Digital Electronics & Computer Engineering (E85)
Harris Spring 2023

Final Exam

This is a closed-book take-home exam. Electronic devices including calculators are not
allowed, except on the computer question on the last page. You are permitted two 8.5x11”
sheets of paper with notes. Reference materials are provided for you on the first pages of
the exam, including the RISC-V instruction set, single-cycle, multicycle, and pipelined
processor diagrams (datapath, controller, FSM, truth tables), and Cyclone logic block
diagram.

You are bound by the HMC Honor Code while taking this exam.

The first part of the exam is written, while the final page is done on the computer based on
your E85 Lab 10. The entire Lab 10 that you use (including datapath and controller) must
be your own work; it cannot, for example, include somebody else’s controller. The exam
is intended to be doable in 3 hours if you have prepared adequately. However, there will
be no limit on the time you are allowed except that the written portion must be completed
in one contiguous block of time and the computer part must be completed in another
contiguous block of time. A contiguous block of time is a period of time working at a desk
without breaking for meals, naps, socializing, etc. You cannot study for E85 or consult E85
resources between the two blocks of time. Please manage your time wisely and do not let
the exam expand to take more time than is justified.

Return the exam under Prof. Harris’ door no later than Friday 5/12 at noon (senior exams
are due by May 5 at 5 pm).

Alongside each question, the number of points is written in brackets. All work and answers
should be written directly on this examination booklet, except for printouts. Use the backs
of pages if necessary. Write neatly; illegible answers will be marked wrong. Show your
work for partial credit.
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RISC-V Instruction Set Summary

31:25 24:20 19:15 14:12  11:7 6:0 o imm: signed immediate in immyy,g
funct7 rs2 | rs1 |funct3| rd op | R-Type o wimm: 5-bit unsigned immediate in immy,
iMMato rs1 funct3 | rd op | I-Type o upimm: 20 upper bits of a 32-bit im'rnediate', in immsy,;,
—— 152 | rs1 [functd | immeo | op | S-Type « Address:  memory address: rs1 + SignExt(immy.g)
- [Address]: data at memory location Address
iMMizios | 162 | 11 [functd fimme | op | B-Type .« BTA: branch target address: PC + SignExt({immj,.;, 1'b0})
imMay.10 rd op | U-Type < JTA: jump target address: PC + SignExt({imm,,q, 1'b0})
iIMMzo,10:1,11.19:42 rd op | J-Type « label: text indicating instruction address
fs3 ‘funth‘ fs2 ‘ fs1 ‘functs id op | R4-Type « SignExt:  value sign-extended to 32 bits
5bits  2bits 5bits 5bits 3bits  5bits  7bits . ZeroExt:  value zero-extended to 32 bits
) . A . Csr: control and status register
Figure B.1 RISC-V 32-bit instruction formats
Table B.1 RV32I: RISC-V integer instructions
op funct3 ‘funct7 ‘Type ‘Instruction ‘Description Operation
0000011 (3) |000 |- 1 1b rd, imm(rs1) |load byte rd = SignExt([Addressl;.o)
0000011 (3) 001 - 1 1h rd, imm(rsl) load half rd = SignExt([Addresslis.o)
0000011 (3) |010 |- 1 Tw rd, imm(rsl) |load word rd = [Addresslsi.g
0000011 (3) |100 |- I Tbu  rd, imm(rsl) |load byte unsigned rd = ZeroExt([Address];.g)
0000011 (3) 101 - I Thu rd, imm(rs1l) |load half unsigned rd = ZeroExt([Addresslis.q)
0010011 (19) |000 |- I addi  rd, rsl, imm |add immediate rd = rsl +  SignExt(imm)
0010011 (19) [001  [0000000" |I s11i rd, rsl, uimm |shift left logical immediate rd = rsl < uimm
0010011 (19) |010 |- I slti rd, rsl, imm |set less than immediate rd = (rsl < SignExt(imm))
0010011 (19) |011 |- I sltiu rd, rsl, imm |set less than imm. unsigned rd = (rsl < SignExt(imm))
0010011 (19) [100 |- 1 xori rd, rsl, imm |xor immediate rd = rsl ~  SignExt(imm)
0010011 (19) [101  [0000000" |I srli rd, rsl, uimm |shift right logical immediate |rd = rsl >> uimm
0010011 (19) [101  [0100000" |1 srai rd, rsl, uimm |shift right arithmetic imm. rd = rsl >>> uimm
0010011 (19) |110 |- I ori rd, rsl, imm |or immediate rd = rsl | SignExt(imm)
0010011 (19) |111 |- 1 andi rd, rsl, imm |and immediate rd = rsl &  SignExt(imm)
0010111 (23) |- - U |auipc rd, upimm add upper immediate to PC~ |rd = {upimm, 12'b0} + PC
0100011 (35) |000 |- S sb rs2, imm(rsl) |store byte [Addressl;.o = rs2;.
0100011 (35) |001 |- S sh rs2, imm(rsl) |store half [Addresslis.o= rs2is.o
0100011 (35) |010 |- S sw rsz, imm(rsl) |store word [Addressls.o= rs2
0110011 (51) |000 0000000 |R add rd, rsl, rs2 |add rd = rsl + rs2
0110011 (51) |000 0100000 |R sub rd, rsl, rs2 |sub rd = rsl — rs2
0110011 (51) {001 0000000 |R  |s11  rd, rsl, rs2 |shiftleft logical rd = rsl << rsZy
0110011 (51) |010 |0000000 |R st rd, rsl, rs2 |setlessthan rd = (rsl < rs2)
0110011 (51) {011 0000000 |R sltu rd, rsl, rs2 |setless than unsigned rd = (rsl < rs2)
0110011 (51) |100 |0000000 |R xor rd, rsl, rs2z |xor rd = rsl ~  rs2
0110011 (51) {101 0000000 |R srl rd, rsl, rs2 |shift right logical rd = rsl > rs2sg
0110011 (51) {101 0100000 |R sra  rd, rsl, rs2 |shift right arithmetic rd = rsl >>> rs2sg
0110011 (51) {110 0000000 |R or rd, rsl, rs2 jor rd = rsl | rs2
0110011 (51) |111 0000000 |R and rd, rsl, rs2 |and rd = rsl & rs2
0110111 (55) |- - U Tui rd, upimm load upper immediate rd = {upimm, 12°b0}
1100011 (99) 000 |- B beq  rsl, rs2, label|branch if = if (rsl == rs2) PC = BTA
1100011 (99) |001 |- B bne  rsl, rs2, label|branch if = if (rsl = rs2) PC = BTA
1100011 (99) 100 |- B b1t  rsl, rs2, Tabel|branch if < if (rsl < rs2) PC = BTA
1100011 (99) (101 - B bge rsl, rs2, label|branch if > if (rsl = rs2) PC = BTA
1100011 (99) [110 - B bltu rsl, rs2, label|branch if < unsigned if (rsl < rs2) PC = BTA
1100011 (99) |111 |- B bgeu rsl, rs2, label|branch if > unsigned if (rsl > rs2) PC = BTA
1100111 (103)|000 |- I jalr rd, rsl, imm |jump and link register PC=rsl+SignExt(imm), rd = PC+4
1101111 (111) |- - J jal rd, Tabel jump and link PC = JTA, rd = PC+4

