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Chapter 5 :: Topics

• Introduction

• Arithmetic Circuits

• Number Systems

• Sequential Building Blocks

• Memory Arrays

• Logic Arrays
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Introduction

• Digital building blocks:
– Gates, multiplexers, decoders, registers, 

arithmetic circuits, counters, memory arrays, 
logic arrays

• Building blocks demonstrate hierarchy, 
modularity, and regularity:
– Hierarchy of simpler components

– Well-defined interfaces and functions

– Regular structure easily extends to different sizes

• We’ll use these building blocks in Chapter 
7 to build a microprocessor
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1-Bit Adders
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Multibit Adders: CPAs
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• Types of carry propagate adders (CPAs):
– Ripple-carry  (slow)
– Carry-lookahead (fast)
– Prefix   (faster)

• Carry-lookahead and prefix adders faster for large 
adders but require more hardware          

                                          Symbol
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Ripple-Carry Adder

• Chain 1-bit adders together

• Carry ripples through entire chain

• Disadvantage: slow
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Ripple-Carry Adder Delay

   tripple = NtFA
  

     where tFA is the delay of a 1-bit full adder
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Carry-Lookahead Adder
Compute Cout for k-bit blocks using generate and propagate signals

      Some definitions:
– Column i produces a carry out by either generating a carry out or 

propagating a carry in to the carry out

– Calculate generate (Gi) and propagate (Pi) signals for each column:

• Generate: Column i will generate a carry out if Ai and Bi are both 1. 

    Gi = Ai Bi
• Propagate: Column i will propagate a carry in to the carry out if Ai or Bi is 1.

    Pi = Ai  + Bi
• Carry out: The carry out of column i (Ci) is:

     Ci = Ai Bi + (Ai  + Bi )Ci-1 = Gi + Pi Ci-1
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Propagate and Generate Signals
Examples: Column propagate and generate 
signals:

Column propagate: Pi = Ai  + Bi

Column generate:  Gi = Ai Bi

             Ci = Gi + Pi Ci-1

 

1011
0110+

A3:0

B3:0

P3 ,P2 ,P1 ,P0

G3 ,G2 ,G1 ,G0

1111
0010

11111

Carry-in
    (C-1)

Carry-out
     (C3)

C3 ,C2 ,C1 ,C0 ,C-1
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1001+
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A3:0

B3:0

P3 ,P2 ,P1 ,P0

G3 ,G2 ,G1 ,G0

1011
1001

C3 ,C2 ,C1 ,C0 ,C-1

Carry-in
    (C-1)

Carry-out
     (C3)
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Block Propagate and Generate

Now use column Propagate and Generate signals to 
compute Block Propagate and Block Generate 
signals for k-bit blocks, i.e.:

• Compute if a k-bit group will propagate a carry in (of the 
block) to the carry out (of the block)

• Compute if a k-bit group will generate a carry out (of the 
block)

13



Digital Design & Computer Architecture Digital Building Blocks

Block Propagate and Generate

• Example: 4-bit blocks
• Block propagate signal: P3:0  (single-bit signal)

• A carry-in would propagate through all 4 bits of the block:

    P3:0 = P3P2 P1P0 

• Examples:
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0100+

0000

11111

Carry-in
    (C-1)

Carry-out
     (C3)

A3:0

B3:0

S3:0

P3 ,P2 ,P1 ,P0
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C3 ,C2 ,C1 ,C0 ,C-1

P3:0 = P3P2P1P0 = 1
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A3:0

B3:0

S3:0
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C3 ,C2 ,C1 ,C0 ,C-1

Carry-in
    (C-1)

Carry-out
     (C3)

P3:0 = P3P2P1P0 = 0
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Block Propagate and Generate

• Example: 4-bit blocks
• Block propagate signal: P3:0  (single-bit signal)

• A carry-in would propagate through all 4 bits of the block:

    P3:0 = P3P2 P1P0 

• Block generate signal: G3:0 (single-bit signal)
• A carry is generated:

• in column 3, or 
• in column 2 and propagated through column 3, or
• in column 1 and propagated through columns 2 and 3, or
• in column 0 and propagated through columns 1-3

    G3:0 = G3 + G2P3 + G1P2P3 + G0P1P2P3 

   G3:0 = G3 + P3 [G2 + P2 (G1 + P1G0 )]
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Block Propagate and Generate

• Example: 4-bit blocks
• Block generate signal: G3:0 (single-bit signal)

• A carry is: generated in column 3, or generated in column 2 and 
propagated through column 3, or ... 

