
Chapter 5:

Digital Building Blocks

Digital Design &

Computer Architecture
Sarah Harris & David Harris

Digital Design & Computer Architecture Digital Building Blocks

Chapter 5 :: Topics

• Introduction

• Arithmetic Circuits

• Number Systems

• Sequential Building Blocks

• Memory Arrays

• Logic Arrays

2

Digital Design & Computer Architecture Digital Building Blocks

Introduction

• Digital building blocks:
– Gates, multiplexers, decoders, registers,

arithmetic circuits, counters, memory arrays,
logic arrays

• Building blocks demonstrate hierarchy,
modularity, and regularity:
– Hierarchy of simpler components

– Well-defined interfaces and functions

– Regular structure easily extends to different sizes

• We’ll use these building blocks in Chapter
7 to build a microprocessor

3

Chapter 5: Digital Building Blocks

Adders

Digital Design & Computer Architecture Digital Building Blocks

1-Bit Adders

A B

0 0

0 1

1 0

1 1

0

1

1

0

SCout

0

0

0

1

S = A  B

Cout = AB

Half

Adder

A B

S

Cout
+

A B

0 0

0 1

1 0

1 1

0

1

1

0

SCout

0

0

0

1

S = A  B  Cin

Cout = AB + ACin + BCin

Full

Adder

Cin

0 0

0 1

1 0

1 1

0

0

0

0

1

1

1

1

1

0

0

1

0

1

1

1

A B

S

Cout Cin+

5

Digital Design & Computer Architecture Digital Building Blocks

Multibit Adders: CPAs

A B

S

C
out

C
in+

N

NN

• Types of carry propagate adders (CPAs):
– Ripple-carry (slow)
– Carry-lookahead (fast)
– Prefix (faster)

• Carry-lookahead and prefix adders faster for large
adders but require more hardware

 Symbol

6

Chapter 5: Digital Building Blocks

Ripple Carry

Addition

Digital Design & Computer Architecture Digital Building Blocks

Ripple-Carry Adder

• Chain 1-bit adders together

• Carry ripples through entire chain

• Disadvantage: slow

S
31

A
30

B
30

S
30

A
1

B
1

S
1

A
0

B
0

S
0

C
30

C
29

C
1

C
0

C
out ++++

A
31

B
31

C
in

8

Digital Design & Computer Architecture Digital Building Blocks

Ripple-Carry Adder Delay

 tripple = NtFA

 where tFA is the delay of a 1-bit full adder

9

S
31

A
30

B
30

S
30

A
1

B
1

S
1

A
0

B
0

S
0

C
30

C
29

C
1

C
0

C
out ++++

A
31

B
31

C
in

Chapter 5: Digital Building Blocks

Carry Lookahead

Addition

Digital Design & Computer Architecture Digital Building Blocks

Carry-Lookahead Adder
Compute Cout for k-bit blocks using generate and propagate signals

 Some definitions:
– Column i produces a carry out by either generating a carry out or

propagating a carry in to the carry out

– Calculate generate (Gi) and propagate (Pi) signals for each column:

• Generate: Column i will generate a carry out if Ai and Bi are both 1.

 Gi = Ai Bi
• Propagate: Column i will propagate a carry in to the carry out if Ai or Bi is 1.

 Pi = Ai + Bi
• Carry out: The carry out of column i (Ci) is:

 Ci = Ai Bi + (Ai + Bi)Ci-1 = Gi + Pi Ci-1

11

Digital Design & Computer Architecture Digital Building Blocks

Propagate and Generate Signals
Examples: Column propagate and generate
signals:

Column propagate: Pi = Ai + Bi

Column generate: Gi = Ai Bi

 Ci = Gi + Pi Ci-1

1011
0110+

A3:0

B3:0

P3 ,P2 ,P1 ,P0

G3 ,G2 ,G1 ,G0

1111
0010

11111

Carry-in
 (C-1)

Carry-out
 (C3)

C3 ,C2 ,C1 ,C0 ,C-1

1011
1001+

10110
A3:0

B3:0

P3 ,P2 ,P1 ,P0

G3 ,G2 ,G1 ,G0

1011
1001

C3 ,C2 ,C1 ,C0 ,C-1

Carry-in
 (C-1)

Carry-out
 (C3)

12

Digital Design & Computer Architecture Digital Building Blocks

Block Propagate and Generate

Now use column Propagate and Generate signals to
compute Block Propagate and Block Generate
signals for k-bit blocks, i.e.:

• Compute if a k-bit group will propagate a carry in (of the
block) to the carry out (of the block)

• Compute if a k-bit group will generate a carry out (of the
block)

13

Digital Design & Computer Architecture Digital Building Blocks

Block Propagate and Generate

• Example: 4-bit blocks
• Block propagate signal: P3:0 (single-bit signal)

• A carry-in would propagate through all 4 bits of the block:

 P3:0 = P3P2 P1P0

• Examples:

1011
0100+

0000

11111

Carry-in
 (C-1)

Carry-out
 (C3)

A3:0

B3:0

S3:0

P3 ,P2 ,P1 ,P0

G3 ,G2 ,G1 ,G0

1111
0000

C3 ,C2 ,C1 ,C0 ,C-1

P3:0 = P3P2P1P0 = 1

1011
0001+

1101

00111
A3:0

B3:0

S3:0

P3 ,P2 ,P1 ,P0

G3 ,G2 ,G1 ,G0

1011
0001

C3 ,C2 ,C1 ,C0 ,C-1

Carry-in
 (C-1)