"Encoded in instrs, 55, the upper seven bits of the immediate field
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Figure 7.12 Complete single-cycle processor
Zero PCSrc
— Branch
—— ResultSrc
Main F— MemWrite ALUOp funct3 {ops, funct7s} ALUControl Instruction
OPe&:0 Decoder|—— ALUSrc 00 X X 000 (add) Tw, Sw
—— ImmSrci 01 x x 001 (subtract) beq
RegWrite 10 000 00, 01, 10 000 (add) add
ALUOp1, 000 11 001 (subtract) sub
010 X 101 (set less than) sTt
110 011
funct3zo DA“; L ALUControlz * il °
ecoder 111 x 010 (and) and
funct7s —
Main Decoder
Instruction Opcode  RegWrite  ImmSrc ALUSrc MemWrite ResultSrc  Branch ALUOp
Tw 0000011 1 00 1 0 1 0 00
Sw 0100011 0 01 1 1 X 0 00
R-type 0110011 1 XX 0 0 0 0 10
beq 1100011 0 10 0 0 X 1 01
addi 0010011 1 00 1 0 0 0 10
Table 7.1 ImmSrc encoding
ImmSrc  ImmExt Type Description
00 {{20{Instr[31]}}, Instr[31:20]} I 12-bit signed immediate
01 {{20{Instr[31]}}, Instr[31:25], Instr[11:7]} S 12-bit signed immediate
10 {120{Instr|31]}}, Instr|7], Instr[30:25], Instr[11:8], 1°b0} B 13-bit signed immediate
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Figure 7.27 Complete multicycle processor
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Decoder : MemWB  rd « Data

funct7s —— MemWrite Mem[ALUOUY] « rd
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Figure 7.45 Complete multicycle control FSM
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Figure 7.61 Pipelined processor with full hazard handling
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Figure 5.60 Cyclone IV Logic Element (LE)
(Reproduced with permission from the Altera Cyclone™ IV Handbook © 2010
Altera Corporation)
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[4] Compute 0x3FA00000 * 0xC0600000, treating both numbers as IEEE single-precision
floating point. Express your result in hexadecimal.