 G3:0 = G3 + G2P3 + G1P2P3 + G0P1P2P3 
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Carry-out
     (C3)

0110
0010+

1000

01101
A3:0

B3:0

S3:0

P3 ,P2 ,P1 ,P0
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0010
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Carry-out
     (C3)

G3:0 = 0
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Block Propagate and Generate

• Example: 4-bit blocks
• Block propagate signal: P3:0  (single-bit signal)

• A carry-in would propagate through all 4 bits of the block:

    P3:0 = P3P2 P1P0 

• Block generate signal: G3-0 (single-bit signal)
• A carry is generated:

• in column 3, or 
• in column 2 and propagated through column 3, or 
• in column 1 and propagated through columns 2 and 3, or
• in column 0 and propagated through columns 1-3

 G3:0 = G3 + G2P3 + G1P2P3 + G0P1P2P3 

   G3:0 = G3 + P3 [G2 + P2 (G1 + P1G0 )]

 C3  = G3:0 + P3:0 C-1
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Block Propagate and Generate

• Example: Block propagate and generate 
signals for 4-bit blocks (P3:0 and G3:0):
    P3:0 = P3P2 P1P0

    G3:0 = G3 + P3 (G2 + P2 (G1 + P1G0 )

  C3  = G3:0 + P3:0 C-1
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32-bit CLA with 4-bit Blocks
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Carry-Lookahead Addition

• Step 1: Compute Gi and Pi for all columns 

• Step 2: Compute G and P for k-bit blocks

• Step 3: Cin propagates through each k-bit 
propagate/generate logic (meanwhile 
computing sums)

• Step 4: Compute sum for most significant k-
bit block
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Carry-Lookahead Addition

• Step 1: Compute Gi and Pi for all columns 
Gi = Ai Bi

Pi = Ai  + Bi
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Carry-Lookahead Addition

• Step 1: Compute Gi and Pi for all columns 

• Step 2: Compute G and P for k-bit blocks

P3:0 = P3P2 P1P0

G3:0 = G3 + P3 (G2 + P2 (G1 + P1G0 )
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Carry-Lookahead Addition

• Step 1: Compute Gi and Pi for all columns 

• Step 2: Compute G and P for k-bit blocks

• Step 3: Cin propagates through each k-bit 
propagate/generate logic (meanwhile 
computing sums)
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Carry-Lookahead Addition

• Step 1: Compute Gi and Pi for all columns 

• Step 2: Compute G and P for k-bit blocks

• Step 3: Cin propagates through each k-bit 
propagate/generate logic (meanwhile 
computing sums)

• Step 4: Compute sum for most significant k-
bit block
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32-bit CLA with 4-bit Blocks
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Carry-Lookahead Adder Delay
For N-bit CLA with k-bit blocks:

  tCLA = tpg + tpg_block + (N/k – 1)tAND_OR + ktFA

 

– tpg : delay to generate all Pi, Gi

– tpg_block : delay to generate all Pi:j, Gi:j

– tAND_OR : delay from Cin to Cout of final AND/OR gate in k-bit CLA block

An N-bit carry-lookahead adder is generally much faster than a 
ripple-carry adder for N  > 16
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Prefix Adder

• Computes carry in (Ci-1) for each column, then 
computes sum:

   Si = (Ai  Bi)  Ci-1

• It computes Ci-1 by:

• Computing G and P for 1-, 2-, 4-, 8-bit blocks, 
etc. until all Gi (carry in) known

• Gi = Ci

• log2N stages
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Prefix Adder
• Carry out either generated in a column or propagated from 

a previous column.

• Column -1 holds Cin, so 

 G-1 = Cin, P-1 = X (not used)

• Carry in to column i = carry out of column i-1: 

 Ci-1 = Gi-1:-1 

 Gi-1:-1: generate signal spanning columns i-1 to -1

• Sum equation:

 Si = (Ai  Bi)  Gi-1:-1

• Goal: Quickly compute G0:-1, G1:-1, G2:-1, G3:-1, G4:-1, G5:-1, … 

(called prefixes)         (= C0,    C1,     C2,    C3,    C4,    C5, …)
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Prefix Adder

• Generate and propagate signals for a block spanning bits i:j

 Gi:j = Gi:k + Pi:k Gk-1:j

  Pi:j = Pi:kPk-1:j

• In words:

– Generate: block i:j will generate a carry if:

• upper part (i:k) generates a carry (Gi:k) or 

• upper part (i:k) propagates a carry (Pi:k) generated in 
lower part (k-1:j)  (Gk-1:j)

– Propagate: block i:j will propagate a carry if both the 
upper and lower parts propagate the carry (Pi:k AND Pk-1:j)
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Prefix Adder Example

31

1 0 1 0
0 1 1 1+

A3:0

B3:0

P3:3 ,P2:2 ,P1:1 ,P0:0

G3:3 ,G2:2 ,G1:1 ,G0:0 ,G-1:-1

1 1 1 1
0 0 1 0  1

3 2 1 0 -1 Column #

Step 1. Calculate P s and G s 
for 1-bit block

CinCin

1 0 1 0
0 1 1 1+

A3:0

B3:0

P0:-1 = X
G0:-1 = G0:0 + P0:0G-1:-1  

                         
        = 1  

3 2 1 0 -1 Column #

Step 2. Calculate P s and G s 
for 2-bit blocks

PL:R = PL    PR

GL:R =GL + PLGR  

0:-1 Block:

P2:1 = P2:2P1:1 =     
G2:1 = G2:2 + P2:2G1:1  

                         
        = 1  

2:1 Block:

1 0 1 0
0 1 1 1+

A3:0

B3:0

P2:-1 = X
G2:-1 = G2:1 + P2:1G0:-1  

                         
        = 1  

3 2 1 0 -1 Column #

Step 3. Calculate P s and G s 
for 4-bit blocks

PL:R = PL    PR

GL:R =GL + PLGR  

2:-1 Block:

P1:-1 = X
G1:-1 = G1:1 + P1:1G0:-1  

                         
        = 1  

We calculate 3-bit spans too:
1:-1 Block:Step 5. Use prefixes to calculate 

sums

Step 4. Continue to calculate P s and 
G s for larger blocks (8-bit, 16-bit, etc.)

C-1 = G-1:-1 = 1

C0 = G0:-1 = 1

C1 = G1:-1 = 1

C2 = G2:-1 = 1

Si = Ai   Ai  Ci-1
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Prefix Adder Schematic
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Prefix Adder Delay

tPA = tpg + log2N(tpg_prefix ) + tXOR

  

tpg: delay to produce Pi, Gi (AND or OR gate)

tpg_prefix: delay of black prefix cell (AND-OR gate)
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Adder Delay Comparisons
Compare the delay of: 32-bit ripple-carry, CLA, and prefix adders

• CLA has 4-bit blocks

• 2-input gate delay = 100 ps; full adder delay = 300 ps

  tripple = NtFA = 32(300 ps) 

   = 9.6 ns

  tCLA = tpg + tpg_block + (N/k – 1)tAND_OR + ktFA

   = [100 + 600 + (7)200 + 4(300)] ps

   = 3.3 ns

  tPA = tpg + log2N(tpg_prefix ) + tXOR

   = [100 + log232(200) + 100] ps

   = 1.2 ns
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Comparators
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Subtracter

Symbol Implementation

+

A B

-

Y
Y

A B

NN
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N N

N

N
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A – B = A + B + 1
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Symbol Implementation

A
3

B
3

A
2

B
2

A
1

B
1

A
0

B
0

Equal=

A B

Equal

44

Comparator: Equality
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A < B

-

BA

[N-1]

N

N N

Comparator: Signed Less Than

38

A < B if A-B is negative

Beware of overflow
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ALU: Arithmetic Logic Unit

ALU should perform:

• Addition

• Subtraction

• AND

• OR
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ALU: Arithmetic Logic Unit

ALUControl1:0 Function

00 Add

01 Subtract

10 AND

11 OR

Example: Perform A OR B
ALUControl1:0 = 11
Result = A OR B

41

ALU

N N

N
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A B

Result

ALUControl
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ALU: Arithmetic Logic Unit

ALUControl1:0 Function

00 Add

01 Subtract

10 AND

11 OR

Example: Perform A OR B
ALUControl1:0 = 11
Mux selects output of OR gate as Result, 
so:
    Result = A OR B

42

+

00

A B

Cout

Result

01

A
L
U

C
o
n
tro

l0

ALUControl

Sum

NN

N

N

N NNN

N

2

011011



Digital Design & Computer Architecture Digital Building Blocks

ALU: Arithmetic Logic Unit

ALUControl1:0 Function

00 Add

01 Subtract

10 AND

11 OR

Example: Perform A + B
ALUControl1:0 = 00
ALUControl0 = 0, so:
    Cin to adder = 0
    2nd input to adder is B
Mux selects Sum as Result, so
    Result = A + B
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ALU with Status Flags

Flag Description
N Result is Negative

Z Result is Zero

C Adder produces Carry out

V Adder oVerflowed
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ALU with Status Flags
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ALU with Status Flags: Negative

N = 1 if:

Result is negative

So, N is connected to 
most significant bit of 
Result.
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ALU with Status Flags: Zero

Z = 1 if:

all of the bits of Result 
are 0
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ALU with Status Flags: Carry

C = 1 if:

Cout of Adder is 1

 AND

ALU is adding or 
subtracting (ALUControl 
is 00 or 01)
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ALU with Status Flags: oVerflow

V = 1 if:

The addition of 2 same-
signed numbers 
produces a result with 
the opposite sign
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ALU with Status Flags: oVerflow

50

V = 1 if:

ALU is performing addition or subtraction

(ALUControl1 = 0)

AND

A and Sum have opposite signs

AND

A and B have same signs for addition 
(ALUControl0 = 0)                                           OR 

A and B have different signs for subtraction

(ALUControl0 = 1)
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ALU with Status Flags

51



Digital Design & Computer Architecture Digital Building Blocks

Comparison based on Flags

52

Comparison Signed Unsigned

== Z Z

!= ~Z ~Z

< N ^ V ~C

<= Z | (N ^ V) Z | ~C

> ~Z & ~(N ^ V) ~Z & C

>= ~(N ^ V) C

Compare by subtracting and checking flags

Different for signed and unsigned
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Other ALU Operations

• Set Less Than (also called Set if Less Than)