Carry-out
 (C3)

P3:0 = P3P2P1P0 = 0

14

Digital Design & Computer Architecture Digital Building Blocks

Block Propagate and Generate

• Example: 4-bit blocks
• Block propagate signal: P3:0 (single-bit signal)

• A carry-in would propagate through all 4 bits of the block:

 P3:0 = P3P2 P1P0

• Block generate signal: G3:0 (single-bit signal)
• A carry is generated:

• in column 3, or
• in column 2 and propagated through column 3, or
• in column 1 and propagated through columns 2 and 3, or
• in column 0 and propagated through columns 1-3

 G3:0 = G3 + G2P3 + G1P2P3 + G0P1P2P3

 G3:0 = G3 + P3 [G2 + P2 (G1 + P1G0)]

15

Digital Design & Computer Architecture Digital Building Blocks

Block Propagate and Generate

• Example: 4-bit blocks
• Block generate signal: G3:0 (single-bit signal)

• A carry is: generated in column 3, or generated in column 2 and
propagated through column 3, or ...

 G3:0 = G3 + G2P3 + G1P2P3 + G0P1P2P3

1001
1100+

0110

10011
A3:0

B3:0

S3:0

P3 ,P2 ,P1 ,P0

G3 ,G2 ,G1 ,G0

1101
1000

C3 ,C2 ,C1 ,C0 ,C-1

G3:0 = 1

1110
0100+

0010

11000
A3:0

B3:0

S3:0

P3 ,P2 ,P1 ,P0

G3 ,G2 ,G1 ,G0

1110
0100

C3 ,C2 ,C1 ,C0 ,C-1

Carry-out
 (C3)

G3:0 = 1

Carry-out
 (C3)

0110
0010+

1000

01101
A3:0

B3:0

S3:0

P3 ,P2 ,P1 ,P0

G3 ,G2 ,G1 ,G0

0110
0010

C3 ,C2 ,C1 ,C0 ,C-1

Carry-out
 (C3)

G3:0 = 0

16

Digital Design & Computer Architecture Digital Building Blocks

Block Propagate and Generate

• Example: 4-bit blocks
• Block propagate signal: P3:0 (single-bit signal)

• A carry-in would propagate through all 4 bits of the block:

 P3:0 = P3P2 P1P0

• Block generate signal: G3-0 (single-bit signal)
• A carry is generated:

• in column 3, or
• in column 2 and propagated through column 3, or
• in column 1 and propagated through columns 2 and 3, or
• in column 0 and propagated through columns 1-3

 G3:0 = G3 + G2P3 + G1P2P3 + G0P1P2P3

 G3:0 = G3 + P3 [G2 + P2 (G1 + P1G0)]

 C3 = G3:0 + P3:0 C-1

17

Digital Design & Computer Architecture Digital Building Blocks

Block Propagate and Generate

• Example: Block propagate and generate
signals for 4-bit blocks (P3:0 and G3:0):
 P3:0 = P3P2 P1P0

 G3:0 = G3 + P3 (G2 + P2 (G1 + P1G0)

 C3 = G3:0 + P3:0 C-1

18

Digital Design & Computer Architecture Digital Building Blocks

32-bit CLA with 4-bit Blocks

B0

++++

P3:0

G3

P3

G2

P2

G1

P1

G0

P3

P2

P1

P0

G3:0

Cin

Cout

A0

S0

C0

B1 A1

S1

C1

B2 A2

S2

C2

B3 A3

S3

Cin

A3:0B3:0

S3:0

4-bit CLA

Block
Cin

A7:4B7:4

S7:4

4-bit CLA

Block

C3C7

A27:24B27:24

S27:24

4-bit CLA

Block

C23

A31:28B31:28

S31:28

4-bit CLA

Block

C27
Cout

19

Digital Design & Computer Architecture Digital Building Blocks

Carry-Lookahead Addition

• Step 1: Compute Gi and Pi for all columns

• Step 2: Compute G and P for k-bit blocks

• Step 3: Cin propagates through each k-bit
propagate/generate logic (meanwhile
computing sums)

• Step 4: Compute sum for most significant k-
bit block

20

Digital Design & Computer Architecture Digital Building Blocks

Carry-Lookahead Addition

• Step 1: Compute Gi and Pi for all columns
Gi = Ai Bi

Pi = Ai + Bi

21

Digital Design & Computer Architecture Digital Building Blocks

Carry-Lookahead Addition

• Step 1: Compute Gi and Pi for all columns

• Step 2: Compute G and P for k-bit blocks

P3:0 = P3P2 P1P0

G3:0 = G3 + P3 (G2 + P2 (G1 + P1G0)

22

Digital Design & Computer Architecture Digital Building Blocks

Carry-Lookahead Addition

• Step 1: Compute Gi and Pi for all columns

• Step 2: Compute G and P for k-bit blocks

• Step 3: Cin propagates through each k-bit
propagate/generate logic (meanwhile
computing sums)

