
Page 1 of 14

This is a closed-book take-home exam. Electronic devices including calculators are not
allowed, except on the computer question on the last page. You are permitted two 8.5x11”
sheets of paper with notes. Reference materials are provided for you on the first pages of
the exam, including the RISC-V instruction set, single-cycle, multicycle, and pipelined
processor diagrams (datapath, controller, FSM, truth tables), and Cyclone logic block
diagram.

You are bound by the HMC Honor Code while taking this exam.
The first part of the exam is written, while the final page is done on the computer based on
your E85 Lab 10. The entire Lab 10 that you use (including datapath and controller) must
be your own work; it cannot, for example, include somebody else’s controller. The exam
is intended to be doable in 3 hours if you have prepared adequately. However, there will
be no limit on the time you are allowed except that the written portion must be completed
in one contiguous block of time and the computer part must be completed in another
contiguous block of time. A contiguous block of time is a period of time working at a desk
without breaking for meals, naps, socializing, etc. You cannot study for E85 or consult E85
resources between the two blocks of time. Please manage your time wisely and do not let
the exam expand to take more time than is justified.
Return the exam under Prof. Harris’ door no later than Friday 5/12 at noon (senior exams
are due by May 5 at 5 pm).
Alongside each question, the number of points is written in brackets. All work and answers
should be written directly on this examination booklet, except for printouts. Use the backs
of pages if necessary. Write neatly; illegible answers will be marked wrong. Show your
work for partial credit.

Name: ___

Do Not Write Below This Point
Page 6: ____________________ / 4
Page 7: ____________________ / 9
Page 8: ____________________ / 6
Page 9: ____________________ / 8
Page 10: ____________________ / 4
Page 11: ____________________ / 7
Page 9: ____________________ / 7
Total: ____________________ / 45

Digital Electronics & Computer Engineering (E85)
 Harris Spring 2023

Final Exam

Page 2 of 14

RISC-V Instruction Set Summary

funct7 rs2 rs1 rd op R-Typefunct3

imm11:0 rs1 rd op

imm11:5 rs2 rs1 imm4:0 op

imm31:12 rd op

funct3

funct3

imm12,10:5 rs2 rs1 imm4:1,11 opfunct3

imm20,10:1,11,19:12 rd op

I-Type

S-Type

B-Type

U-Type

J-Type

31:25 24:20 19:15 14:12 11:7 6:0

funct2 fs2 fs1 fd op
2 bits 5 bits 5 bits 3 bits 5 bits 7 bits

R4-Typefunct3fs3
5 bits

Figure B.1 RISC-V 32-bit instruction formats

Table B.1 RV32I: RISC-V integer instructions
op funct3 funct7 Type Instruction Description Operation
0000011 (3) 000 – I lb rd, imm(rs1) load byte rd = SignExt([Address]7:0)

0000011 (3) 001 – I lh rd, imm(rs1) load half rd = SignExt([Address]15:0)

0000011 (3) 010 – I lw rd, imm(rs1) load word rd = [Address]31:0
0000011 (3) 100 – I lbu rd, imm(rs1) load byte unsigned rd = ZeroExt([Address]7:0)

0000011 (3) 101 – I lhu rd, imm(rs1) load half unsigned rd = ZeroExt([Address]15:0)

0010011 (19) 000 – I addi rd, rs1, imm add immediate rd = rs1 + SignExt(imm)

0010011 (19) 001 0000000* I slli rd, rs1, uimm shift left logical immediate rd = rs1 << uimm

0010011 (19) 010 – I slti rd, rs1, imm set less than immediate rd = (rs1 < SignExt(imm))

0010011 (19) 011 – I sltiu rd, rs1, imm set less than imm. unsigned rd = (rs1 < SignExt(imm))

0010011 (19) 100 – I xori rd, rs1, imm xor immediate rd = rs1 ^ SignExt(imm)

0010011 (19) 101 0000000* I srli rd, rs1, uimm shift right logical immediate rd = rs1 >> uimm

0010011 (19) 101 0100000* I srai rd, rs1, uimm shift right arithmetic imm. rd = rs1 >>> uimm

0010011 (19) 110 – I ori rd, rs1, imm or immediate rd = rs1 | SignExt(imm)

0010011 (19) 111 – I andi rd, rs1, imm and immediate rd = rs1 & SignExt(imm)

0010111 (23) – – U auipc rd, upimm add upper immediate to PC rd = {upimm, 12'b0} + PC

0100011 (35) 000 – S sb rs2, imm(rs1) store byte [Address]7:0 = rs27:0
0100011 (35) 001 – S sh rs2, imm(rs1) store half [Address]15:0 = rs215:0
0100011 (35) 010 – S sw rs2, imm(rs1) store word [Address]31:0 = rs2