– Sets lsb of result if A < B

• Result = 0000…001 if A < B

• Result = 0000…000 otherwise

– Comes in signed and unsigned flavors

• XOR

– Result = A XOR B
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Extending ALU: SLT

54
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Fixing Overflow Error in SLT Logic
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Shifters
Logical shifter: shifts value to left or right and fills empty spaces with 0’s

– Ex: 11001 >> 2 = 00110

– Ex: 11001 << 2 = 00100

Arithmetic shifter: same as logical shifter, but on right shift, fills empty 
spaces with the old most significant bit (msb)

– Ex: 11001 >>> 2 = 11110

– Ex: 11001 <<< 2 = 00100

Rotator: rotates bits in a circle, such that bits shifted off one end are shifted 
into the other end

– Ex: 11001 ROR 2 = 01110

– Ex: 11001 ROL 2 = 00111
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Shifter Design
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Shifters as Multipliers and Dividers

• A << N = A × 2N

– Example: 00001 << 3  = 01000  (1 × 23 = 8)

– Example: 11101 << 2  = 10100  (-3 × 22 = -12)

• A >>> N = A ÷ 2N

– Example: 01000 >>> 1 = 00100  (8 ÷ 21 = 4)

– Example: 10000 >>> 2 = 11100  (-16 ÷ 22 = -4)

59



Digital Design & Computer Architecture Digital Building Blocks

Multipliers

• Partial products formed by multiplying a single 
digit of the multiplier with multiplicand

• Shifted partial products summed to form result

Decimal Binary

230
42x

0101
0111

5 x 7 = 35

460
920+

9660

0101
0101

0101
0000

x

+

0100011

230 x 42 = 9660

multiplier

multiplicand

partial

products

result
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4 x 4 Multiplier
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Dividers

A/B = Q + R/B

Decimal Example:  2584/15 = 172 R4

Long-Hand: Long-Hand Revisited:
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Dividers

A/B = Q + R/B

Decimal:  2584/15 = 172 R4 Binary:   1101/0010 = 0110 R1
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Dividers

A/B = Q + R/B

R’ = 0

for i = N-1 to 0

    R = {R’ << 1, Ai}

    D = R - B

    if D < 0, Qi= 0;  R’= R

    else        Qi= 1;  R’= D

R=R’

Binary:   1101/10 = 0110 R1
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4 x 4 Divider

+

R B

D

R'

N

C
in

C
out

1 0

R B

D
R'N

C
out

C
in

Legend

Division: A/B = Q + R/B

R’ = 0

for i = N-1 to 0

  R = {R’ << 1, Ai}

  D = R - B

  if D < 0, Qi=0, R’=R

  else        Qi=1, R’=D

R=R’Each row computes one iteration of the division algorithm.
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4 x 4 Divider

+

R B

D

R'
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C
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C
out

1 0

R B

D
R'N

C
out

C
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Legend

Each row computes one iteration of the division algorithm.
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Number Systems

Numbers we can represent using binary 
representations

– Positive numbers

• Unsigned binary

– Negative numbers

• Two’s complement

• Sign/magnitude numbers

What about fractions?
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Numbers with Fractions

Two common notations:

• Fixed-point: binary point fixed

• Floating-point: binary point floats to the right of 
the most significant 1
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Fixed-Point Numbers

01101100

0110.1100

22 + 21 + 2-1 + 2-2 = 6.75

• 6.75 using 4 integer bits and 4 fraction bits:

• Binary point is implied

• The number of integer and fraction bits must be 
agreed upon beforehand
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Unsigned Fixed Point Formats

• Ua.b: unsigned number with 

• a integer bits

• b fractional bits.

• Example: 6.75 is

• U4.4: 01101100

• U3.5: 11011000

• U6.2: 00011011

• 8, 16, and 32-bit fixed point numbers are common

• U8.8 often represents sensor data, audio, pixels

• U16.16 used for higher precision signal processing 

71



Digital Design & Computer Architecture Digital Building Blocks

Signed Fixed Point Formats

• Qa.b: signed 2’s complement number with
• a integer bits (including the sign bit)
• b fractional bits

• To negate a Q fixed point number:
• Invert the bits
• Add one to the LSB

• Example: write -6.75 in Q4.4
• 6.75 =          01101100
• Invert:         10010011 
• Add 1 LSB:  10010100

• Q1.15 (aka Q15) is common for signal processing (1, -1]
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Saturating Arithmetic

• Fixed point overflow is usually bad

• Produces undesired artifacts:

• Video: dark pixel in middle of bright pixels

• Audio: clicking sounds

• Saturating arithmetic

• Instead of overflowing, use largest value

• In U4.4: 11000000 + 01111000 = 11111111

  12               + 7.5             = 15.9375
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Floating-Point Numbers
• Binary point floats to the right of the most significant 1

• Similar to decimal scientific notation

• For example, write 27310 in scientific notation:

    273 = 2.73 × 102

• In general, a number is written in scientific notation as:

    ± M × BE

– M = mantissa

– B  = base

– E  = exponent

– In the example, M = 2.73, B = 10, and E = 2
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Floating vs. Fixed Point Numbers

• Floating point numbers are like scientific notation

• Allow a greater dynamic range of smallest to largest

• Arithmetic is harder

• Mantissa must be aligned before adding

• This costs performance and power

• Fixed point numbers are harder for the programmer

• Smaller dynamic range

• Take care of overflow

• Floating Point is preferred for general-purpose computing where 
programming time is most important

• Fixed Point is preferred for signal processing performance, power, and 
hardware cost matter most

• Machine learning, video
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Floating-Point Numbers

Sign Exponent Mantissa

1 bit 8 bits 23 bits

• Example: represent the value 22810 using a 32-bit floating 
point representation

 We show three versions – the final version is called the:

   IEEE 754 floating-point standard
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A common error 
is to do step 2 
first (and write 
the number in 
decimal scientific 
notation!)

Floating-Point Representation 1

0 00000111     11 1001 0000 0000 0000 0000

Sign Exponent Mantissa

1 bit 8 bits 23 bits

1. Convert decimal to binary:

  22810 = 111001002 

2. Write the number in “binary scientific notation”:

  111001002 = 1.110012 × 27 

3. Fill in each field of the 32-bit floating point number:

– The sign bit is positive (0)

– The 8 exponent bits represent the value 7

– The remaining 23 bits are the mantissa
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Floating-Point Representation 2

0 00000111     110 0100 0000 0000 0000 0000

Sign Exponent Fraction

1 bit 8 bits 23 bits

• First bit of the mantissa is always 1:

– 22810 = 111001002 = 1.11001 × 27 

• So, no need to store it: implicit leading 1

• Store just fraction bits in 23-bit field
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Floating-Point Representation 3

0 10000110

Sign Biased

Exponent
Fraction

1 bit 8 bits 23 bits

    110 0100 0000 0000 0000 0000

• Biased exponent: bias = 127 (011111112)  

– Biased exponent = bias + exponent

– Exponent of 7 is stored as:

   127 + 7 = 134 = 0x100001102

• The IEEE 754 32-bit floating-point representation of 22810

     in hexadecimal: 0x43640000
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Floating-Point Example

1 100 0010 0     110 1001 0000 0000 0000 0000

Sign Exponent Fraction

1 bit 8 bits 23 bits

Write -58.2510 in floating point (IEEE 754)

1. Convert magnitude of decimal to binary: 

 58.2510 = 111010.012

2. Write in binary scientific notation:

 1.1101001 × 25

3. Fill in fields:
 Sign bit: 1 (negative)
 8 exponent bits: (127 + 5) = 132 = 100001002

 23 fraction bits: 110 1001 0000 0000 0000 0000

         

       in hexadecimal: 0xC2690000
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Floating-Point Special Cases

Number Sign Exponent Fraction
0 X 00000000 00000000000000000000000

∞ 0 11111111 00000000000000000000000

- ∞ 1 11111111 00000000000000000000000

NaN X 11111111 non-zero
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Floating-Point Precision

• Single-Precision:

– 32-bit

– 1 sign bit, 8 exponent bits, 23 fraction bits

– bias = 127

• Double-Precision:

– 64-bit

– 1 sign bit, 11 exponent bits, 52 fraction bits

– bias = 1023
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Floating-Point Rounding & Overflow
• Overflow:  number too large to be represented

• Underflow: number too small to be represented

• Rounding modes: 
– Down

– Up

– Toward zero

– To nearest

• Example: round 1.100101 (1.578125)  to only 3 fraction bits
– Down:  1.100

– Up:  1.101

– Toward zero: 1.100

– To nearest: 1.101 (1.625 is closer to 1.578125 than 1.5 is)
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Floating-Point Addition
1. Extract exponent and fraction bits

2. Prepend leading 1 to form mantissa

3. Compare exponents

4. Shift smaller mantissa if necessary

5. Add mantissas

6. Normalize mantissa and adjust exponent if necessary

7. Round result

8. Assemble exponent and fraction back into floating-point 
format
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Floating-Point Addition Example
Add the following floating-point numbers:

 0x3FC00000

 0x40500000
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Floating-Point Addition Example

0 01111111     100 0000 0000 0000 0000 0000

Sign Exponent Fraction

1 bit 8 bits 23 bits

0 10000000     101 0000 0000 0000 0000 0000

1 bit 8 bits 23 bits

Sign Exponent Fraction

1. Extract exponent and fraction bits

 For first number (N1):        S = 0, E = 127, F = .1

 For second number (N2): S = 0, E = 128, F = .101

2. Prepend leading 1 to form mantissa

 N1: 1.1

 N2: 1.101 
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Floating-Point Addition Example
3. Compare exponents

 127 – 128 = -1, so shift N1 right by 1 bit

4. Shift smaller mantissa if necessary

 shift N1’s mantissa: 1.1 >> 1 = 0.11  (× 21)