A3:0B3:0

S3:0

4-bit CLA
Block

Cin

A7:4B7:4

S7:4

4-bit CLA
Block

C3C7

A27:24B27:24

S27:24

4-bit CLA
Block

C23

A31:28B31:28

S31:28

4-bit CLA
Block

C27
Cout

B0

++++

P3:0

G3P3G2P2G1P1G0

P3P2P1P0

G3:0

Cin
Cout

A0

S0

C0
B1 A1

S1

C1
B2 A2

S2

C2
B3 A3

S3

Cin

B0

++++

P3:0

G3P3G2P2G1P1G0

P3P2P1P0

G3:0

Cin
Cout

A0

S0

C0
B1 A1

S1

C1
B2 A2

S2

C2
B3 A3

S3

Cin

B0

++++

P3:0

G3P3G2P2G1P1G0

P3P2P1P0

G3:0

Cin
Cout

A0

S0

C0
B1 A1

S1

C1
B2 A2

S2

C2
B3 A3

S3

Cin

B0

++++

P3:0

G3P3G2P2G1P1G0

P3P2P1P0

G3:0

Cin
Cout

A0

S0

C0
B1 A1

S1

C1
B2 A2

S2

C2
B3 A3

S3

Cin

23

Digital Design & Computer Architecture Digital Building Blocks

Carry-Lookahead Addition

• Step 1: Compute Gi and Pi for all columns

• Step 2: Compute G and P for k-bit blocks

• Step 3: Cin propagates through each k-bit
propagate/generate logic (meanwhile
computing sums)

• Step 4: Compute sum for most significant k-
bit block

B0

++++

P3:0

G3P3G2P2G1P1G0

P3P2P1P0

G3:0

Cin
Cout

A0

S0

C0
B1 A1

S1

C1
B2 A2

S2

C2
B3 A3

S3

Cin

B0

++++

P3:0

G3P3G2P2G1P1G0

P3P2P1P0

G3:0

Cin
Cout

A0

S0

C0
B1 A1

S1

C1
B2 A2

S2

C2
B3 A3

S3

Cin

B0

++++

P3:0

G3P3G2P2G1P1G0

P3P2P1P0

G3:0

Cin
Cout

A0

S0

C0
B1 A1

S1

C1
B2 A2

S2

C2
B3 A3

S3

Cin

B0

++++

P3:0

G3P3G2P2G1P1G0

P3P2P1P0

G3:0

Cin
Cout

A0

S0

C0
B1 A1

S1

C1
B2 A2

S2

C2
B3 A3

S3

Cin

24

Digital Design & Computer Architecture Digital Building Blocks

32-bit CLA with 4-bit Blocks

B
0

++++

P
3:0

G
3

P
3

G
2

P
2

G
1

P
1

G
0

P
3

P
2

P
1

P
0

G
3:0

C
in

C
out

A
0

S
0

C
0

B
1

A
1

S
1

C
1

B
2

A
2

S
2

C
2

B
3

A
3

S
3

C
in

A
3:0

B
3:0

S
3:0

4-bit CLA

Block
C

in

A
7:4

B
7:4

S
7:4

4-bit CLA

Block

C
3

C
7

A
27:24

B
27:24

S
27:24

4-bit CLA

Block

C
23

A
31:28

B
31:28

S
31:28

4-bit CLA

Block

C
27

C
out

25

Digital Design & Computer Architecture Digital Building Blocks

Carry-Lookahead Adder Delay
For N-bit CLA with k-bit blocks:

 tCLA = tpg + tpg_block + (N/k – 1)tAND_OR + ktFA

– tpg : delay to generate all Pi, Gi

– tpg_block : delay to generate all Pi:j, Gi:j

– tAND_OR : delay from Cin to Cout of final AND/OR gate in k-bit CLA block

An N-bit carry-lookahead adder is generally much faster than a
ripple-carry adder for N > 16

26

Chapter 5: Digital Building Blocks

Prefix

Addition

Digital Design & Computer Architecture Digital Building Blocks

Prefix Adder

• Computes carry in (Ci-1) for each column, then
computes sum:

 Si = (Ai  Bi)  Ci-1

• It computes Ci-1 by:

• Computing G and P for 1-, 2-, 4-, 8-bit blocks,
etc. until all Gi (carry in) known

• Gi = Ci

• log2N stages

28

Digital Design & Computer Architecture Digital Building Blocks

Prefix Adder
• Carry out either generated in a column or propagated from

a previous column.

• Column -1 holds Cin, so

 G-1 = Cin, P-1 = X (not used)

• Carry in to column i = carry out of column i-1:

 Ci-1 = Gi-1:-1

 Gi-1:-1: generate signal spanning columns i-1 to -1

• Sum equation:

 Si = (Ai  Bi)  Gi-1:-1

• Goal: Quickly compute G0:-1, G1:-1, G2:-1, G3:-1, G4:-1, G5:-1, …

(called prefixes) (= C0, C1, C2, C3, C4, C5, …)

29

Digital Design & Computer Architecture Digital Building Blocks

Prefix Adder

• Generate and propagate signals for a block spanning bits i:j

 Gi:j = Gi:k + Pi:k Gk-1:j

 Pi:j = Pi:kPk-1:j

• In words:

– Generate: block i:j will generate a carry if:

• upper part (i:k) generates a carry (Gi:k) or

• upper part (i:k) propagates a carry (Pi:k) generated in
lower part (k-1:j) (Gk-1:j)

– Propagate: block i:j will propagate a carry if both the
upper and lower parts propagate the carry (Pi:k AND Pk-1:j)