0110011 (51) 000 0000000 R add rd, rs1, rs2 add rd = rs1 + rs2

0110011 (51) 000 0100000 R sub rd, rs1, rs2 sub rd = rs1 — rs2

0110011 (51) 001 0000000 R sll rd, rs1, rs2 shift left logical rd = rs1 << rs24:0
0110011 (51) 010 0000000 R slt rd, rs1, rs2 set less than rd = (rs1 < rs2)

0110011 (51) 011 0000000 R sltu rd, rs1, rs2 set less than unsigned rd = (rs1 < rs2)

0110011 (51) 100 0000000 R xor rd, rs1, rs2 xor rd = rs1 ^ rs2

0110011 (51) 101 0000000 R srl rd, rs1, rs2 shift right logical rd = rs1 >> rs24:0
0110011 (51) 101 0100000 R sra rd, rs1, rs2 shift right arithmetic rd = rs1 >>> rs24:0
0110011 (51) 110 0000000 R or rd, rs1, rs2 or rd = rs1 | rs2

0110011 (51) 111 0000000 R and rd, rs1, rs2 and rd = rs1 & rs2

0110111 (55) – – U lui rd, upimm load upper immediate rd = {upimm, 12’b0}

1100011 (99) 000 – B beq rs1, rs2, label branch if = if (rs1 == rs2) PC = BTA

1100011 (99) 001 – B bne rs1, rs2, label branch if ≠ if (rs1 ≠ rs2) PC = BTA

1100011 (99) 100 – B blt rs1, rs2, label branch if < if (rs1 < rs2) PC = BTA

1100011 (99) 101 – B bge rs1, rs2, label branch if ≥ if (rs1 ≥ rs2) PC = BTA

1100011 (99) 110 – B bltu rs1, rs2, label branch if < unsigned if (rs1 < rs2) PC = BTA

1100011 (99) 111 – B bgeu rs1, rs2, label branch if ≥ unsigned if (rs1 ≥ rs2) PC = BTA

1100111 (103) 000 – I jalr rd, rs1, imm jump and link register PC = rs1 + SignExt(imm), rd = PC + 4

1101111 (111) – – J jal rd, label jump and link PC = JTA, rd = PC + 4

• imm: signed immediate in imm11:0

• uimm: 5-bit unsigned immediate in imm4:0

• upimm: 20 upper bits of a 32-bit immediate, in imm31:12

• Address: memory address: rs1 + SignExt(imm11:0)
• [Address]: data at memory location Address
• BTA: branch target address: PC + SignExt({imm12:1, 1'b0})
• JTA: jump target address: PC + SignExt({imm20:1, 1'b0})
• label: text indicating instruction address
• SignExt: value sign-extended to 32 bits
• ZeroExt: value zero-extended to 32 bits
• csr: control and status register

 *Encoded in instr31:25, the upper seven bits of the immediate !eld

Page 3 of 14

Main Decoder

7.3 Single-Cycle Processor 407

register file reads 14 on both ports. The ALU computes 14 – 14 = 0, and the
Zero flag is asserted. Meanwhile, the Extend unit produces 0xFFFFFFF4
(i.e., −12), which is added to PC to obtain PCTarget = 0x1000. Note that
we show the unswizzled upper 12 bits of the 13-bit immediate on the input
of the Extend unit (0xFFA). The PCNext mux chooses PCTarget as the next
PC and branches back to the start of the code at the next clock edge.

This completes the design of the single-cycle processor datapath. We
have illustrated not only the design itself but also the design process in
which the state elements are identified and the combinational logic is
systematically added to connect the state elements. In the next section,
we consider how to compute the control signals that direct the operation
of our datapath.

7 . 3 . 3 Single-Cycle Control

The single-cycle processor’s control unit computes the control signals
based on op, funct3, and funct7. For the RV32I instruction set, only
bit 5 of funct7 is used, so we just need to consider op (Instr6:0), funct3
(Instr14:12), and funct75 (Instr30). Figure 7.12 shows the entire single-
cycle processor with the control unit attached to the datapath.

We name the multiplexers
(muxes) by the signals they
produce. For example, the
PCNext mux produces the
PCNext signal, and the Result
mux produces the Result signal.