5. Add mantissas

   0.11   × 21

            + 1.101 × 21

                10.011  × 21
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Floating-Point Addition Example

0 10000001     001 1000 0000 0000 0000 0000

Sign Exponent Fraction

1 bit 8 bits 23 bits

6. Normalize mantissa and adjust exponent if necessary

 10.011 × 21 = 1.0011 × 22

7. Round result

 No need (fits in 23 bits)

8. Assemble exponent and fraction back into floating-point 
format

 S = 0, E = 2 + 127 = 129 = 100000012, F = 001100...

in hexadecimal: 0x40980000
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Counters

Q

CLK

Reset

N

+
N

1

CLK

Reset

N

N

Q
N

r

Symbol Implementation

• Increments on each clock edge

• Used to cycle through numbers. For example, 
– 000, 001, 010, 011, 100, 101, 110, 111, 000, 001…

• Example uses:
– Digital clock displays

– Program counter: keeps track of current instruction executing
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Counter SystemVerilog Idiom
module counter(input  logic       clk, reset,

               output logic [7:0] q);

 

  always_ff @(posedge clk)

    if (reset) q <= 0;   // synchronous reset

    else       q <= q+1; // 

end

// alternative more verbose 

module counter(input  logic       clk, reset,

               output logic [7:0] q);

 

  logic [7:0] nextq;

  assign nextq = q + 1; // adder

  always_ff @(posedge clk) // state register with synchronous reset

    if (reset) q <= 0; 

    else       q <= nextq; 

end
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Divide-by-2N Counter

• Most significant bit of an N-bit counter toggles every 2N 
cycles.

• Useful for slowing a clock.  Ex: blink an LED

• Example: 50 MHz clock, 24-bit counter
• 2.98 Hz
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Digitally Controlled Oscillator

• N-bit counter

• Add p on each cycle, instead of 1

• Most significant bit toggles at fout = fclk * p / 2N

• Example: fclk = 50 MHz clock

• How to generate a fout = 200 Hz signal?

• p/2N = 200 / 50 MHz 

• Try N = 24, p = 67 ➔ fout = 199.676 Hz

• Or  N = 32, p = 17179 ➔ fout = 199.990 Hz
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Shift Registers

N
Q

S
in

S
out

CLK

S
in

S
out

Q
0

Q
1

Q
N-1

Q
2

Implementation:

• Shift a new bit in on each clock edge

• Shift a bit out on each clock edge

• Serial-to-parallel converter: converts serial input (Sin) to 
parallel output (Q0:N-1)

Symbol:
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Shift Register with Parallel Load

Clk
0

1

0

1

0

1

0

1

D
0

D
1

D
N-1

D
2

Q
0

Q
1

Q
N-1

Q
2

S
in

S
out

Load

• When Load = 1, acts as a normal N-bit register

• When Load = 0, acts as a shift register

• Now can act as a serial-to-parallel converter (Sin to 
Q0:N-1) or a parallel-to-serial converter (D0:N-1 to Sout)
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Shift Register SystemVerilog Idiom
module shiftreg #(parameter N=8)

                 (input  logic         clk,

                  input  logic         reset, load,

                  input  logic         sin,

                  input  logic [N-1:0] d, 

                  output logic [N-1:0] q,

                  output logic         sout);

 

  always_ff @(posedge clk, posedge reset)

    if (reset)     q <= 0;

    else if (load) q <= d;

    else           q <= {q[N-2:0], sin};

  assign sout = q[N-1];

end
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Memory Arrays

Address

Data

Array
N

M

• Efficiently store large amounts of data

• M-bit data value read/written at each 
unique N-bit address

• 3 common types:
– Dynamic random access memory (DRAM)

– Static random access memory (SRAM)

– Read only memory (ROM)
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Memory Arrays

Address

Data

Array
N

M

Address Data

11

10

01

00

depth

0 1 0

1 0 0

1 1 0

0 1 1

width

Address

Data

Array2

3

• 2-dimensional array of bit cells 

• Each bit cell stores one bit

• N address bits and M data bits:
– 2N rows and M columns

– Depth: number of rows (number of words)

– Width: number of columns (size of word)

– Array size: depth × width = 2N  × M 
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Memory Array Example

Address Data

11

10

01

00

depth

0 1 0

1 0 0

1 1 0

0 1 1

width

Address

Data

Array2

3

• 22 × 3-bit array

• Number of words: 4

• Word size: 3-bits

• For example, the 3-bit word stored at address 10 is 100
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Memory Arrays