30

Digital Design & Computer Architecture Digital Building Blocks

Prefix Adder Example

31

1 0 1 0
0 1 1 1+

A3:0

B3:0

P3:3 ,P2:2 ,P1:1 ,P0:0

G3:3 ,G2:2 ,G1:1 ,G0:0 ,G-1:-1

1 1 1 1
0 0 1 0 1

3 2 1 0 -1 Column #

Step 1. Calculate P s and G s
for 1-bit block

CinCin

1 0 1 0
0 1 1 1+

A3:0

B3:0

P0:-1 = X
G0:-1 = G0:0 + P0:0G-1:-1

 = 1

3 2 1 0 -1 Column #

Step 2. Calculate P s and G s
for 2-bit blocks

PL:R = PL PR

GL:R =GL + PLGR

0:-1 Block:

P2:1 = P2:2P1:1 =
G2:1 = G2:2 + P2:2G1:1

 = 1

2:1 Block:

1 0 1 0
0 1 1 1+

A3:0

B3:0

P2:-1 = X
G2:-1 = G2:1 + P2:1G0:-1

 = 1

3 2 1 0 -1 Column #

Step 3. Calculate P s and G s
for 4-bit blocks

PL:R = PL PR

GL:R =GL + PLGR

2:-1 Block:

P1:-1 = X
G1:-1 = G1:1 + P1:1G0:-1

 = 1

We calculate 3-bit spans too:
1:-1 Block:Step 5. Use prefixes to calculate

sums

Step 4. Continue to calculate P s and
G s for larger blocks (8-bit, 16-bit, etc.)

C-1 = G-1:-1 = 1

C0 = G0:-1 = 1

C1 = G1:-1 = 1

C2 = G2:-1 = 1

Si = Ai  Ai  Ci-1

Digital Design & Computer Architecture Digital Building Blocks

Prefix Adder Schematic

0:-1

-1

2:1

1:-12:-1

012

4:3

3

6:5

5:36:3

456

5:-16:-1 3:-14:-1

8:7

7

10:9

9:710:7

8910

12:11

11

14:13

13:1114:11

121314

13:714:7 11:712:7

9:-110:-1 7:-18:-113:-114:-1 11:-112:-1

15

0123456789101112131415

G
k-1:j

P
k-1:j

G
i:k

P
i:k

G
i:j

P
i:j

B
i

A
i

G
i:i

P
i:i

i

i:j

BiAiGi-1:-1

S
i

i

32

Digital Design & Computer Architecture Digital Building Blocks

Prefix Adder Delay

tPA = tpg + log2N(tpg_prefix) + tXOR

tpg: delay to produce Pi, Gi (AND or OR gate)

tpg_prefix: delay of black prefix cell (AND-OR gate)

33

Digital Design & Computer Architecture Digital Building Blocks

Adder Delay Comparisons
Compare the delay of: 32-bit ripple-carry, CLA, and prefix adders

• CLA has 4-bit blocks

• 2-input gate delay = 100 ps; full adder delay = 300 ps

 tripple = NtFA = 32(300 ps)

 = 9.6 ns

 tCLA = tpg + tpg_block + (N/k – 1)tAND_OR + ktFA

 = [100 + 600 + (7)200 + 4(300)] ps

 = 3.3 ns

 tPA = tpg + log2N(tpg_prefix) + tXOR

 = [100 + log232(200) + 100] ps

 = 1.2 ns

34

Chapter 5: Digital Building Blocks

Subtracters &
Comparators

Digital Design & Computer Architecture Digital Building Blocks

Subtracter

Symbol Implementation

+

A B

-

Y
Y

A B

NN

N

N N

N

N

36

A – B = A + B + 1

Digital Design & Computer Architecture Digital Building Blocks

Symbol Implementation

A
3

B
3

A
2

B
2

A
1

B
1

A
0

B
0

Equal=

A B

Equal

44

Comparator: Equality

37

Digital Design & Computer Architecture Digital Building Blocks

A < B

-

BA

[N-1]

N

N N

Comparator: Signed Less Than

38

A < B if A-B is negative

Beware of overflow

Chapter 5: Digital Building Blocks

ALU:

Arithmetic Logic Unit

Digital Design & Computer Architecture Digital Building Blocks

ALU: Arithmetic Logic Unit

ALU should perform:

• Addition

• Subtraction

• AND

• OR

40

Digital Design & Computer Architecture Digital Building Blocks

ALU: Arithmetic Logic Unit

ALUControl1:0 Function

00 Add

01 Subtract

10 AND

11 OR

Example: Perform A OR B
ALUControl1:0 = 11
Result = A OR B

41

ALU

N N

N

2

A B

Result

ALUControl

Digital Design & Computer Architecture Digital Building Blocks

ALU: Arithmetic Logic Unit

ALUControl1:0 Function

00 Add

01 Subtract

10 AND

11 OR

Example: Perform A OR B
ALUControl1:0 = 11
Mux selects output of OR gate as Result,
so:
 Result = A OR B

42

+

00

A B

Cout

Result

01

A
L
U

C
o
n
tro

l0

ALUControl

Sum

NN

N

N

N NNN

N

2

011011

Digital Design & Computer Architecture Digital Building Blocks

ALU: Arithmetic Logic Unit

ALUControl1:0 Function

00 Add

01 Subtract

10 AND

11 OR

Example: Perform A + B
ALUControl1:0 = 00
ALUControl0 = 0, so:
 Cin to adder = 0
 2nd input to adder is B
Mux selects Sum as Result, so
 Result = A + B

43

Digital Design & Computer Architecture Digital Building Blocks

ALU with Status Flags

Flag Description
N Result is Negative

Z Result is Zero

C Adder produces Carry out

V Adder oVerflowed

44

Digital Design & Computer Architecture Digital Building Blocks

ALU with Status Flags

45

Digital Design & Computer Architecture Digital Building Blocks

ALU with Status Flags: Negative

N = 1 if:

Result is negative

So, N is connected to
most significant bit of
Result.

