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RISC-V Instruction Set Summary

funct7 rs2 rs1 rd op R-Typefunct3

imm11:0 rs1 rd op

imm11:5 rs2 rs1 imm4:0 op

imm31:12 rd op

funct3

funct3

imm12,10:5 rs2 rs1 imm4:1,11 opfunct3

imm20,10:1,11,19:12 rd op

I-Type

S-Type

B-Type

U-Type

J-Type

31:25 24:20 19:15 14:12 11:7 6:0

funct2 fs2 fs1 fd op
2 bits 5 bits 5 bits 3 bits 5 bits 7 bits

R4-Typefunct3fs3
5 bits

Figure B.1 RISC-V 32-bit instruction formats

Table B.1 RV32I: RISC-V integer instructions
op funct3 funct7 Type Instruction Description Operation
0000011 (3) 000 – I lb    rd,  imm(rs1) load byte rd =  SignExt([Address]7:0)

0000011 (3) 001 – I lh    rd,  imm(rs1) load half rd =  SignExt([Address]15:0)

0000011 (3) 010 – I lw    rd,  imm(rs1) load word rd =          [Address]31:0
0000011 (3) 100 – I lbu   rd,  imm(rs1) load byte unsigned rd =  ZeroExt([Address]7:0)

0000011 (3) 101 – I lhu   rd,  imm(rs1) load half unsigned rd =  ZeroExt([Address]15:0)

0010011 (19) 000 – I addi  rd,  rs1, imm add immediate rd =  rs1 +   SignExt(imm)

0010011 (19) 001 0000000* I slli  rd,  rs1, uimm shift left logical immediate rd =  rs1 <<  uimm

0010011 (19) 010 – I slti  rd,  rs1, imm set less than immediate rd = (rs1 <   SignExt(imm))

0010011 (19) 011 – I sltiu rd,  rs1, imm set less than imm. unsigned rd = (rs1 <   SignExt(imm))

0010011 (19) 100 – I xori  rd,  rs1, imm xor immediate rd =  rs1 ^   SignExt(imm)

0010011 (19) 101 0000000* I srli  rd,  rs1, uimm shift right logical immediate rd =  rs1 >>  uimm

0010011 (19) 101 0100000* I srai  rd,  rs1, uimm shift right arithmetic imm. rd =  rs1 >>> uimm

0010011 (19) 110 – I ori   rd,  rs1, imm or immediate rd =  rs1 |   SignExt(imm)

0010011 (19) 111 – I andi  rd,  rs1, imm and immediate rd =  rs1 &   SignExt(imm)

0010111 (23) – – U auipc rd,  upimm add upper immediate to PC rd = {upimm, 12'b0} + PC 

0100011 (35) 000 – S sb    rs2, imm(rs1) store byte [Address]7:0 = rs27:0
0100011 (35) 001 – S sh    rs2, imm(rs1) store half [Address]15:0 = rs215:0
0100011 (35) 010 – S sw    rs2, imm(rs1) store word [Address]31:0 = rs2

0110011 (51) 000 0000000 R add   rd,  rs1, rs2 add rd =  rs1 +   rs2

0110011 (51) 000 0100000 R sub   rd,  rs1, rs2 sub rd =  rs1 —   rs2

0110011 (51) 001 0000000 R sll   rd,  rs1, rs2 shift left logical rd =  rs1 <<  rs24:0
0110011 (51) 010 0000000 R slt   rd,  rs1, rs2 set less than rd = (rs1 <   rs2)

0110011 (51) 011 0000000 R sltu  rd,  rs1, rs2 set less than unsigned rd = (rs1 <   rs2)

0110011 (51) 100 0000000 R xor   rd,  rs1, rs2 xor rd =  rs1 ^   rs2

0110011 (51) 101 0000000 R srl   rd,  rs1, rs2 shift right logical rd =  rs1 >>  rs24:0
0110011 (51) 101 0100000 R sra   rd,  rs1, rs2 shift right arithmetic rd =  rs1 >>> rs24:0
0110011 (51) 110 0000000 R or    rd,  rs1, rs2 or rd =  rs1 |   rs2