Address

Data

1024-word x

32-bit

Array

10

32
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Memory Array Bit Cells

stored 

bit

wordline

bitline

stored 

bit = 0

wordline = 1

stored 

bit = 1

stored 

bit = 0

stored 

bit = 1

bitline =

(a) (b)

wordline = 1

wordline = 0

wordline = 0

bitline = 

bitline =

bitline = 0

1

Z

Z
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Memory Array

wordline
311

10

2:4

Decoder

Address

01

00

stored

bit = 0
wordline

2

wordline
1

wordline
0

stored

bit = 1

stored

bit = 0

stored

bit = 1

stored

bit = 0

stored

bit = 0

stored

bit = 1

stored

bit = 1

stored

bit = 0

stored

bit = 0

stored

bit = 1

stored

bit = 1

bitline
2

bitline
1

bitline
0

Data
2

Data
1

Data
0

2

• Wordline: 
– like an enable

– single row in memory array read/written

– corresponds to unique address

– only one wordline HIGH at once

105



Digital Design & Computer Architecture Digital Building Blocks

Types of Memory

• Random access memory (RAM): volatile

• Read only memory (ROM): nonvolatile
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RAM: Random Access Memory

• Volatile: loses its data when power off

• Read and written quickly

• Main memory in your computer is RAM 
(DRAM)

 Historically called random access memory because any data 
word accessed as easily as any other (in contrast to 
sequential access memories such as a tape recorder)
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ROM: Read Only Memory

• Nonvolatile: retains data when power off

• Read quickly, but writing is impossible or 
slow

• Flash memory in cameras, thumb drives, and 
digital cameras are all ROMs

Historically called read only memory because ROMs were 
written at time of fabrication or by burning fuses. Once a ROM 
was configured, it could not be written again. This is no longer 
the case for Flash memory and other types of ROMs.
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Types of RAM

• DRAM (Dynamic random access memory)

• SRAM (Static random access memory)

• Differ in how they store data:
– DRAM uses a capacitor

– SRAM uses cross-coupled inverters
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Robert Dennard, 1932 - 

• Invented DRAM in 1966 
at IBM

• Others were skeptical 
that the idea would 
work

• By the mid-1970’s DRAM 
in virtually all computers
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DRAM

stored 

bit

wordline

bitline

wordline

bitline

stored

bit

• Data bits stored on capacitor

• Dynamic because the value needs to be refreshed 
(rewritten) periodically and after read:

– Charge leakage from the capacitor degrades the value

– Reading destroys the stored value
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DRAM

wordline

bitline

wordline

bitline

+ +stored

bit = 1

stored

bit = 0
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SRAM

stored 

bit

wordline

bitline

wordline

bitline bitline
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Memory Arrays Review
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DRAM bit cell: SRAM bit cell:
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ROM: Dot Notation

11

10

2:4 

Decoder

Address

Data0Data1Data2

01

00

2

wordline

bitline

wordline

bitline

bit cell

containing 0

bit cell

containing 1
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ROM Storage

11

10

2:4 

Decoder

Address
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00
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Address Data
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01

00

depth

0 1 0
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Fujio Masuoka, 1944 - 

• Developed memories and high speed 
circuits at Toshiba, 1971-1994 

• Invented Flash memory as an 
unauthorized project pursued during 
nights and weekends in the late 1970’s

• The process of erasing the memory 
reminded him of the flash of a camera 

• Toshiba slow to commercialize the 
idea; Intel was first to market in 1988 

• Flash has grown into a $25 billion per 
year market
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ROM Logic

Data2 = A1  A0

Data1 = A1 + A0

Data0 = A1A0

11

10

2:4 

Decoder

Address

Data0Data1Data2

01

00

2
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11

10

2:4

Decoder

A, B

ZYX

01

00

2

Example: Logic with ROMs

11

10

2:4

Decoder

A, B

ZYX

01

00

2

Implement the following logic functions using a 22 × 3-bit ROM:
– X = AB

– Y = A + B

– Z = A B
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Logic with Any Memory Array
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Data2 = A1  A0

Data1 = A1 + A0

Data0 = A1A0

122



Digital Design & Computer Architecture Digital Building Blocks

Logic with Memory Arrays

wordline3
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X Y Z

2

Implement the following logic functions using a 22 × 3-bit 
memory array:

– X = AB

– Y = A + B

– Z = A B
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Logic with Memory Arrays

stored 

bit = 1

stored 

bit = 0

00

01
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Decoder

A

stored 

bit = 0

bitline

stored 

bit = 0

Y

B

10

11

4-word x 1-bit Array

A B Y

0 0

0 1

1 0

1 1

0

0

0

1

Truth 

Table

A1

A0

Called lookup tables (LUTs): look up output at each input 
combination (address)
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SystemVerilog RAM

// 256 x 3 RAM with one read/write port

module ram(input  logic       clk, we,

           input  logic [7:0] a,

           input  logic [2:0] wd,

           output logic [2:0] rd);

  logic  [2:0] RAM[255:0];

  assign rd = RAM[a];

  always @(posedge clk)

    if (we)

      RAM[a] <= wd;

endmodule
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SystemVerilog ROM

// 128 x 32 ROM with one read port

// Contents initialized from file

module rom(input  logic [6:0]  a,

           output logic [31:0] rd);

  logic  [31:0] ROM[127:0];

  // initialize contents from file

  initial

    $readmemh("memfile.dat", ROM);

  // read port

  assign rd = ROM[a];

endmodule
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SystemVerilog ROM memfile