46

Digital Design & Computer Architecture Digital Building Blocks

ALU with Status Flags: Zero

Z = 1 if:

all of the bits of Result
are 0

47

Digital Design & Computer Architecture Digital Building Blocks

ALU with Status Flags: Carry

C = 1 if:

Cout of Adder is 1

 AND

ALU is adding or
subtracting (ALUControl
is 00 or 01)

48

Digital Design & Computer Architecture Digital Building Blocks

ALU with Status Flags: oVerflow

V = 1 if:

The addition of 2 same-
signed numbers
produces a result with
the opposite sign

49

Digital Design & Computer Architecture Digital Building Blocks

ALU with Status Flags: oVerflow

50

V = 1 if:

ALU is performing addition or subtraction

(ALUControl1 = 0)

AND

A and Sum have opposite signs

AND

A and B have same signs for addition
(ALUControl0 = 0) OR

A and B have different signs for subtraction

(ALUControl0 = 1)

Digital Design & Computer Architecture Digital Building Blocks

ALU with Status Flags

51

Digital Design & Computer Architecture Digital Building Blocks

Comparison based on Flags

52

Comparison Signed Unsigned

== Z Z

!= ~Z ~Z

< N ^ V ~C

<= Z | (N ^ V) Z | ~C

> ~Z & ~(N ^ V) ~Z & C

>= ~(N ^ V) C

Compare by subtracting and checking flags

Different for signed and unsigned

Digital Design & Computer Architecture Digital Building Blocks

Other ALU Operations

• Set Less Than (also called Set if Less Than)

– Sets lsb of result if A < B

• Result = 0000…001 if A < B

• Result = 0000…000 otherwise

– Comes in signed and unsigned flavors

• XOR

– Result = A XOR B

53

Digital Design & Computer Architecture Digital Building Blocks

Extending ALU: SLT

54

ALUControl2:0 Function

000 add

001 subtract

010 and

011 or

101 SLT +

000

A B

Cout

Result

01

A
L

U
C

o
n

tro
l0

ALUControl

Sum

NN

N

N

N NNN

N

3

001010011

Z
e
ro

E
x
t

N

101

[N-1]

+

00

A B

Cout

Result

01

A
L

U
C

o
n

tro
l0

ALUControl

Sum

NN

N

N

N NNN

N

2

011011

Digital Design & Computer Architecture Digital Building Blocks

Fixing Overflow Error in SLT Logic

55

+

000

A B

Cout

Result

01

A
L
U

C
o
n
tro

l0

ALUControl2:0

Sum

NN

N

N

N NNN

N

3

001010011

N

101

[N-1]

ALUControl0

AN-1

BN-1

SumN-1

oVerflow

ALUControl1

Z
e
ro

E
x
t

SumN-1

[N-1]

[N-1]

Chapter 5: Digital Building Blocks

Shifters,

Multipliers,

& Dividers

Digital Design & Computer Architecture Digital Building Blocks

Shifters
Logical shifter: shifts value to left or right and fills empty spaces with 0’s

– Ex: 11001 >> 2 = 00110

– Ex: 11001 << 2 = 00100

Arithmetic shifter: same as logical shifter, but on right shift, fills empty
spaces with the old most significant bit (msb)

– Ex: 11001 >>> 2 = 11110

– Ex: 11001 <<< 2 = 00100

Rotator: rotates bits in a circle, such that bits shifted off one end are shifted
into the other end

– Ex: 11001 ROR 2 = 01110

– Ex: 11001 ROL 2 = 00111

57

Digital Design & Computer Architecture Digital Building Blocks

Shifter Design

58

 Shift Left Logical Shift Right Arithmetic Shift Right

Digital Design & Computer Architecture Digital Building Blocks

Shifters as Multipliers and Dividers

• A << N = A × 2N

– Example: 00001 << 3 = 01000 (1 × 23 = 8)

– Example: 11101 << 2 = 10100 (-3 × 22 = -12)

• A >>> N = A ÷ 2N

– Example: 01000 >>> 1 = 00100 (8 ÷ 21 = 4)

– Example: 10000 >>> 2 = 11100 (-16 ÷ 22 = -4)

59

Digital Design & Computer Architecture Digital Building Blocks

Multipliers

• Partial products formed by multiplying a single
digit of the multiplier with multiplicand