0110011 (51) 111 0000000 R and   rd,  rs1, rs2 and rd =  rs1 &   rs2

0110111 (55) – – U lui   rd,  upimm load upper immediate rd = {upimm, 12’b0}

1100011 (99) 000 – B beq   rs1, rs2, label branch if = if (rs1 == rs2) PC = BTA

1100011 (99) 001 – B bne   rs1, rs2, label branch if ≠ if (rs1 ≠  rs2) PC = BTA

1100011 (99) 100 – B blt   rs1, rs2, label branch if < if (rs1 <  rs2) PC = BTA

1100011 (99) 101 – B bge   rs1, rs2, label branch if ≥ if (rs1 ≥  rs2) PC = BTA

1100011 (99) 110 – B bltu  rs1, rs2, label branch if < unsigned if (rs1 <  rs2) PC = BTA

1100011 (99) 111 – B bgeu  rs1, rs2, label branch if ≥ unsigned if (rs1 ≥  rs2) PC = BTA

1100111 (103) 000 – I jalr  rd,  rs1, imm jump and link register PC = rs1 + SignExt(imm), rd = PC + 4

1101111 (111) – – J jal   rd,  label jump and link PC = JTA,                rd = PC + 4

• imm:  signed immediate in imm11:0

• uimm:  5-bit unsigned immediate in imm4:0

• upimm:  20 upper bits of a 32-bit immediate, in imm31:12

• Address:  memory address: rs1 + SignExt(imm11:0)
• [Address]:  data at memory location Address
• BTA:  branch target address: PC + SignExt({imm12:1, 1'b0})
• JTA:  jump target address: PC + SignExt({imm20:1, 1'b0})
• label:  text indicating instruction address
• SignExt: value sign-extended to 32 bits
• ZeroExt: value zero-extended to 32 bits
• csr:  control and status register

    *Encoded in instr31:25, the upper seven bits of the immediate !eld
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7.3 Single-Cycle Processor 407

register file reads 14 on both ports. The ALU computes 14 – 14 = 0, and the 
Zero flag is asserted. Meanwhile, the Extend unit produces 0xFFFFFFF4 
(i.e., −12), which is added to PC to obtain PCTarget = 0x1000. Note that 
we show the unswizzled upper 12 bits of the 13-bit immediate on the input 
of the Extend unit (0xFFA). The PCNext mux chooses PCTarget as the next 
PC and branches back to the start of the code at the next clock edge. 

This completes the design of the single-cycle processor datapath. We 
have illustrated not only the design itself but also the design process in 
which the state elements are identified and the combinational logic is 
systematically added to connect the state elements. In the next section, 
we consider how to compute the control signals that direct the operation 
of our datapath.

7 . 3 . 3   Single-Cycle Control

The single-cycle processor’s control unit computes the control signals 
based on op, funct3, and funct7. For the RV32I instruction set, only 
bit 5 of funct7 is used, so we just need to consider op (Instr6:0), funct3 
(Instr14:12), and funct75 (Instr30). Figure 7.12 shows the entire single- 
cycle processor with the control unit attached to the datapath.

We name the multiplexers 
(muxes) by the signals they 
produce. For example, the 
PCNext mux produces the 
PCNext signal, and the Result 
mux produces the Result signal. 

Figure 7.12 Complete single-cycle processor
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Figure 7.13 hierarchically decomposes the control unit, which is also 
referred to as the controller or the decoder, because it decodes what the 
instruction should do. We partition it into two major parts: the Main 
Decoder, which produces most of the control signals, and the ALU 
Decoder, which determines what operation the ALU performs.

