computer Architecture: ARM® Edition © 2019

• Sketch a 3-input OR gate
• Use NOR3 + inverter
• NOR3: nMOS in parallel, hence pMOS in series

CMOS Transistors: OR3

Lecture 11 <11> Digital Design and Computer Architecture: ARM® Edition © 2019

• Sketch an AND-OR-INVERT gate Y = ~(AB+C)
• nMOS network

• A and B in series. This stack in parallel with C
• pMOS network is complement

• A and B in parallel. This stack in series with C

CMOS Transistors: AOI

Lecture 11 <12> Digital Design and Computer Architecture: ARM® Edition © 2019

• Switch:
• Choose R big enough to limit power, small

enough to keep a good logic level if Iload is
leakage current.

• P = VDD
2/R

• Vout = Iload * R < VIL

• Light Emitting Diode
• Choose R small enough to make the LED

bright, large enough to not overstress IOH
of the gate driving Vin.

• ID ~ (Vin-2) / R
• 5 mA is visible in room lighting and near

max IOH of many gates

Switches and LEDs

Lecture 11 <13> Digital Design and Computer Architecture: ARM® Edition © 2019

• P = Pdynamic + Pstatic = aCVDD
2f + IstaticVDD

• a = activity factor:
• 1 for clocks rising and falling each cycle
• 0.5 for data signal switching once per cycle
• 0.5p for data signal switching with probability p

• Know your units
• K = 103, M = 106, G = 109, T=1012

• m = 10-3, µ = 10-6, n = 10-9, p = 10-12, f=10-15

Power Consumption

Lecture 11 <14> Digital Design and Computer Architecture: ARM® Edition © 2019

• VDD = 0.707 V
• 1000 flip-flops clocked at 1 GHz. For each:

• 100 nA leakage
• 5 fF of clock capacitance
• 20 fF capacitance on Q
• 10% of inputs change on any given cycle

• Idle power = Pstatic =
 100 nA/flop * 1000 flops * 0.707 = 70.7 µW

• Running power = Pstatic + Pdynamic = 70.7 µW +
 1000 * (5 + 0.1 * 20 * 0.5) fF * (0.707)2 * 1 GHz = 3.07 mW

Power Consumption: Example

Lecture 11 <15> Digital Design and Computer Architecture: ARM® Edition © 2019

• Output depends on current inputs
• Write truth table
• Circle 1’s to find sum of products
• Simplify with Boolean algebra or inspection

Combinational Logic Design

Lecture 11 <16> Digital Design and Computer Architecture: ARM® Edition © 2019

• Write a truth table & eqn for

	
 𝑌 = 𝐴 %𝐵 + 𝐴𝐶̅ + 𝐴̅𝐵𝐶̅

Combinational Logic: Example

A B C Y

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

Lecture 11 <17> Digital Design and Computer Architecture: ARM® Edition © 2019

• Write inputs in Gray code order 00 01 11 10
• Populate grid
• Circle 1’s in boxes 1, 2, or 4 on a side
• Optionally circle Xs if it simplifies
 𝑌 = 𝐵𝐶̅ + 𝐴 %𝐵*𝐷

Combinational Logic: K-Map

AB

00 01 11 10

CD 00 0 1 X 1

01 0 1 1 0

11 0 0 0 0

10 X 0 0 1

Lecture 11 <18> Digital Design and Computer Architecture: ARM® Edition © 2019

• Sequential circuits: output depends on previous as
well as current inputs
• Flip-flops

• On the rising edge of CLK, Q gets D.
• Enables
• Reset: synchronous or asynchronous

• Synchronous sequential design: every element is
combinational or a flip-flop, and all flops share the
same clock. Easy to analyze.

Sequential Circuits

Lecture 11 <19> Digital Design and Computer Architecture: ARM® Edition © 2019

• State transition diagram
• State encodings
• Next state and output tables
• Derive and simplify Boolean equations
• Sketch circuit

• Inverse problems: derive diagram from circuit

Finite State Machines

Lecture 11 <20> Digital Design and Computer Architecture: ARM® Edition © 2019

• Moore:
• output depends only on state.
• labeled in bubbles

• Mealy:
• output depends on state and inputs
• labeled on arcs

Moore Vs. Mealy Machines

Lecture 11 <21> Digital Design and Computer Architecture: ARM® Edition © 2019

• Derive FSM state transition diagram from circuit
• Trace FSM

• Start in reset state
• For each state being explored

• Determine next state for each input pattern
• Determine output

Inverse FSM Problems

Lecture 11 <22> Digital Design and Computer Architecture: ARM® Edition © 2019

Timing

Tc ≥ tpcq + tpd + tsetup + tskew tccq + tcd > thold + tskew

!""# !"$

!%CD$

()

*+

!,-KL

01

012+012)

3) 3+

() *+

012+

012)
!"#$

%$

CD

()

*+), *+- *KL*0+*K1L2

!"