Figure 7.12 Complete single-cycle processor

ImmExt

CLK

A RD

Instruction
Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Extend

Register
File

0
1

A RD
Data

Memory
WD

WE
PC0

1

PCTarget

Instr

31:7

30

SrcB

ALUResult ReadData

WriteData

SrcA

14:12

MemWrite

ALUSrc

RegWrite

funct3
funct75

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

AL
U

ImmSrc1:0

ResultSrc

+

PCPlus4

PCNext

op6:0

Zero

0
1

Result

19:15

24:20

11:7

MicroarchitectureCHAPTER SEVEN408

Figure 7.13 hierarchically decomposes the control unit, which is also
referred to as the controller or the decoder, because it decodes what the
instruction should do. We partition it into two major parts: the Main
Decoder, which produces most of the control signals, and the ALU
Decoder, which determines what operation the ALU performs.

Table 7.2 shows the control signals that the Main Decoder pro-
duces, as we determined while designing the datapath. The Main
Decoder determines the instruction type from the opcode and then
produces the appropriate control signals for the datapath. The Main
Decoder generates most of the control signals for the datapath. It also
produces internal signals Branch and ALUOp, signals used within the
controller. The logic for the Main Decoder can be developed from the
truth table using your favorite techniques for combinational logic
design.

The ALU Decoder produces ALUControl based on ALUOp and
funct3. In the case of the sub and add instructions, the ALU Decoder also
uses funct75 and op5 to determine ALUControl, as given in in Table 7.3.

Table 7.2 Main Decoder truth table

Instruction Op RegWrite ImmSrc ALUSrc MemWrite ResultSrc Branch ALUOp

lw 0000011 1 00 1 0 1 0 00

sw 0100011 0 01 1 1 x 0 00

R-type 0110011 1 xx 0 0 0 0 10

beq 1100011 0 10 0 0 x 1 01

Figure 7.13 Single-cycle
processor control unit

Main
Decoder

ALUOp1:0

ALU
Decoder

op6:0

funct32:0 ALUControl2:0

ImmSrc1:0

ALUSrc

ResultSrc
MemWrite

RegWrite

Branch

funct75

5

PCSrcZero 7.3 Single-Cycle Processor 409

ALUOp of 00 indicates add (e.g., to find the address for loads or
stores). ALUOp of 01 indicates subtract (e.g., to compare two numbers
for branches). ALUOp of 10 indicates an R-type ALU instruction where
the ALU Decoder must look at the funct3 field (and sometimes also the
op5 and funct75 bits) to determine which ALU operation to perform
(e.g., add, sub, and, or, slt).

Example 7.1 SINGLE-CYCLE PROCESSOR OPERATION

Determine the values of the control signals and the portions of the datapath that
are used when executing an and instruction.

Solution Figure 7.14 illustrates the control signals and flow of data during exe-
cution of an and instruction. The PC points to the memory location holding
the instruction; the instruction memory outputs this instruction. The main flow
of data through the register file and ALU is represented with a heavy blue line.
The register file reads the two source operands specified by Instr. SrcB should
come from the second port of the register file (not ImmExt), so ALUSrc must
be 0. The ALU performs a bitwise AND operation, so ALUControl must be
010. The result comes from the ALU, so ResultSrc is 0, and the result is written
to the register file, so RegWrite is 1. The instruction does not write memory, so
MemWrite is 0.

The updating of PC with PCPlus4 is shown by a heavy gray line. PCSrc is 0 to
select the incremented PC. Note that data does flow through the nonhighlighted
paths, but the value of that data is disregarded. For example, the immediate is
extended and a value is read from memory, but these values do not influence the
next state of the system.

According to Table B.1 in
the inside covers of the book,
add, sub, and addi all have
funct3 = 000. add has funct7
= 0000000 while sub has
funct7 = 0100000, so funct75
is sufficient to distinguish these
two. But we will soon consider
supporting addi, which doesn’t
have a funct7 field but has an
op of 0010011. With a bit of
thought, we can see that an
ALU instruction with funct3 =
000 is sub if op5 and funct75
are both 1, or add or addi
otherwise.

Table 7.3 ALU Decoder truth table

ALUOp funct3 {op5, funct75} ALUControl Instruction

00 x x 000 (add) lw, sw

01 x x 001 (subtract) beq

10 000 00, 01, 10 000 (add) add

000 11 001 (subtract) sub

010 x 101 (set less than) slt

110 x 011 (or) or

111 x 010 (and) and
7.3 Single-Cycle Processor 411

ImmSrc is 00 (see Table 7.1). SrcB comes from the immediate, so ALUSrc = 1.
The instruction does not write memory nor is it a branch, so MemWrite =
Branch = 0. The result comes from the ALU, not memory, so ResultSrc = 0.
Finally, the ALU should add, so ALUOp = 10; the ALU Decoder makes
ALUControl = 000 because funct3 = 000 and op5 = 0.

The astute reader may note that this change also provides the other I-type ALU
instructions: andi, ori, and slti. These other instructions share the same op
value of 0010011, need the same control signals, and only differ in the funct3
field, which the ALU Decoder already uses to determine ALUControl and, thus,
the ALU operation.