• Shifted partial products summed to form result

Decimal Binary

230
42x

0101
0111

5 x 7 = 35

460
920+

9660

0101
0101

0101
0000

x

+

0100011

230 x 42 = 9660

multiplier

multiplicand

partial

products

result

60

Digital Design & Computer Architecture Digital Building Blocks

4 x 4 Multiplier

x B
3

B
2

B
1

B
0

A
3
B

0
A

2
B

0
A

1
B

0
A

0
B

0

A
3

A
2

A
1

A
0

 A
3
B

1
A

2
B

1
A

1
B

1
A

0
B

1

A
3
B

2
A

2
B

2
A

1
B

2
A

0
B

2

A
3
B

3
A

2
B

3
A

1
B

3
A

0
B

3+

P
7

P
6

P
5

P
4

P
3

P
2

P
1

P
0

0

P
2

0

0

0

P
1

P
0

P
5

P
4

P
3

P
7

P
6

A
3

A
2

A
1

A
0

B
0

B
1

B
2

B
3

x

A B

P

44

8

61

Digital Design & Computer Architecture Digital Building Blocks

Dividers

A/B = Q + R/B

Decimal Example: 2584/15 = 172 R4

Long-Hand: Long-Hand Revisited:

62

Digital Design & Computer Architecture Digital Building Blocks

Dividers

A/B = Q + R/B

Decimal: 2584/15 = 172 R4 Binary: 1101/0010 = 0110 R1

63

Digital Design & Computer Architecture Digital Building Blocks

Dividers

A/B = Q + R/B

R’ = 0

for i = N-1 to 0

 R = {R’ << 1, Ai}

 D = R - B

 if D < 0, Qi= 0; R’= R

 else Qi= 1; R’= D

R=R’

Binary: 1101/10 = 0110 R1

64

Digital Design & Computer Architecture Digital Building Blocks

4 x 4 Divider

+

R B

D

R'

N

C
in

C
out

1 0

R B

D
R'N

C
out

C
in

Legend

Division: A/B = Q + R/B

R’ = 0

for i = N-1 to 0

 R = {R’ << 1, Ai}

 D = R - B

 if D < 0, Qi=0, R’=R

 else Qi=1, R’=D

R=R’Each row computes one iteration of the division algorithm.

65

Digital Design & Computer Architecture Digital Building Blocks

4 x 4 Divider

+

R B

D

R'

N

C
in

C
out

1 0

R B

D
R'N

C
out

C
in

Legend

Each row computes one iteration of the division algorithm.

66

Chapter 5: Digital Building Blocks

Fixed-Point

Numbers

Digital Design & Computer Architecture Digital Building Blocks

Number Systems

Numbers we can represent using binary
representations

– Positive numbers

• Unsigned binary

– Negative numbers

• Two’s complement

• Sign/magnitude numbers

What about fractions?

68

Digital Design & Computer Architecture Digital Building Blocks

Numbers with Fractions

Two common notations:

• Fixed-point: binary point fixed

• Floating-point: binary point floats to the right of
the most significant 1

69

Digital Design & Computer Architecture Digital Building Blocks

Fixed-Point Numbers

01101100

0110.1100

22 + 21 + 2-1 + 2-2 = 6.75

• 6.75 using 4 integer bits and 4 fraction bits:

• Binary point is implied

• The number of integer and fraction bits must be
agreed upon beforehand

70

Digital Design & Computer Architecture Digital Building Blocks

Unsigned Fixed Point Formats

• Ua.b: unsigned number with

• a integer bits

• b fractional bits.

• Example: 6.75 is

• U4.4: 01101100

• U3.5: 11011000

• U6.2: 00011011

• 8, 16, and 32-bit fixed point numbers are common

• U8.8 often represents sensor data, audio, pixels

• U16.16 used for higher precision signal processing

71

Digital Design & Computer Architecture Digital Building Blocks

Signed Fixed Point Formats

• Qa.b: signed 2’s complement number with
• a integer bits (including the sign bit)
• b fractional bits

• To negate a Q fixed point number:
• Invert the bits
• Add one to the LSB

• Example: write -6.75 in Q4.4
• 6.75 = 01101100
• Invert: 10010011
• Add 1 LSB: 10010100

• Q1.15 (aka Q15) is common for signal processing (1, -1]

72

Digital Design & Computer Architecture Digital Building Blocks

Saturating Arithmetic

• Fixed point overflow is usually bad

• Produces undesired artifacts:

• Video: dark pixel in middle of bright pixels

• Audio: clicking sounds

• Saturating arithmetic

• Instead of overflowing, use largest value

• In U4.4: 11000000 + 01111000 = 11111111

 12 + 7.5 = 15.9375

73

Chapter 5: Digital Building Blocks

Floating-Point

Numbers

Digital Design & Computer Architecture Digital Building Blocks

Floating-Point Numbers
• Binary point floats to the right of the most significant 1

• Similar to decimal scientific notation

• For example, write 27310 in scientific notation:

 273 = 2.73 × 102

• In general, a number is written in scientific notation as:

 ± M × BE

– M = mantissa

– B = base

– E = exponent

– In the example, M = 2.73, B = 10, and E = 2

75

Digital Design & Computer Architecture Digital Building Blocks

Floating vs. Fixed Point Numbers

• Floating point numbers are like scientific notation

• Allow a greater dynamic range of smallest to largest

• Arithmetic is harder

• Mantissa must be aligned before adding

• This costs performance and power

• Fixed point numbers are harder for the programmer

• Smaller dynamic range

• Take care of overflow

• Floating Point is preferred for general-purpose computing where
programming time is most important

• Fixed Point is preferred for signal processing performance, power, and
hardware cost matter most

• Machine learning, video

76

Digital Design & Computer Architecture Digital Building Blocks

Floating-Point Numbers

Sign Exponent Mantissa

1 bit 8 bits 23 bits

• Example: represent the value 22810 using a 32-bit floating
point representation

 We show three versions – the final version is called the:

 IEEE 754 floating-point standard

77

Digital Design & Computer Architecture Digital Building Blocks

A common error
is to do step 2
first (and write
the number in
decimal scientific
notation!)