Table 7.2 shows the control signals that the Main Decoder pro-
duces, as we determined while designing the datapath. The Main 
Decoder determines the instruction type from the opcode and then 
produces the appropriate control signals for the datapath. The Main 
Decoder generates most of the control signals for the datapath. It also 
produces internal signals Branch and ALUOp, signals used within the 
controller. The logic for the Main Decoder can be developed from the 
truth table using your favorite techniques for combinational logic 
design.

The ALU Decoder produces ALUControl based on ALUOp and 
funct3. In the case of the sub and add instructions, the ALU Decoder also 
uses funct75 and op5 to determine ALUControl, as given in in Table 7.3.  

Table 7.2 Main Decoder truth table

Instruction Op RegWrite ImmSrc ALUSrc MemWrite ResultSrc Branch ALUOp

lw 0000011 1 00 1 0 1 0 00

sw 0100011 0 01 1 1 x 0 00

R-type 0110011 1 xx 0 0 0 0 10

beq 1100011 0 10 0 0 x 1 01

Figure 7.13 Single-cycle 
processor control unit
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ALUOp of 00 indicates add (e.g., to find the address for loads or 
stores). ALUOp of 01 indicates subtract (e.g., to compare two numbers 
for branches). ALUOp of 10 indicates an R-type ALU instruction where 
the ALU Decoder must look at the funct3 field (and sometimes also the 
op5 and funct75 bits) to determine which ALU operation to perform 
(e.g., add, sub, and, or, slt).

Example 7.1 SINGLE-CYCLE PROCESSOR OPERATION

Determine the values of the control signals and the portions of the datapath that 
are used when executing an and instruction.

Solution Figure 7.14 illustrates the control signals and flow of data during exe-
cution of an and instruction. The PC points to the memory location holding 
the instruction; the instruction memory outputs this instruction. The main flow 
of data through the register file and ALU is represented with a heavy blue line. 
The register file reads the two source operands specified by Instr. SrcB should 
come from the second port of the register file (not ImmExt), so ALUSrc must 
be 0. The ALU performs a bitwise AND operation, so ALUControl must be 
010. The result comes from the ALU, so ResultSrc is 0, and the result is written 
to the register file, so RegWrite is 1. The instruction does not write memory, so 
MemWrite is 0.

The updating of PC with PCPlus4 is shown by a heavy gray line. PCSrc is 0 to 
select the incremented PC. Note that data does flow through the nonhighlighted 
paths, but the value of that data is disregarded. For example, the immediate is 
extended and a value is read from memory, but these values do not influence the 
next state of the system. 

According to Table B.1 in 
the inside covers of the book, 
add, sub, and addi all have 
funct3 = 000. add has funct7 
= 0000000 while sub has 
funct7 = 0100000, so funct75 
is sufficient to distinguish these 
two. But we will soon consider 
supporting addi, which doesn’t 
have a funct7 field but has an 
op of 0010011. With a bit of 
thought, we can see that an 
ALU instruction with funct3 = 
000 is sub if op5 and funct75 
are both 1, or add or addi 
otherwise. 

Table 7.3 ALU Decoder truth table

ALUOp funct3 {op5, funct75} ALUControl Instruction

00 x x 000 (add) lw, sw

01 x x 001 (subtract) beq

10 000 00, 01, 10 000 (add) add

000 11 001 (subtract) sub

010 x 101 (set less than) slt

110 x 011 (or) or

111 x 010 (and) and
7.3 Single-Cycle Processor 411

ImmSrc is 00 (see Table 7.1). SrcB comes from the immediate, so ALUSrc = 1.  
The instruction does not write memory nor is it a branch, so MemWrite = 
Branch = 0. The result comes from the ALU, not memory, so ResultSrc = 0.  
Finally, the ALU should add, so ALUOp = 10; the ALU Decoder makes 
ALUControl = 000 because funct3 = 000 and op5 = 0.