Example 7.3 jal INSTRUCTION

Show how to change the RISC-V single-cycle processor to support the jump and
link (jal) instruction. jal writes PC+4 to rd and changes PC to the jump target
address, PC + imm.

Solution The processor calculates the jump target address, the value of PCNext,
by adding PC to the 21-bit signed immediate encoded in the instruction. The least
significant bit of the immediate is always 0 and the next 20 most significant bits
come from Instr31:12. This 21-bit immediate is then sign-extended. The datapath
already has hardware for adding PC to a sign-extended immediate, selecting
this as the next PC, computing PC+4, and writing a value to the register file.
Hence, in the datapath, we must only modify the Extend unit to sign-extend the
21-bit immediate and expand the Result multiplexer to choose PC+4 (i.e., PCPlus4)
as shown in Figure 7.15. Table 7.5 shows the new encoding for ImmSrc to support
the long immediate for jal.

The control unit needs to set PCSrc = 1 for the jump. To do this, we
add an OR gate and another control signal, Jump, as shown in Figure 7.16.
When Jump asserts, PCSrc = 1 and PCTarget (the jump target address)
is selected as the next PC.

Table 7.4 Main Decoder truth table enhanced to support addi

Instruction Opcode RegWrite ImmSrc ALUSrc MemWrite ResultSrc Branch ALUOp

lw 0000011 1 00 1 0 1 0 00

sw 0100011 0 01 1 1 x 0 00

R-type 0110011 1 xx 0 0 0 0 10

beq 1100011 0 10 0 0 x 1 01

addi 0010011 1 00 1 0 0 0 10
MicroarchitectureCHAPTER SEVEN406

sign-extended immediate (when ImmSrc = 00 or 01) or the branch offset
(when ImmSrc = 10).

Figure 7.11 shows the modifications to the datapath. We need
another adder to compute the branch target address, PCTarget = PC +
ImmExt. The two source registers are compared by computing (SrcA –
SrcB) using the ALU. If ALUResult is 0, as indicated by the ALU’s Zero
flag, the registers are equal. We add a multiplexer to choose PCNext
from either PCPlus4 or PCTarget. PCTarget is selected if the instruction
is a branch and the Zero flag is asserted. For beq, ALUControl = 001,
so that the ALU performs a subtraction. ALUSrc = 0 to choose SrcB
from the register file. RegWrite and MemWrite are 0, because a branch
does not write to the register file or memory. We don’t care about the
value of ResultSrc, because the register file is not written.

In our example, the PC is 0x100C, so the instruction memory reads out
the beq instruction 0xFE420AE3. Both source registers are x4, so the

Logically, we can build the
Extend unit from a 32-bit 3:1
multiplexer choosing one of
three possible inputs based
on ImmSrc and the various
bitfields of the instruction.
In practice, the upper bits of
the sign-extended immediate
always come from bit 31 of
the instruction, Instr31, so
we can optimize the design
and only use a multiplexer to
select the lower bits.

Table 7.1 ImmSrc encoding

ImmSrc ImmExt Type Description

00 {{20{Instr[31]}}, Instr[31:20]} I 12-bit signed immediate

01 {{20{Instr[31]}}, Instr[31:25], Instr[11:7]} S 12-bit signed immediate

10 {{20{Instr[31]}}, Instr[7], Instr[30:25], Instr[11:8], 1’b0} B 13-bit signed immediate

Figure 7.11 Datapath enhancements for beq

ImmExt

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

A RD
Data

Memory
WD

WE
PC0

1

PCTarget

Instr

31:7

SrcB

ALUResult ReadData

WriteData

SrcA Zero

CLK

AL
U

+

PCPlus4

PCNext

PCSrc
1

Register
File

0x100C

0xFE420AE3

14

0
140x1000

14

0x1010

0xFFA 0xFFFFFFF4

0x1000

1

MemWriteALUSrcRegWrite ALUControl2:0ImmSrc
0 10 0 0

0
1

001

19:15

24:20

11:7

4

4

Result

x
ResultSrc

Extend

Address Instruction Type Fields Machine Language

0x100C beq x4, x4, L7 B 1111111 00100 00100 000 10101 1100011 FE420AE3
f3imm12,10:5 imm4:1,11 oprs1rs2

0
1

Page 4 of 14

ALU

MicroarchitectureCHAPTER SEVEN422

PCWrite and the Result multiplexer selects ALUOut (that contains the
target address) to feed to the PC. No new hardware is needed.