Floating-Point Representation 1

0 00000111 11 1001 0000 0000 0000 0000

Sign Exponent Mantissa

1 bit 8 bits 23 bits

1. Convert decimal to binary:

 22810 = 111001002

2. Write the number in “binary scientific notation”:

 111001002 = 1.110012 × 27

3. Fill in each field of the 32-bit floating point number:

– The sign bit is positive (0)

– The 8 exponent bits represent the value 7

– The remaining 23 bits are the mantissa

78

Digital Design & Computer Architecture Digital Building Blocks

Floating-Point Representation 2

0 00000111 110 0100 0000 0000 0000 0000

Sign Exponent Fraction

1 bit 8 bits 23 bits

• First bit of the mantissa is always 1:

– 22810 = 111001002 = 1.11001 × 27

• So, no need to store it: implicit leading 1

• Store just fraction bits in 23-bit field

79

Digital Design & Computer Architecture Digital Building Blocks

Floating-Point Representation 3

0 10000110

Sign Biased

Exponent
Fraction

1 bit 8 bits 23 bits

 110 0100 0000 0000 0000 0000

• Biased exponent: bias = 127 (011111112)

– Biased exponent = bias + exponent

– Exponent of 7 is stored as:

 127 + 7 = 134 = 0x100001102

• The IEEE 754 32-bit floating-point representation of 22810

 in hexadecimal: 0x43640000

80

Digital Design & Computer Architecture Digital Building Blocks

Floating-Point Example

1 100 0010 0 110 1001 0000 0000 0000 0000

Sign Exponent Fraction

1 bit 8 bits 23 bits

Write -58.2510 in floating point (IEEE 754)

1. Convert magnitude of decimal to binary:

 58.2510 = 111010.012

2. Write in binary scientific notation:

 1.1101001 × 25

3. Fill in fields:
 Sign bit: 1 (negative)
 8 exponent bits: (127 + 5) = 132 = 100001002

 23 fraction bits: 110 1001 0000 0000 0000 0000

 in hexadecimal: 0xC2690000

81

Digital Design & Computer Architecture Digital Building Blocks

Floating-Point Special Cases

Number Sign Exponent Fraction
0 X 00000000 00000000000000000000000

∞ 0 11111111 00000000000000000000000

- ∞ 1 11111111 00000000000000000000000

NaN X 11111111 non-zero

82

Digital Design & Computer Architecture Digital Building Blocks

Floating-Point Precision

• Single-Precision:

– 32-bit

– 1 sign bit, 8 exponent bits, 23 fraction bits

– bias = 127

• Double-Precision:

– 64-bit

– 1 sign bit, 11 exponent bits, 52 fraction bits

– bias = 1023

83

Digital Design & Computer Architecture Digital Building Blocks

Floating-Point Rounding & Overflow
• Overflow: number too large to be represented

• Underflow: number too small to be represented

• Rounding modes:
– Down

– Up

– Toward zero

– To nearest

• Example: round 1.100101 (1.578125) to only 3 fraction bits
– Down: 1.100

– Up: 1.101

– Toward zero: 1.100

– To nearest: 1.101 (1.625 is closer to 1.578125 than 1.5 is)

84

Chapter 5: Digital Building Blocks

Floating-Point

Addition

Digital Design & Computer Architecture Digital Building Blocks

Floating-Point Addition
1. Extract exponent and fraction bits

2. Prepend leading 1 to form mantissa

3. Compare exponents

4. Shift smaller mantissa if necessary

5. Add mantissas

6. Normalize mantissa and adjust exponent if necessary

7. Round result

8. Assemble exponent and fraction back into floating-point
format

86

Digital Design & Computer Architecture Digital Building Blocks

Floating-Point Addition Example
Add the following floating-point numbers:

 0x3FC00000

 0x40500000

87

Digital Design & Computer Architecture Digital Building Blocks

Floating-Point Addition Example

0 01111111 100 0000 0000 0000 0000 0000

Sign Exponent Fraction

1 bit 8 bits 23 bits

0 10000000 101 0000 0000 0000 0000 0000

1 bit 8 bits 23 bits

Sign Exponent Fraction

1. Extract exponent and fraction bits

 For first number (N1): S = 0, E = 127, F = .1

 For second number (N2): S = 0, E = 128, F = .101

2. Prepend leading 1 to form mantissa

 N1: 1.1

 N2: 1.101

88

0x3FC00000

0x40500000

Digital Design & Computer Architecture Digital Building Blocks

Floating-Point Addition Example
3. Compare exponents

 127 – 128 = -1, so shift N1 right by 1 bit

4. Shift smaller mantissa if necessary

 shift N1’s mantissa: 1.1 >> 1 = 0.11 (× 21)