The astute reader may note that this change also provides the other I-type ALU 
instructions: andi, ori, and slti. These other instructions share the same op 
value of 0010011, need the same control signals, and only differ in the funct3 
field, which the ALU Decoder already uses to determine ALUControl and, thus, 
the ALU operation.
 

Example 7.3 jal INSTRUCTION

Show how to change the RISC-V single-cycle processor to support the jump and 
link (jal) instruction. jal writes PC+4 to rd and changes PC to the jump target 
address, PC + imm.

Solution The processor calculates the jump target address, the value of PCNext, 
by adding PC to the 21-bit signed immediate encoded in the instruction. The least 
significant bit of the immediate is always 0 and the next 20 most significant bits  
come from Instr31:12. This 21-bit immediate is then sign-extended. The datapath  
already has hardware for adding PC to a sign-extended immediate, selecting  
this as the next PC, computing PC+4, and writing a value to the register file. 
Hence, in the datapath, we must only modify the Extend unit to sign-extend the 
21-bit immediate and expand the Result multiplexer to choose PC+4 (i.e., PCPlus4) 
as shown in Figure 7.15. Table 7.5 shows the new encoding for ImmSrc to support 
the long immediate for jal.
 

The control unit needs to set PCSrc = 1 for the jump. To do this, we 
add an OR gate and another control signal, Jump, as shown in Figure 7.16. 
When Jump asserts, PCSrc = 1 and PCTarget (the jump target address) 
is selected as the next PC.

Table 7.4 Main Decoder truth table enhanced to support addi

Instruction Opcode RegWrite ImmSrc ALUSrc MemWrite ResultSrc Branch ALUOp

lw 0000011 1 00 1 0 1 0 00

sw 0100011 0 01 1 1 x 0 00

R-type 0110011 1 xx 0 0 0 0 10

beq 1100011 0 10 0 0 x 1 01

addi 0010011 1 00 1 0 0 0 10
MicroarchitectureCHAPTER SEVEN406

sign-extended immediate (when ImmSrc = 00 or 01) or the branch offset 
(when ImmSrc = 10).

Figure 7.11 shows the modifications to the datapath. We need 
another adder to compute the branch target address, PCTarget = PC + 
ImmExt. The two source registers are compared by computing (SrcA – 
SrcB) using the ALU. If ALUResult is 0, as indicated by the ALU’s Zero 
flag, the registers are equal. We add a multiplexer to choose PCNext 
from either PCPlus4 or PCTarget. PCTarget is selected if the instruction 
is a branch and the Zero flag is asserted. For beq, ALUControl = 001, 
so that the ALU performs a subtraction. ALUSrc = 0 to choose SrcB 
from the register file. RegWrite and MemWrite are 0, because a branch 
does not write to the register file or memory. We don’t care about the 
value of ResultSrc, because the register file is not written.

In our example, the PC is 0x100C, so the instruction memory reads out 
the beq instruction 0xFE420AE3. Both source registers are x4, so the 

Logically, we can build the 
Extend unit from a 32-bit 3:1 
multiplexer choosing one of 
three possible inputs based 
on ImmSrc and the various 
bitfields of the instruction. 
In practice, the upper bits of 
the sign-extended immediate 
always come from bit 31 of 
the instruction, Instr31, so 
we can optimize the design 
and only use a multiplexer to 
select the lower bits. 

Table 7.1 ImmSrc encoding

ImmSrc ImmExt Type Description

00 {{20{Instr[31]}}, Instr[31:20]} I 12-bit signed immediate

01 {{20{Instr[31]}}, Instr[31:25], Instr[11:7]} S 12-bit signed immediate

10 {{20{Instr[31]}}, Instr[7], Instr[30:25], Instr[11:8], 1’b0} B 13-bit signed immediate

Figure 7.11 Datapath enhancements for beq
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PCWrite and the Result multiplexer selects ALUOut (that contains the 
target address) to feed to the PC. No new hardware is needed.