This completes the design of the multicycle datapath. The design
process is much like that of the single-cycle processor in that hardware
is systematically connected between the state elements to handle each
instruction. The main difference is that the instruction is executed in sev-
eral steps. Nonarchitectural registers are inserted to hold the results of
each step. In this way, the memory can be shared for instructions and
data and the ALU can be reused several times, thus reducing hardware
costs. In the next section, we develop an FSM controller to deliver the
appropriate sequence of control signals to the datapath on each step of
each instruction.

7 . 4 . 2 Multicycle Control

As in the single-cycle processor, the control unit computes the control
signals based on the op, funct3, and funct75 fields of the instruction
(Instr6:0, Instr14:12, and Instr30). Figure 7.27 shows the entire multicycle
processor with the control unit attached to the datapath. The datapath is
shown in black and the control unit in blue.

ImmExt

CLK

A
RD

Instr / Data
Memory

PC 0
1

Instr

SrcB

ALUResult

SrcA

ALUOut

MemWrite

ALUSrcA1:0

RegWrite

Zero

ResultSrc1:0

CLK

ALUControl2:0

AL
U

WD

WE

CLK

Adr

Data

CLK

CLK

A

W
riteD

ata

4

CLK

EN

ALUSrcB1:0

IRWrite

AdrSrc
PCWrite

R
eadD

ata

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

19:15

11:7

31:7

24:20
00
01
10

Result

Zero

Control
Unit

ImmSrc1:0

Extend

Rs1

Rs2

CLK

OldPC

Rd

EN

00
01
10

00
01
10

PCNext

30

14:12 funct3
funct75

op6:0

Figure 7.27 Complete multicycle processor

7.4 Multicycle Processor 423

The control unit consists of a Main FSM, ALU Decoder, and
Instruction Decoder (Instr Decoder) as shown in Figure 7.28. The ALU
Decoder is the same as in the single-cycle processor (see Table 7.3), but
the combinational Main Decoder of the single-cycle processor is replaced
with the Main FSM in the multicycle processor to produce a sequence of
control signals on the appropriate cycles. A small Instruction Decoder
combinationally produces the ImmSrc select signal based on the opcode
using the ImmSrc column of Table 7.6. We design the Main FSM as a
Moore machine so that the outputs are only a function of the current state.
The remainder of this section develops the state transition diagram for
the Main FSM.

The Main FSM produces multiplexer select, register enable, and
memory write enable signals for the datapath. To keep the following
state transition diagrams readable, only the relevant control signals are
listed. Multiplexer select signals are listed only when their value matters;
otherwise, they are don’t care. Enable signals (RegWrite, MemWrite,
IRWrite, PCUpdate, and Branch) are listed only when they are asserted;
otherwise, they are 0.

Fetch
The first step for any instruction is to fetch the instruction from memory
at the address held in the PC. The FSM enters this Fetch state on reset.
The control signals are shown in Figure 7.29. To read the instruction

Figure 7.28 Multicycle control
unit

Main
FSM

ALUOp1:0

ALU
Decoder

op6:0

funct32:0 ALUControl2:0

ALUSrcA1:0

ResultSrc1:0

ALUSrcB1:0

AdrSrc

funct75

5

IRWrite

RegWrite
MemWrite

ImmSrc1:0
Instr

Decoder
op6:0

Branch PCWrite
Zero

PCUpdate

Figure 7.29 Fetch

S0: Fetch
AdrSrc = 0

IRWrite

Reset

MicroarchitectureCHAPTER SEVEN436

varying numbers of cycles for different instructions. However, the
multicycle processor does less work in a single cycle and, thus, has a
shorter cycle time.

The multicycle processor requires three cycles for branches, four
for R-type, I-type ALU, jump, and store instructions, and five for loads.
The number of clock cycles per instruction (CPI) depends on the relative
likelihood that each instruction is used.

S1: Decode
ALUSrcA = 01
ALUSrcB = 01
ALUOp = 00

S8: ExecuteI
ALUSrcA = 10
ALUSrcB = 01
ALUOp = 10

Reset

S6: ExecuteR
ALUSrcA = 10
ALUSrcB = 00
ALUOp = 10

S2: MemAdr
ALUSrcA = 10
ALUSrcB = 01
ALUOp = 00

op = 0000011 (lw)
OR

op = 0100011 (sw)

op =
0000011

(lw)

op =
0100011

(sw)

op =
0110011
(R-type)

op =
0010011

(I-type ALU)

op =
1101111

(jal)

op =
1100011

(beq)

