E85 Digital Design & Computer Engineering

Lecture 01011:

Midterm Review

HARVEY

MUDD

COLLEGE

Midterm Review

* Logic Levels

* Number Systems

* CMOS Transistors

* Power Consumption
 Combinational Logic Design
* Finite State Machines

* Timing

* Verilog

e Arithmetic Circuits

Digital Design and Computer Architecture: ARM® Edition © 2019 Lecture 11 <2>

Logic Levels

* Assign V,y, V|, Vou, VoL 10 maximize noise margins
IVOH _VIle |VOL_VIL|

* Normally at the unity gain points

* If the curve has many bends, pick the ones to
maximize noise margins

Digital Design and Computer Architecture: ARM® Edition © 2019 Lecture 11 <3>

Logic Levels: Example

 What is the logic function?

 What are the logic levels?

 What are the noise margins?

NML= 7 NMH=

- N

i

\\\\\\‘ il
=l

sl
\\\\\\\‘!!!:32%%%%i%i%%%!%{![[i I
““; %%6%0%%% %% %% % %% '

QORRIRIIIRIIRIIRRIKY III
I
PSSR)
REIRRIRERRIEEEILILRK
D e e te dete oo te oo %0 dete e te d0%0 202!
&
O

{

’0’0’:0000000

00

Digital Design and Computer Architecture: ARM® Edition © 2019 Lecture 11 <4>

ELSEVIER

Logic Levels: Compatibility

* Consider two logic families
A:V, =1,V,=23,V5=04,Vy,=2.9
B:V,=2,Vy=3,Vy =1.1,Vy,=3.2
Can A drive itself?
Can B drive itself?
Can A drive B?
Can B drive A?

Digital Design and Computer Architecture: ARM® Edition © 2019 Lecture 11 <5>

Number Systems: Sighed and Unsigned

Find decimal value of 101, interpreted as:
Unsigned:
Sign/Magnitude:
Two’s Complement:

Digital Design and Computer Architecture: ARM® Edition © 2019 Lecture 11 <6>

Number Systems: Negative Numbers

Write 19 as a 6-bit binary number:
19 =
Write -19 as a 6-bit binary number

Two’s complement
Invert the bits and add 1

Sign/Magnitude

Digital Design and Computer Architecture: ARM® Edition © 2019 Lecture 11 <7>

Number Systems: Bases

Write 37,, in other bases
Hexadecimal:
Binary:

Digital Design and Computer Architecture: ARM® Edition © 2019 Lecture 11 <8>

CMOQOS Transistors

* Design nMOS pull-down network
e Series for AND, parallel for OR

* pMOS pull-up network is complement
* CMOS gates are inherently inverting
* Add another stage to get non-inverting

Digital Design and Computer Architecture: ARM® Edition © 2019 Lecture 11 <9>

CMOQOS Transistors:; OR3

e Sketch a 3-input OR gate
* Use NOR3 + inverter
* NOR3: nMOS in parallel, hence pMOS in series

Digital Design and Computer Architecture: ARM® Edition © 2019 Lecture 11 <10>

ELSEVIER

CMOQOS Transistors: AOI

e Sketch an AND-OR-INVERT gate Y = ~(AB+C)

* nMOS network
 Aand B in series. This stack in parallel with C

* pMOS network is complement
* Aand B in parallel. This stack in series with C

Digital Design and Computer Architecture: ARM® Edition © 2019 Lecture 11 <11>

Switches and LEDs

e Switch:

* Choose R big enough to limit power, small
enough to keep a good logic level if || ,4 is -{
leakage current.

* P=Vpp?/R R < Y
* Vout = IIoad *R< VIL lred
* Light Emitting Diode
 Choose R small enough to make the LED
bright, large enough to not overstress |y \/
of the gate driving V.. ¢|
0
* I~ (Vi-2) /R
* 5 mAisvisible in room lighting and near R
max loy of many gates

Digital Design and Computer Architecture: ARM® Edition © 2019 Lecture 11 <12>

Power Consumption

— — 2
*P= denamic + I:)static - OLCVDD f+ IstaticVDD
* o = activity factor:
» 1 for clocks rising and falling each cycle

* 0.5 for data signal switching once per cycle
* 0.5p for data signal switching with probability p

* Know your units
* K=10° M =10° G = 10°, T=10*
* m=103, p=10% n =107 p = 10?2 f=1015

Digital Design and Computer Architecture: ARM® Edition © 2019 Lecture 11 <13>

ELSEVIER

Power Consumption: Example

¢ VDD = 0.707 V

* 1000 flip-flops clocked at 1 GHz. For each:
* 100 nA leakage
* 5 fF of clock capacitance
e 20 fF capacitance on Q
* 10% of inputs change on any given cycle

* |[dle power =P i =

* Running power = Pgic + Pgynamic = 70.7 UW +

Digital Design and Computer Architecture: ARM® Edition © 2019 Lecture 11 <14>

Combinational Logic Design

e Qutput depends on current inputs
* Write truth table
* Circle 1’s to find sum of products

* Simplify with Boolean algebra or inspection

Digital Design and Computer Architecture: ARM® Edition © 2019 Lecture 11 <15>

Combinational Logic: Example

* Write a truth table & eqn for

A 1B lc v

| .|

OO o>
<

@

Y =

= =, O O O O
- » O O +» +»r O O
- O —r O = O +—» O

Digital Design and Computer Architecture: ARM® Edition © 2019 Lecture 11 <16>

Combinational Logic: K-Map

* Write inputs in Gray code order 00 01 11 10
* Populate grid

e Circle 1’s in boxes 1, 2, or 4 on a side

* Optionally circle Xs if it simplifies

NN v =
o0 01 11 10

COD 00 O 1 X 1
01 O 1 1 0
11 O 0 0 0
10 X 0 0 1

Digital Design and Computer Architecture: ARM® Edition © 2019 Lecture 11 <17>

Sequential Circuits

e Sequential circuits: output depends on previous as
well as current inputs

* Flip-flops
* On the rising edge of CLK, Q gets D.
* Enables
* Reset: synchronous or asynchronous

* Synchronous sequential design: every element is
combinational or a flip-flop, and all flops share the
same clock. Easy to analyze.