// memfile.dat

// Contains up to 128 lines of 32-bit hex numbers

// defining the contents of the ROM

01234567

89ABCDEF

FFFFFFFF

A5A5A5A5

…
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Multi-ported Memories

A1

A3

WD3

WE3

A2

CLK

Array

RD2

RD1
M

M

N

N

N

M

• Port: address/data pair

• 3-ported memory
– 2 read ports (A1/RD1, A2/RD2)

– 1 write port (A3/WD3, WE3 enables writing)

• Register file: small multi-ported memory
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SystemVerilog Memory Arrays
// 32 x 32 register file with 2 read, 1 write port

// register 0 hardwired to read as 0

module regfile(input  logic        clk,

               input  logic        we3,

               input  logic [4:0]  ra1, ra2, wa3,

               input  logic [31:0] wd3,

               output logic [31:0] rd1, rd2);

  logic [31:0] rf[31:0];

  always_ff @(posedge clk)

    if (we3) rf[wa3] <= wd3;

  assign rd1 = (ra1 == 5’b00000) ? 32’b0 : rf[ra1];  

  assign rd2 = (ra2 == 5’b00000) ? 32’b0 : rf[ra2];

endmodule
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Logic Arrays

• PLAs (Programmable logic arrays)
– AND array followed by OR array

– Combinational logic only

– Fixed internal connections

• FPGAs (Field programmable gate arrays)
– Array of Logic Elements (LEs)

– Combinational and sequential logic

– Programmable internal connections
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PLAs: Programmable Logic Arrays

X Y

A B C

AND ARRAY

OR ARRAY

ABC

AB

ABC

AND

ARRAY

OR

ARRAY

Inputs

Outputs

Implicants

N

M

P

• X = ABC + ABC

• Y = AB
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PLAs: Dot Notation

X Y

ABC

AB

ABC

A B C

AND ARRAY

OR ARRAY
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• X = ABC + ABC

• Y = AB

AND

ARRAY

OR

ARRAY

Inputs

Outputs

Implicants

N

M

P
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FPGAs: Field Programmable Gate Arrays

• Composed of:
– LEs (Logic elements): perform logic

– IOEs (Input/output elements): interface with outside 
world

– Programmable interconnection: connect LEs and 
IOEs

– Some FPGAs include other building blocks such as 
multipliers and RAMs
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General FPGA Layout
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LE: Logic Element

• Composed of:
– LUTs (lookup tables): perform combinational logic

– Flip-flops: perform sequential logic

– Multiplexers: connect LUTs and flip-flops
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Altera Cyclone IV LE

From Cyclone IV datasheet
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Altera Cyclone IV LE

• The Altera Cyclone IV LE has:
– 1 four-input LUT 

– 1 registered output 

– 1 combinational output
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LE Configuration Example

Show how to configure a Cyclone IV LE to perform the following 
functions:

– X = ABC + ABC

– Y = AB
LUT output

0 0

0 1

1 0

1 1

0

1

0

0

data 2
0

0

0

0

0 0

0 1

1 0

1 1

1

1

1

1

0

0

1

0

X

X

X

X

X

X

X

X

data 1

(A) (B) (C) (X)

data 1

0

A
B
0 Y

data 4data 3

data 2
data 3
data 4

LUT

data 1

0

A
B

C
X

data 2
data 3
data 4

LUT

LUT output
0

1

0

1

0

0

1

0

data 2
0

0

1

1

X

X

X

X

data 1

(A) (B) (Y)

data 4data 3
X

X

X

X

LE 1

LE 2
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Logic Elements Example 1

141

How many Cyclone IV LEs are required to build
 

 Y = A1  A2  A3  A4  A5  A6

Solution:

 2 LEs

 

 First computes Y1 = A1  A2  A3  A4 (function of 4 variables)

 Second computes Y = Y1  A5  A6         (function of 3 variables)
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Logic Elements Example 2

142

How many Cyclone IV LEs are required to build
 

 32-bit 2:1 multiplexer

Solution:

 32 LEs

 

 A 1-bit mux is a function of 3 variables and fits in one LE

 A 32-bit mux requires 32 copies
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Logic Elements Example 3

143

How many Cyclone IV LEs are required to build
 

 Arbitrary FSM with 2 bits of state, 2 inputs, 3 outputs

Solution:

 5 LEs

 

 One LE can hold a bit of state and the next state logic, which is a

  function of 4 variables (2 inputs, 2 bits of state)

 One LE can compute a bit of output, which is a function of 

  2 variables (2 bits of state)

 Thus 2 LEs are needed for state and 3 LEs for outputs
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FPGA Design Flow

Using a CAD tool (such as Altera’s Quartus II)

• Enter the design using schematic entry or an HDL 

• Simulate the design

• Synthesize design and map it onto FPGA

• Download the configuration onto the FPGA

• Test the design
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Digital Design and Computer Architecture Lecture Notes 

© 2021 Sarah Harris and David Harris

These notes may be used and modified for educational and/or 
non-commercial purposes so long as the source is attributed.

About these Notes
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