State Datapath mOp
Fetch Instr ←Mem[PC]; PC ← PC+4
Decode ALUOut ← PCTarget
MemAdr ALUOut ← rs1 + imm
MemRead Data ← Mem[ALUOut]
MemWB rd ← Data
MemWrite Mem[ALUOut] ← rd
ExecuteR ALUOut ← rs1oprs2
ExecuteI ALUOut ← rs1opimm
ALUWB rd ← ALUOut
BEQ ALUResult = rs1-rs2; if Zero, PC = ALUOut
JAL PC = ALUOut; ALUOut = PC+4

S9: JAL
ALUSrcA = 01
ALUSrcB = 10
ALUOp = 00

ResultSrc = 00
PCUpdate

S4: MemWB
ResultSrc = 01

RegWrite

S7: ALUWB
ResultSrc = 00

RegWrite

S10: BEQ
ALUSrcA = 10
ALUSrcB = 00
ALUOp = 01

ResultSrc = 00
Branch

S0: Fetch
AdrSrc = 0

IRWrite
ALUSrcA = 00
ALUSrcB = 10
ALUOp = 00

ResultSrc = 10
PCUpdate

S3: MemRead
ResultSrc = 00

AdrSrc = 1

S5: MemWrite
ResultSrc = 00

AdrSrc = 1
MemWrite

Figure 7.45 Complete multicycle control FSM

Page 5 of 14

7.5 Pipelined Processor 453

Forward to solve data hazards when possible3:
if ((Rs1E = = RdM) & RegWriteM) & (Rs1E != 0) then
 ForwardAE = 10
else if ((Rs1E = = RdW) & RegWriteW) & (Rs1E != 0) then
 ForwardAE = 01
else ForwardAE = 00

Stall when a load hazard occurs:
lwStall = ResultSrcE0 & ((Rs1D = = RdE) | (Rs2D = = RdE))
StallF = lwStall
StallD = lwStall

Flush when a branch is taken or a load introduces a bubble:
FlushD = PCSrcE
FlushE = lwStall | PCSrcE

3 Recall that the forwarding logic for SrcBE (ForwardBE) is identical except that it checks
Rs2E instead of Rs1E.

Figure 7.61 Pipelined processor with full hazard handling

ImmExtE

CLK

A RD

Instruction
Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

0
1

Data
Memory

PCF0
1

PCF' InstrD
19:15

24:20

31:7

SrcBE

19:15

11:7

Rs1E

RdE

ALUResultM ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCTargetE

ResultW

PCPlus4F

ImmSrcD1:0

MemWriteD

ResultSrcD1:0

ALUControlD2:0

ALUSrcD

RegWriteD
Control

Unit

CLK CLK CLK

CLK

ALUControlE2:0

AL
U

RegWriteE RegWriteM RegWriteW

ResultSrcE1:0 ResultSrcM1:0

MemWriteE MemWriteM

ALUSrcE

00
01
10

00
01
10

S
ta

llF

S
ta

llD

Fo
rw

ar
dA

E

Fo
rw

ar
dB

E

24:20 Rs2E

Rs1D

RdD

Rs2D

Hazard Unit

Fl
us

hE

Extend

00
01
10

ResultSrcW1:0

RdM RdW

+

PCPlus4E PCPlus4M

PCPlus4W

ZeroE

BranchD

JumpD

Fl
us

hD

PCSrcE

RD1E

RD2E

PCD PCE

ImmExtD

BranchE

JumpE

CLK

WE

A

WD

RD

0

E
N

E
N

C
LR

C
LR

30

14:12 funct3
funct75

op6:0

Data
Memory

Digital Building BlocksCHAPTER FIVE278

the LE output for combinational functions, or it can be fed through the
flip-flop for registered functions. The flip-flop input comes from its own
LUT output, the data 3 input, or the register output of the previous LE.
Additional hardware includes support for addition using the carry chain
hardware, other multiplexers for routing, and flip-flop enable and reset.
Altera groups 16 LEs together to create a logic array block (LAB) and
provides local connections between LEs within the LAB.

In summary, each Cyclone IV LE can perform one combinational
and/or registered function, which can involve up to four variables. Other
brands of FPGAs are organized somewhat differently, but the same gen-
eral principles apply. For example, Xilinx’s 7-series FPGAs use 6-input
LUTs instead of 4-input LUTs.