!"#D!"#$

3$ 3D

%$ CD

!"#D

Lecture 11 <23> Digital Design and Computer Architecture: ARM® Edition © 2019

Metastability

!

"

!# "

!#

$%

CD(CF* C*%+

,-K ,-K

,-K

CL(D

0(C1DC123(

Q5 Q#

For each sample, probability of failure is:

 P(failure) = (T0/Tc) e-(Tc - tsetup)/τ

 P(failure)/second =
 (NT0/Tc) e-(Tc

- tsetup)/τ

MTBF =
 1/[P(failure)/second] =
 (Tc/NT0) e(Tc

- tsetup)/τ

Lecture 11 <24> Digital Design and Computer Architecture: ARM® Edition © 2019

• Think of the logic you want first
• Use Verilog as shorthand for logic
• Pick the appropriate idiom for each element

Verilog

Lecture 11 <25> Digital Design and Computer Architecture: ARM® Edition © 2019

Combinational Logic with Boolean Eqns.
 assign y = (a & b) ^ (c | ~d);
Multiplexers
 assign y = s ? d1 : d0;
Comb logic with truth tables
 always_comb
 casez(in)
 3’b1xx: y <= 2’b11;
 3’b01x: y <= 2’b10;
 3’b001: y <= 2’b01;
 default: y <= 2’b00;
 endcase

Verilog Idioms: Combinational Logic

Lecture 11 <26> Digital Design and Computer Architecture: ARM® Edition © 2019

Verilog Idioms: FSMs
module fsmWithInputs(input logic clk,
 input logic reset,
 input logic a,
 output logic q);

 typedef enum logic [1:0] {S0, S1, S2} statetype;
 statetype state, nextstate;

 // state register
 always_ff @(posedge clk, posedge reset)
 if (reset) state <= S0;
 else state <= nextstate;

 // next state logic
 always_comb
 case (state)
 S0: if (a) nextstate = S1;
 else nextstate = S0;
 S1: nextstate = S2;
 S2: if (a) nextstate = S2;
 else nextstate = S0;
 default: nextstate = S0;
 endcase

 // output logic
 assign q = (state == S2);
endmodule

Lecture 11 <27> Digital Design and Computer Architecture: ARM® Edition © 2019

Verilog Idioms: Structural

module mux2(input logic [3:0] d0, d1,

 input logic s,
 output logic [3:0] y);

 assign y = s ? d1 : d0;

endmodule

module mux2_8(input logic [7:0] d0, d1,

 input logic s,
 output logic [7:0] y);

 mux2 lsbmux(d0[3:0], d1[3:0], s, y[3:0]);
 mux2 msbmux(d0[7:4], d1[7:4], s, y[7:4]);
endmodule

Lecture 11 <28> Digital Design and Computer Architecture: ARM® Edition © 2019

Adders
Ripple Carry

Carry Lookahead Parallel Prefix

!"#

A"B C"B

!"B

A# C#

!#

AB CB

!B

'"B '() '# 'B
'*+, ----

A"# C"#

'./

!"

####

ABC"

'B
AB
'(
A(
')
A)
'"

AB
A(
A)
A"

'BC"

G+,

G-.L

0"

1"

G"

!) 0)

1)

G)

!(0(

1(

G(

!B 0B

1B

G+,

0BC"!BC"

1BC"

2P4+L5GS0
!7-89 G+,

0:C2!:C2

1:C2

2P4+L5GS0
!7-89

GBG:

0(:C(2!(:C(2

1(:C(2

2P4+L5GS0
!7-89

G(B

0B)C(;!B)C(;

1B)C(;

2P4+L5GS0
!7-89

G(:G-.L

0:-1

-1

2:1

1:-12:-1

012

4:3

3

6:5

5:36:3

456

5:-16:-1 3:-14:-1

8:7

7

10:9

9:710:7

8910

12:11

11

14:13

13:1114:11

121314

13:714:7 11:712:7

9:-110:-1 7:-18:-113:-114:-1 11:-112:-1

15

0123456789101112131415