This completes the design of the multicycle datapath. The design 
process is much like that of the single-cycle processor in that hardware 
is systematically connected between the state elements to handle each 
instruction. The main difference is that the instruction is executed in sev-
eral steps. Nonarchitectural registers are inserted to hold the results of 
each step. In this way, the memory can be shared for instructions and 
data and the ALU can be reused several times, thus reducing hardware 
costs. In the next section, we develop an FSM controller to deliver the 
appropriate sequence of control signals to the datapath on each step of 
each instruction.

7 . 4 . 2   Multicycle Control

As in the single-cycle processor, the control unit computes the control 
signals based on the op, funct3, and funct75 fields of the instruction 
(Instr6:0, Instr14:12, and Instr30). Figure 7.27 shows the entire multicycle 
processor with the control unit attached to the datapath. The datapath is 
shown in black and the control unit in blue.
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Figure 7.27 Complete multicycle processor
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The control unit consists of a Main FSM, ALU Decoder, and 
Instruction Decoder (Instr Decoder) as shown in Figure 7.28. The ALU 
Decoder is the same as in the single-cycle processor (see Table 7.3), but 
the combinational Main Decoder of the single-cycle processor is replaced 
with the Main FSM in the multicycle processor to produce a sequence of 
control signals on the appropriate cycles. A small Instruction Decoder 
combinationally produces the ImmSrc select signal based on the opcode 
using the ImmSrc column of Table 7.6. We design the Main FSM as a 
Moore machine so that the outputs are only a function of the current state. 
The remainder of this section develops the state transition diagram for 
the Main FSM.

The Main FSM produces multiplexer select, register enable, and 
memory write enable signals for the datapath. To keep the following 
state transition diagrams readable, only the relevant control signals are 
listed. Multiplexer select signals are listed only when their value matters; 
otherwise, they are don’t care. Enable signals (RegWrite, MemWrite, 
IRWrite, PCUpdate, and Branch) are listed only when they are asserted; 
otherwise, they are 0.

Fetch
The first step for any instruction is to fetch the instruction from memory 
at the address held in the PC. The FSM enters this Fetch state on reset. 
The control signals are shown in Figure 7.29. To read the instruction 

Figure 7.28 Multicycle control 
unit
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varying numbers of cycles for different instructions. However, the  
multicycle processor does less work in a single cycle and, thus, has a 
shorter cycle time.

The multicycle processor requires three cycles for branches, four 
for R-type, I-type ALU, jump, and store instructions, and five for loads. 
The number of clock cycles per instruction (CPI) depends on the relative  
likelihood that each instruction is used.

S1: Decode
ALUSrcA = 01
ALUSrcB = 01
ALUOp = 00

S8: ExecuteI
ALUSrcA = 10
ALUSrcB = 01
ALUOp = 10

Reset

S6: ExecuteR
ALUSrcA = 10
ALUSrcB = 00
ALUOp = 10

S2: MemAdr
ALUSrcA = 10
ALUSrcB = 01
ALUOp = 00

op = 0000011 (lw)
OR

op = 0100011 (sw)

op =
0000011

(lw)

op =
0100011
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op =
0110011
(R-type)
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0010011

(I-type ALU)
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1101111

(jal)

op =
1100011

(beq)

State Datapath mOp
Fetch Instr ←Mem[PC]; PC ← PC+4
Decode ALUOut ← PCTarget
MemAdr ALUOut ← rs1 + imm
MemRead Data ← Mem[ALUOut]
MemWB rd ← Data
MemWrite Mem[ALUOut] ← rd
ExecuteR ALUOut ← rs1oprs2
ExecuteI ALUOut ← rs1opimm
ALUWB rd ← ALUOut
BEQ ALUResult = rs1-rs2; if Zero, PC = ALUOut
JAL PC = ALUOut; ALUOut = PC+4
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Figure 7.45 Complete multicycle control FSM
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7.5 Pipelined Processor 453