The designer configures an FPGA by first creating a schematic or
HDL description of the design. The design is then synthesized onto
the FPGA. The synthesis tool determines how the LUTs, multiplexers,
and routing channels should be configured to perform the specified
functions. This configuration information is then downloaded to the
FPGA. Because Cyclone IV FPGAs store their configuration informa-
tion in SRAM, they are easily reprogrammed. The FPGA may down-
load its SRAM contents from a computer in the laboratory or from

LE carry-out

LE carry-in

Look-Up
Table
(LUT)

Carry
Chain

Register chain
routing from
previous LE

LAB-wide
synchronous

load
LAB-wide

synchronous
clear

Register bypass

Programmable
register

Synchronous
Load and

Clear Logic
ENA

CLRN

Row,
column, and
direct link
routing

Row,
column, and
direct link
routing

Local
routing

Register
chain
output

O O

Register feedback

labclk 1

labclr 1

data 1
data 2
data 3

data 4

labclr 2

Chip-wide
reset

(DEV_CLRn)

Asynchronous
Clear Logic

Clock &
Clock Enable

Select

labclk 2

labclkena 1

labclkena 2

Figure 5.60 Cyclone IV Logic Element (LE)
(Reproduced with permission from the Altera Cyclone™ IV Handbook © 2010

Altera Corporation)

Page 6 of 14

[4] Compute 0x3FA00000 * 0xC0600000, treating both numbers as IEEE single-precision
floating point. Express your result in hexadecimal.

Hexadecimal Result: ____________________

1.25 x -3.5 = -35/8 = -4.375 = C08C0000

Page 7 of 14

The critical path some implementaions of the pipelined processor is through the branch
logic. Your boss asks you to speed up the branch logic by designing a dedicated branch
comparator for bltu (branch less than unsigned) comparaisons. The comparator takes two
32-bit inputs SrcA and SrcB. It produces an output LTU if SrcA < SrcB when interpreted
as unsigned inputs.

A Sub-Word Read (SWR) block extracts a byte or half-word from a word and possibly
sign-extends it to word length. The block interface is shown in the diagram below and the
function is described by the table. Byte indicates one of the four bytes within the word,
specified by Adr[1:0] with byte 00 being Word[7:0] and byte 11 being Word[31:24].
Similarly, Halfword is one of the two 16-bit halfwords within the word, specified by
Adr[1].

Ctrl Operation ReadData

000 lb SignExt(Byte)

001 lh SignExt(Halfword)

010 lw RD[31:0]

100 lbu ZeroExt(Byte)

101 lhu ZeroExt(Halfword)

[4] Complete the following table to show the ReadData output in hexadecimal, assuming
RD[31:0] = 0xAB0042CD. The first row is done for you.

Ctrl Adr[1:0] ReadData

000 11 FFFFFFAB

001 00

010 00

100 00

101 10

[1] Is SWR combinational or sequential? Combinational Sequential

[4] Sketch a circuit implementing the SWR function. You may use standard building
blocks including multiplexers, sign extenders, and zero extenders. Label each bus with the
bit width.

Page 8 of 14

Page 9 of 14

What is the smallest number of Cyclone IV logic elements that each of the following
modules require?

module adventuregame(input logic clk, reset,
 input logic up, down, fly,
 output logic win);

 logic [1:0] level, nextlevel;

 always_ff @(posedge clk, posedge reset)
 if (reset) level <= 2’b00;
 else level <= nextlevel;

 always_comb
 case (level)
 2’b00: if (up) level = 2’b01;
 else level = 2’b00;
 2’b01: if (up) level = 2’b10;
 else if (down) level = 2’b00;
 else level = 2’b01;
 2’b10: if (up) level = 2’b11;
 else if (down) level = 2’b01;
 else level = 2’b10;
 2’b11: if (down) level = 2’b10;
 else level = 2’b11;
 endcase

 assign win = (level == 2’b11) & fly;

endmodule

[2] LEs: ______________________

module lt2(input logic [1:0] a, b,
 output logic lt);

 assign lt = a < b;
endmodule

[2] LEs: ______________________

module alu(input logic [31:0] a, b,
 input logic [1:0] op,
 output logic [31:0] y);

 always_comb
 case (op)
 2’b00: y = a + b;
 2’b01: y = a & b;
 2’b10: y = a | b;
 2’b11: y = a ^ b;
 endcase
endmodule

[2] LEs: ______________________

Page 10 of 14

Consider adding an analog-to-digital converter to the FE310 chip on the Red-V board so
that you can record audio. The register map is given below, with a base address of
0x10019000. The bitfields within the ADCCON register are also shown. Before using the
converter, initialize it by writing a 1 to the ON bit of ADCCON. To take a reading, write
a 1 to the START bit. Wait for the DONE bit to become 1, then read the result from
ADCVAL.

[2] Write C code declaring pointers ADCCON and ADCVAL to access the peripheral.