Hexadecimal Result:

1.25 x -3.5=-35/8 =-4.375 = C08C0000
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The critical path some implementaions of the pipelined processor is through the branch
logic. Your boss asks you to speed up the branch logic by designing a dedicated branch
comparator for bltu (branch less than unsigned) comparaisons. The comparator takes two
32-bit inputs SrcA and SrcB. It produces an output LTU if SrcA < SrcB when interpreted
as unsigned inputs.

A Sub-Word Read (SWR) block extracts a byte or half-word from a word and possibly
sign-extends it to word length. The block interface is shown in the diagram below and the
function is described by the table. Byte indicates one of the four bytes within the word,
specified by Adr[1:0] with byte 00 being Word[7:0] and byte 11 being Word[31:24].
Similarly, Halfword is one of the two 16-bit halfwords within the word, specified by
Adr[1].

Ctri[2:0] Ctrl | Operation | ReadData
| 000 | Ib SignExt(Byte)
RD[31:0] — I~ ReadData[31:0]
SWR 001 |1h SignExt(Halfword)
Adr[1:0] —
010 | 1w RDJ[31:0]
100 | Ibu ZeroExt(Byte)
101 | lhu ZeroExt(Halfword)

[4] Complete the following table to show the ReadData output in hexadecimal, assuming
RD[31:0] = 0xAB0042CD. The first row is done for you.

Ctrl | Adr[1:0] | ReadData
000 |11 FFFFFFAB
001 | 00
010 | 00
100 | 00
101 | 10
[1]Is SWR combinational or sequential? Combinational Sequential

[4] Sketch a circuit implementing the SWR function. You may use standard building
blocks including multiplexers, sign extenders, and zero extenders. Label each bus with the
bit width.
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What is the smallest number of Cyclone IV logic elements that each of the following
modules require?

module adventuregame(input 1logic clk, reset,
input logic up, down, fly,
output logic win);

logic [1:0] level, nextlevel;

always_ff @(posedge clk, posedge reset)
if (reset) level <= 2'b00;
else level <= nextlevel;

always_comb
case (level)

2'b00: if (up)  level = 2'b01;
else level = 2'b00;
2'b01: if (up) level = 2'b10;
else if (down) level = 2'b00;
else level = 2'b01;
2'bl0: if (up) level = 2'b11;
else if (down) level = 2'b01;
else level = 2'b10;
2'b11: if (down) level = 2'b10;
else level = 2'b11;
endcase

assign win = (level == 2'b11) & fly;

endmodule
[2] LEs:
module 1t2(input logic [1:0] a, b,
output logic 1t);
assign 1t = a < b;
endmodule
[2] LEs:
module alu(input logic [31:0] a, b,
input Tlogic [1:0] op,
output logic [31:0] y);
always_comb
case (op
2'b00: y = a + b;
2'b01l: y = a & b;
2'b10: y = a | b;
2'bll: y = a ™ b;
endcase
endmodule
[2] LEs:
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Consider adding an analog-to-digital converter to the FE310 chip on the Red-V board so
that you can record audio. The register map is given below, with a base address of
0x10019000. The bitfields within the ADCCON register are also shown. Before using the
converter, initialize it by writing a 1 to the ON bit of ADCCON. To take a reading, write
a 1 to the START bit. Wait for the DONE bit to become 1, then read the result from
ADCVAL.

Regis ter Offset

ADCVAL 4 ADCCON Register

ADCCON 0 e | DONE | START | ON
213 2 1 0

[2] Write C code declaring pointers ADCCON and ADCVAL to access the peripheral.

[2] Write a C function to initialize the ADC.
void ADCInit(void) {

[4] Write a C function to read the ADC.
uint32_t ADCRead(void) {

Page 10 of 14



Suppose the 5-stage pipelined RISC-V processor (see page 5) runs the following program,
fetching the Ori instruction on cycle 1. Suppose the initial memory contents are shown
below.

ori t@, zero, 4
lw s0, 8(t0)
beq s0, s0, else
w s0, 12(t0)

else: and sl1, s0, to
Memory Address | Initial Contents
0 42
4 69
8 47
12 28
16 32

[1] What value is written to s1?