Forward to solve data hazards when possible3:
if   ((Rs1E = = RdM) & RegWriteM) & (Rs1E != 0) then
             ForwardAE = 10
else if ((Rs1E = = RdW) & RegWriteW) & (Rs1E != 0) then
             ForwardAE = 01
else            ForwardAE = 00

Stall when a load hazard occurs:
lwStall = ResultSrcE0 & ((Rs1D = = RdE) | (Rs2D = = RdE))
StallF   = lwStall
StallD  = lwStall

Flush when a branch is taken or a load introduces a bubble:
FlushD = PCSrcE
FlushE  = lwStall | PCSrcE

3  Recall that the forwarding logic for SrcBE (ForwardBE) is identical except that it checks 
Rs2E instead of Rs1E.

Figure 7.61 Pipelined processor with full hazard handling
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the LE output for combinational functions, or it can be fed through the 
flip-flop for registered functions. The flip-flop input comes from its own 
LUT output, the data 3 input, or the register output of the previous LE. 
Additional hardware includes support for addition using the carry chain 
hardware, other multiplexers for routing, and flip-flop enable and reset. 
Altera groups 16 LEs together to create a logic array block (LAB) and 
provides local connections between LEs within the LAB.

In summary, each Cyclone IV LE can perform one combinational  
and/or registered function, which can involve up to four variables. Other 
brands of FPGAs are organized somewhat differently, but the same gen-
eral principles apply. For example, Xilinx’s 7-series FPGAs use 6-input 
LUTs instead of 4-input LUTs.

The designer configures an FPGA by first creating a schematic or 
HDL description of the design. The design is then synthesized onto 
the FPGA. The synthesis tool determines how the LUTs, multiplexers, 
and routing channels should be configured to perform the specified 
functions. This configuration information is then downloaded to the 
FPGA. Because Cyclone IV FPGAs store their configuration informa-
tion in SRAM, they are easily reprogrammed. The FPGA may down-
load its SRAM contents from a computer in the laboratory or from 
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Figure 5.60 Cyclone IV Logic Element (LE)  
(Reproduced with permission from the Altera Cyclone™ IV Handbook © 2010  

Altera Corporation)
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[4] Compute 0x3FA00000 * 0xC0600000, treating both numbers as IEEE single-precision 
floating point.  Express your result in hexadecimal. 
 

 
 

 
 

 
 

 
 

Hexadecimal Result: ____________________ 
 

1.25 x -3.5 = -35/8 = -4.375 = C08C0000  
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The critical path some implementaions of the pipelined processor is through the branch 
logic.  Your boss asks you to speed up the branch logic by designing a dedicated branch 
comparator for bltu (branch less than unsigned) comparaisons.  The comparator takes two 
32-bit inputs SrcA and SrcB.  It produces an output LTU if SrcA < SrcB when interpreted 
as unsigned inputs. 

 
 

 
A Sub-Word Read (SWR) block extracts a byte or half-word from a word and possibly 
sign-extends it to word length.  The block interface is shown in the diagram below and the 
function is described by the table.  Byte indicates one of the four bytes within the word, 
specified by Adr[1:0] with byte 00 being Word[7:0] and byte 11 being Word[31:24].  
Similarly, Halfword is one of the two 16-bit halfwords within the word, specified by 
Adr[1]. 

 
 

 

Ctrl Operation ReadData 

000 lb SignExt(Byte) 

001 lh SignExt(Halfword) 

010 lw RD[31:0] 

100 lbu ZeroExt(Byte) 

101 lhu ZeroExt(Halfword) 

[4] Complete the following table to show the ReadData output in hexadecimal, assuming 
RD[31:0] = 0xAB0042CD. The first row is done for you. 