Digital Design and Computer Architecture: ARM® Edition © 2019 Lecture 11 <18>

Finite State Machines

e State transition diagram
e State encodings
* Next state and output tables

* Derive and simplify Boolean equations
 Sketch circuit

* Inverse problems: derive diagram from circuit

<)

5

\ Sketch State Write State Choose Werite Boolean Draw
> Transition Transition Encoding Next State Logic Gate
Diagram Table Scheme Equations Implementation

Digital Design and Computer Architecture: ARM® Edition © 2019 Lecture 11 <19>

ELSEVIER

Moore Vs. Mealy Machines

* Moore:

e output depends only on state.
* labeled in bubbles

CLKk Reset

M next |<7| 0 1
. next k k N
inputs state v, state v, state olgtpilcn outputs \4
logic 9
1 0 0
1

* Mealy:
e output depends on state and inputs
* labeled on arcs

0/0
outputs S0 $1
1/0 00
1

Lecture 11 <20>

ELSEVIER

Inverse FSM Problems

* Derive FSM state transition diagram from circuit
* Trace FSM

e Start in reset state

* For each state being explored
* Determine next state for each input pattern
* Determine output

clk
ﬂWD— > So DY
A;D r 5,

Digital Design and Computer Architecture: ARM® Edition © 2019 Lecture 11 <21>

Timing

CLK1 CLK2
_[V]L.Qf [¢ JDZ L
R1 . R2
< : >

CLK1/ /)~ AN /ZZT

|
CLKzg{[J/l) ANANN /777

L — I
S
o

D21 (000000

i it
pcq pd setup “skew
T,>

Digital Design and Computer Architecture: ARM® Edition © 2019

CLK1 CLK2
I Q1[¢]D2 %
R1 R2
I I
CLK1/ { \ / {
CLK2// /¥ \ 7
I I
Q1 SPOXKX |
I 1
D2 | 00000000000
t It
ceq | cd

t

skew “hold

Lecture 11 <22>

ELSEVIER

Metastability

For each sample, probability of
P(failure) = (T,/T.) e (-

P(failure)/second =
(NT0/7-C) E'(Tc' setup)/t

MTBF =

1/[P(failure)/second] =
(T./NT,) elTe- teullt

Digital Design and Computer Architecture: ARM® Edition © 2019

failure 1s:
tsetup)/T
Cll_K Cll_K
D b2 Q
F1 F2
. T, .
< P
CLK | \ '
I . I
.. | / |
| metastable \ ﬂ:\ |
| | /.
I ! :
o S
le >< »!

~

Lecture 11 <23>

Verilog

* Think of the logic you want first
* Use Verilog as shorthand for logic
* Pick the appropriate idiom for each element

Digital Design and Computer Architecture: ARM® Edition © 2019 Lecture 11 <24>

Verilog |dioms: Combinational Logic

Combinational Logic with Boolean Egns.

assign y = (a & b) *
Multiplexers

assign y = s ? dl : dO;
Comb logic with truth tables

always comb

(c | ~d);

casez (in)
3'blxx: v <= 2'bll;
3"b01lx: v <= 2'bl0;
3"b001: v <= 2'b01;
default: yv <= 2’b00;
endcase

Digital Design and Computer Architecture: ARM® Edition © 2019 Lecture 11 <25>

Verilog |dioms: FSMs

module fsmWithInputs (input logic clk,
input logic reset,

input logic a,
output logic q);

typedef enum logic [1:0] {SO, S1, S2} statetype;
statetype state, nextstate;

// state register
always ff @ (posedge clk, posedge reset)
if (reset) state <= S0;
else state <= nextstate; reset

// next state logic
always comb
case (state)

SO: if (a) nextstate = S1;

else nextstate = S50;

S1: nextstate = S52;

S2: if (a) nextstate = S2;

else nextstate = S50;

default: nextstate = S50;
endcase

// output logic
assign q = (state == S2);
endmodule

Digital Design and Computer Architecture: ARM® Edition © 2019 Lecture 11 <26>

ELSEVIER

Verilog |dioms: Structural

module mux2 (input logic [3:0] 4O, di,
input logic s,

output logic [3:0] vy);

assign y = s ? dl : dO;

endmodule

module mux2 8 (input logic [7:0] dO, di,
input logic S,

output logic [7:0] vy):

mux2 lsbmux(d0[3:0], d1[3:0], s, y[3:0]);
mux2 msbmux (dO0[7:4], d1[7:4], s, y[7:4]);

endmodule

Digital Design and Computer Architecture: ARM® Edition © 2019 Lecture 11 <27>

ELSEVIER

Adders

Ripple Carry

S31 S30 S1 S0

Carry Lookahead Parallel Prefix
o o ’15‘14‘13‘12‘11‘10‘9‘8‘7‘6‘5‘4‘3‘2‘1‘0‘-1‘

B, A, B, A, B A B, A y— ¢/—
G, C, Cy 14:1 121 10: 87
+ + + + ./

Ci,

Sy S, S S, 14:1134 104 9:7
14: 1’2-4 17-! 11-!

14:-113:-112:-111:-110:-1 9:-) 8:-) 7:-

HIOTOTE

TVTUVTUTU
SRS N

Digital Design and Computer Architecture: ARM® Edition © 2019 Lecture 11 <28>

ELSEVIER