[1] On which cycle is s1 written?

[1] Is the branch taken?

[1] What is ALUResultM on cycle 5?
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Consider modifying the single-cycle RISC-V processor to support the 1bu (load byte
unsigned) instruction. 1bu rd, imm (rsl) reads an 8-bit byte from memory address
(rs1l + imm) and places it in the bottom 8 bits of register rd. The upper 24 bits of
register rd are filled with zeros. The address does not need to be a multiple of 4. 1bu
has op = 3 and funct3 = 4. In comparison, 1w also has op = 3 but funct3 = 2. A table of
the instruction formats is included in the material attached to the front of the exam for
your reference.

Recall that our memory reads out a 32-bit word on RD from the address specified by
A[31:2].

[4] Mark up the multicycle processor diagrams on page 4 of this exam packet to implement
1bu with as little new hardware as feasible. Using the SWR block from page 7 of this
exam is acceptable even though it supports more than just 1bu. Explain your changes.

[1] The riscvtest.s test code (next page) has highlighted modifications to test the new
instruction. As compared to the riscvtest.s from Lab 10, it reverses the inputs to the sub
at address 30 and replaces a 1w with 1bu at 38. Convert 1bu to machine language.

lbu x2, 96(x0)

[2] Predict what value should be written to memory address 100 at instruction address 50.

Predicted Value:
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# riscvtest.s

# If successful, it should write the value ??? to address 100

# RISC-V Assembly Description Address Machine Code
main: addi x2, x0, 5 # initialize x2 = 5 0 00500113
addi x3, x0, 12 # initialize x3 = 12 4 00Cc00193
addi x7, x3, -9 # initialize x7 = 3 8 FF718393
or x4, x7, X2 # x4 = (3 OR 5) =7 C 0023E233
and x5, x3, x4 # x5 = (12 AND 7) = 4 10 0041F2BR3
add x5, x5, x4 # x5 =4+ 7 =11 14 004282B3
beqg x5, x7, end # shouldn't be taken 18 02728863
slt x4, x3, x4 # x4 = (12 < 7) =0 1C 0041A233
beq x4, x0, around # should be taken 20 00020463
addi x5, x0, 0 # shouldn't happen 24 00000293
around: slt x4, x7, x2 # x4 = (3 <5) =1 28 0023A233
add x7, x4, x5 # x7 =1+ 11 = 12 2C 005203B3
N 7, 7 /o) AL B c _ o n 4062393p
sub x7, x2, x7 # x7 =5 -12 = -7 30 407103B3
sw x7, 84 (x3) # [96] = FFFFFFF9 = -7 34 0471ARA23
NEN: "), OF( ﬁ) # 2= [0(‘] = Q laWalla¥a) 10
lbu x2, 96(x0) # x2 = [96] = ?°?°? 38 ??7?
add x9, x2, x5 # x9 = 2?22?72 + 11 = 2727 3C 005104B3
Jal x3, end # jump to end, x3=0x44 40 008001EF
addi x2, x0, 1 # shouldn't happen 44 00100113
end: add x2, x2, x9 # x2 = 2?22 + 18 = 2?27?27 48 00910133
sw x2, 0x20(x3) # write mem[100] = 2?22 50 02212023
done: beqg x2, x2, done # infinite loop 54 00210063

END OF WRITTEN PORTION OF EXAM

DO NOT PROCEED PAST THIS POINT UNTIL YOU ARE PREPARED TO
CEASE ALL WORK ON THE WRITTEN PORTION AND MOVE ON TO THE
COMPUTER PORTION.
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COMPUTER PORTION OF EXAM

Once you start this question, you may refer to the written portion of the exam, but may
not spend any more time on the written portion or change any of your answers on that
portion.

Modify your multicycle processor from Lab 10 to support the 1bu instruction as simply as
possible. Your changes should be in accordance with your plan from the previous question,
but you can make corrections if necessary. Modify your riscvtest.txt to replace the existing
1w instructions with the new 1bu instructions.

[1] Print out the Verilog modules you modified, highlight or circle the changes, and attach
them to your exam. Make sure your name is on the attached papers.

[4] Print out a simulation waveform showing at least the value being written to memory
location at the end of the program. Circle this value in the waveform, making sure it is
legible.

[2] What is the hash printed at the end of your simulation?
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