Ctrl Adr[1:0] ReadData 

000 11 FFFFFFAB 

001 00  

010 00  

100 00  

101 10  

 
[1] Is SWR combinational or sequential?  Combinational  Sequential 

 
[4] Sketch a circuit implementing the SWR function.  You may use standard building 
blocks including multiplexers, sign extenders, and zero extenders.  Label each bus with the 
bit width. 
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What is the smallest number of Cyclone IV logic elements that each of the following 
modules require? 
 
 
module adventuregame(input  logic clk, reset, 
                     input  logic up, down, fly, 
                     output logic win); 
 
  logic [1:0] level, nextlevel; 
 
  always_ff @(posedge clk, posedge reset) 
     if (reset) level <= 2’b00; 
     else       level <= nextlevel; 
 
  always_comb 
    case (level)  
      2’b00: if      (up)   level = 2’b01; 
             else           level = 2’b00; 
      2’b01: if      (up)   level = 2’b10; 
             else if (down) level = 2’b00; 
             else           level = 2’b01; 
      2’b10: if      (up)   level = 2’b11; 
             else if (down) level = 2’b01; 
             else           level = 2’b10; 
      2’b11: if      (down) level = 2’b10; 
             else           level = 2’b11; 
    endcase 
 
  assign win = (level == 2’b11) & fly; 
 
endmodule 
 

[2] LEs: ______________________ 
 
 
module lt2(input  logic [1:0] a, b, 
      output logic       lt); 
 
  assign lt = a < b; 
endmodule 
 

[2] LEs: ______________________ 
 
 
 
module alu(input  logic [31:0] a, b, 
           input  logic [1:0]  op, 
           output logic [31:0] y); 
 
  always_comb 
    case (op) 
      2’b00: y = a + b; 
      2’b01: y = a & b; 
      2’b10: y = a | b; 
      2’b11: y = a ^ b; 
    endcase 
endmodule 
 

[2] LEs: ______________________ 
  



Page 10 of 14 

Consider adding an analog-to-digital converter to the FE310 chip on the Red-V board so 
that you can record audio.  The register map is given below, with a base address of 
0x10019000. The bitfields within the ADCCON register are also shown.  Before using the 
converter, initialize it by writing a 1 to the ON bit of ADCCON.  To take a reading, write 
a 1 to the START bit.  Wait for the DONE bit to become 1, then read the result from 
ADCVAL. 
 

 
[2] Write C code declaring pointers ADCCON and ADCVAL to access the peripheral. 
 

 
 

 
[2] Write a C function to initialize the ADC. 

void ADCInit(void) { 
 
 
 
 
 
 
 
} 
 

[4] Write a C function to read the ADC. 
uint32_t ADCRead(void) { 
 
 
 
 

 
 
} 
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Suppose the 5-stage pipelined RISC-V processor (see page 5) runs the following program, 
fetching the ori instruction on cycle 1. Suppose the initial memory contents are shown 
below. 

 
ori  t0, zero, 4 
lw   s0, 8(t0) 
beq  s0, s0, else 
lw   s0, 12(t0) 

else:  and  s1, s0, t0 
 

Memory Address Initial Contents 

0 42 

4 69 

8 47 

12 28 

16 32 

 

 
[1] What value is written to s1?      ________ 

 
[1] On which cycle is s1 written?      ________ 

 
[1] Is the branch taken?       ________ 

 
[1] What is ALUResultM on cycle 5?     ________ 
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Consider modifying the single-cycle RISC-V processor to support the lbu (load byte 
unsigned) instruction. lbu rd, imm(rs1) reads an 8-bit byte from memory address 
(rs1 + imm) and places it in the bottom 8 bits of register rd.  The upper 24 bits of 
register rd are filled with zeros.  The address does not need to be a multiple of 4. lbu 
has op = 3 and funct3 = 4.  In comparison, lw also has op = 3 but funct3 = 2. A table of 
the instruction formats is included in the material attached to the front of the exam for 
your reference. 

Recall that our memory reads out a 32-bit word on RD from the address specified by 
A[31:2]. 