[2] Write a C function to initialize the ADC.

void ADCInit(void) {

}

[4] Write a C function to read the ADC.
uint32_t ADCRead(void) {

}

Page 11 of 14

Suppose the 5-stage pipelined RISC-V processor (see page 5) runs the following program,
fetching the ori instruction on cycle 1. Suppose the initial memory contents are shown
below.

ori t0, zero, 4
lw s0, 8(t0)
beq s0, s0, else
lw s0, 12(t0)

else: and s1, s0, t0

Memory Address Initial Contents

0 42

4 69

8 47

12 28

16 32

[1] What value is written to s1? ________

[1] On which cycle is s1 written? ________

[1] Is the branch taken? ________

[1] What is ALUResultM on cycle 5? ________

Page 12 of 14

Consider modifying the single-cycle RISC-V processor to support the lbu (load byte
unsigned) instruction. lbu rd, imm(rs1) reads an 8-bit byte from memory address
(rs1 + imm) and places it in the bottom 8 bits of register rd. The upper 24 bits of
register rd are filled with zeros. The address does not need to be a multiple of 4. lbu
has op = 3 and funct3 = 4. In comparison, lw also has op = 3 but funct3 = 2. A table of
the instruction formats is included in the material attached to the front of the exam for
your reference.

Recall that our memory reads out a 32-bit word on RD from the address specified by
A[31:2].

[4] Mark up the multicycle processor diagrams on page 4 of this exam packet to implement
lbu with as little new hardware as feasible. Using the SWR block from page 7 of this
exam is acceptable even though it supports more than just lbu. Explain your changes.

[1] The riscvtest.s test code (next page) has highlighted modifications to test the new
instruction. As compared to the riscvtest.s from Lab 10, it reverses the inputs to the sub
at address 30 and replaces a lw with lbu at 38. Convert lbu to machine language.

lbu x2, 96(x0)_____________________

 [2] Predict what value should be written to memory address 100 at instruction address 50.

Predicted Value: _____________________

Page 13 of 14

riscvtest.s

If successful, it should write the value ??? to address 100

RISC-V Assembly Description Address Machine Code

main: addi x2, x0, 5 # initialize x2 = 5 0 00500113

 addi x3, x0, 12 # initialize x3 = 12 4 00C00193

 addi x7, x3, -9 # initialize x7 = 3 8 FF718393

 or x4, x7, x2 # x4 = (3 OR 5) = 7 C 0023E233

 and x5, x3, x4 # x5 = (12 AND 7) = 4 10 0041F2B3

 add x5, x5, x4 # x5 = 4 + 7 = 11 14 004282B3

 beq x5, x7, end # shouldn't be taken 18 02728863

 slt x4, x3, x4 # x4 = (12 < 7) = 0 1C 0041A233

 beq x4, x0, around # should be taken 20 00020463

 addi x5, x0, 0 # shouldn't happen 24 00000293

around: slt x4, x7, x2 # x4 = (3 < 5) = 1 28 0023A233

 add x7, x4, x5 # x7 = 1 + 11 = 12 2C 005203B3

 sub x7, x7, x2 # x7 = 12 - 5 = 7 30 402383B3

 sub x7, x2, x7 # x7 = 5 - 12 = -7 30 407103B3

 sw x7, 84(x3) # [96] = FFFFFFF9 = -7 34 0471AA23

 lw x2, 96(x0) # x2 = [96] = 7 38 06002103

 lbu x2, 96(x0) # x2 = [96] = ??? 38 ???

 add x9, x2, x5 # x9 = ??? + 11 = ??? 3C 005104B3

 jal x3, end # jump to end, x3=0x44 40 008001EF

 addi x2, x0, 1 # shouldn't happen 44 00100113

end: add x2, x2, x9 # x2 = ??? + 18 = ??? 48 00910133

 sw x2, 0x20(x3) # write mem[100] = ??? 50 0221A023

done: beq x2, x2, done # infinite loop 54 00210063

 END OF WRITTEN PORTION OF EXAM

DO NOT PROCEED PAST THIS POINT UNTIL YOU ARE PREPARED TO
CEASE ALL WORK ON THE WRITTEN PORTION AND MOVE ON TO THE

COMPUTER PORTION.

Page 14 of 14

COMPUTER PORTION OF EXAM

Once you start this question, you may refer to the written portion of the exam, but may
not spend any more time on the written portion or change any of your answers on that
portion.

Modify your multicycle processor from Lab 10 to support the lbu instruction as simply as
possible. Your changes should be in accordance with your plan from the previous question,
but you can make corrections if necessary. Modify your riscvtest.txt to replace the existing
lw instructions with the new lbu instructions.

[1] Print out the Verilog modules you modified, highlight or circle the changes, and attach
them to your exam. Make sure your name is on the attached papers.

[4] Print out a simulation waveform showing at least the value being written to memory
location at the end of the program. Circle this value in the waveform, making sure it is
legible.

[2] What is the hash printed at the end of your simulation?