[4] Mark up the multicycle processor diagrams on page 4 of this exam packet to implement 
lbu with as little new hardware as feasible. Using the SWR block from page 7 of this 
exam is acceptable even though it supports more than just lbu. Explain your changes. 

 

 
 

 
 
[1] The riscvtest.s test code  (next page) has highlighted modifications to test the new 
instruction.  As compared to the riscvtest.s from Lab 10, it reverses the inputs to the sub 
at address 30 and replaces a lw with lbu at 38. Convert lbu to machine language. 

 
lbu  x2, 96(x0)_____________________ 

 
 

 [2] Predict what value should be written to memory address 100 at instruction address 50. 
 

 
Predicted Value: _____________________ 
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# riscvtest.s 

# If successful, it should write the value ??? to address 100 

 

#       RISC-V Assembly         Description             Address   Machine Code 

main:   addi x2, x0, 5          # initialize x2 = 5     0         00500113    

        addi x3, x0, 12         # initialize x3 = 12    4         00C00193 

        addi x7, x3, -9         # initialize x7 = 3     8         FF718393 

        or   x4, x7, x2         # x4 = (3 OR 5) = 7     C         0023E233 

        and  x5, x3, x4         # x5 = (12 AND 7) = 4   10        0041F2B3 

        add  x5, x5, x4         # x5 = 4 + 7 = 11       14        004282B3 

        beq  x5, x7, end        # shouldn't be taken    18        02728863 

        slt  x4, x3, x4         # x4 = (12 < 7) = 0     1C        0041A233 

        beq  x4, x0, around     # should be taken       20        00020463 

        addi x5, x0, 0          # shouldn't happen      24        00000293 

around: slt  x4, x7, x2         # x4 = (3 < 5) = 1      28        0023A233 

        add  x7, x4, x5         # x7 = 1 + 11 = 12      2C        005203B3 

        sub  x7, x7, x2         # x7 = 12 - 5 = 7       30        402383B3 

        sub  x7, x2, x7         # x7 = 5 - 12 = -7      30        407103B3 

        sw   x7, 84(x3)         # [96] = FFFFFFF9 = -7  34        0471AA23 

        lw   x2, 96(x0)         # x2 = [96] = 7         38        06002103 

        lbu  x2, 96(x0)         # x2 = [96] = ???       38        ??? 

        add  x9, x2, x5         # x9 = ??? + 11 = ???   3C        005104B3 

        jal  x3, end            # jump to end, x3=0x44  40        008001EF 

        addi x2, x0, 1          # shouldn't happen      44        00100113 

end:    add  x2, x2, x9         # x2 = ??? + 18 = ???   48        00910133 

        sw   x2, 0x20(x3)       # write mem[100] = ???  50        0221A023 

done:   beq  x2, x2, done       # infinite loop         54        00210063 

   

  END OF WRITTEN PORTION OF EXAM 
 

DO NOT PROCEED PAST THIS POINT UNTIL YOU ARE PREPARED TO 
CEASE ALL WORK ON THE WRITTEN PORTION AND MOVE ON TO THE 

COMPUTER PORTION. 
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COMPUTER PORTION OF EXAM 

 
Once you start this question, you may refer to the written portion of the exam, but may 
not spend any more time on the written portion or change any of your answers on that 
portion. 

 
 
Modify your multicycle processor from Lab 10 to support the lbu instruction as simply as 
possible. Your changes should be in accordance with your plan from the previous question, 
but you can make corrections if necessary.  Modify your riscvtest.txt to replace the existing 
lw instructions with the new lbu instructions. 

 
[1] Print out the Verilog modules you modified, highlight or circle the changes, and attach 
them to your exam.  Make sure your name is on the attached papers. 
 

 
 
[4] Print out a simulation waveform showing at least the value being written to memory 
location at the end of the program.  Circle this value in the waveform, making sure it is 
legible. 
 

 
 

 
 

[2] What is the hash printed at the end of your simulation? 
 