5. Add mantissas

 0.11 × 21

 + 1.101 × 21

 10.011 × 21

89

Digital Design & Computer Architecture Digital Building Blocks

Floating-Point Addition Example

0 10000001 001 1000 0000 0000 0000 0000

Sign Exponent Fraction

1 bit 8 bits 23 bits

6. Normalize mantissa and adjust exponent if necessary

 10.011 × 21 = 1.0011 × 22

7. Round result

 No need (fits in 23 bits)

8. Assemble exponent and fraction back into floating-point
format

 S = 0, E = 2 + 127 = 129 = 100000012, F = 001100...

in hexadecimal: 0x40980000

90

Chapter 5: Digital Building Blocks

Counters & Shift
Registers

Digital Design & Computer Architecture Digital Building Blocks

Counters

Q

CLK

Reset

N

+
N

1

CLK

Reset

N

N

Q
N

r

Symbol Implementation

• Increments on each clock edge

• Used to cycle through numbers. For example,
– 000, 001, 010, 011, 100, 101, 110, 111, 000, 001…

• Example uses:
– Digital clock displays

– Program counter: keeps track of current instruction executing

92

Digital Design & Computer Architecture Digital Building Blocks

Counter SystemVerilog Idiom
module counter(input logic clk, reset,

 output logic [7:0] q);

 always_ff @(posedge clk)

 if (reset) q <= 0; // synchronous reset

 else q <= q+1; //

end

// alternative more verbose

module counter(input logic clk, reset,

 output logic [7:0] q);

 logic [7:0] nextq;

 assign nextq = q + 1; // adder

 always_ff @(posedge clk) // state register with synchronous reset

 if (reset) q <= 0;

 else q <= nextq;

end

93

Digital Design & Computer Architecture Digital Building Blocks

Divide-by-2N Counter

• Most significant bit of an N-bit counter toggles every 2N
cycles.

• Useful for slowing a clock. Ex: blink an LED

• Example: 50 MHz clock, 24-bit counter
• 2.98 Hz

94

Digital Design & Computer Architecture Digital Building Blocks

Digitally Controlled Oscillator

• N-bit counter

• Add p on each cycle, instead of 1

• Most significant bit toggles at fout = fclk * p / 2N

• Example: fclk = 50 MHz clock

• How to generate a fout = 200 Hz signal?

• p/2N = 200 / 50 MHz

• Try N = 24, p = 67 ➔ fout = 199.676 Hz

• Or N = 32, p = 17179 ➔ fout = 199.990 Hz

95

Digital Design & Computer Architecture Digital Building Blocks

Shift Registers

N
Q

S
in

S
out

CLK

S
in

S
out

Q
0

Q
1

Q
N-1

Q
2

Implementation:

• Shift a new bit in on each clock edge

• Shift a bit out on each clock edge

• Serial-to-parallel converter: converts serial input (Sin) to
parallel output (Q0:N-1)

Symbol:

96

Digital Design & Computer Architecture Digital Building Blocks

Shift Register with Parallel Load

Clk
0

1

0

1

0

1

0

1

D
0

D
1

D
N-1

D
2

Q
0

Q
1

Q
N-1

Q
2

S
in

S
out

Load

• When Load = 1, acts as a normal N-bit register

• When Load = 0, acts as a shift register

• Now can act as a serial-to-parallel converter (Sin to
Q0:N-1) or a parallel-to-serial converter (D0:N-1 to Sout)

97

Digital Design & Computer Architecture Digital Building Blocks

Shift Register SystemVerilog Idiom
module shiftreg #(parameter N=8)

 (input logic clk,

 input logic reset, load,

 input logic sin,

 input logic [N-1:0] d,

 output logic [N-1:0] q,

 output logic sout);

 always_ff @(posedge clk, posedge reset)

 if (reset) q <= 0;

 else if (load) q <= d;

 else q <= {q[N-2:0], sin};

 assign sout = q[N-1];

end

98

Chapter 5: Digital Building Blocks

Memory

Digital Design & Computer Architecture Digital Building Blocks

Memory Arrays

Address

Data

Array
N

M

• Efficiently store large amounts of data

• M-bit data value read/written at each
unique N-bit address

• 3 common types:
– Dynamic random access memory (DRAM)

– Static random access memory (SRAM)

– Read only memory (ROM)

100

Digital Design & Computer Architecture Digital Building Blocks

Memory Arrays

Address

Data

Array
N

M

Address Data

11

10

01

00

depth

0 1 0

1 0 0

1 1 0

0 1 1

width

Address

Data

Array2

3

• 2-dimensional array of bit cells

• Each bit cell stores one bit

• N address bits and M data bits:
– 2N rows and M columns

– Depth: number of rows (number of words)

– Width: number of columns (size of word)

– Array size: depth × width = 2N × M

101

Digital Design & Computer Architecture Digital Building Blocks

Memory Array Example

Address Data

11

10

01

00

depth

0 1 0

1 0 0

1 1 0

0 1 1

width

Address

Data

Array2

3

• 22 × 3-bit array

• Number of words: 4

• Word size: 3-bits

• For example, the 3-bit word stored at address 10 is 100

102

Digital Design & Computer Architecture Digital Building Blocks

Memory Arrays

Address

Data

1024-word x

32-bit

Array

10

32

103

Digital Design & Computer Architecture Digital Building Blocks

Memory Array Bit Cells

stored

bit

wordline

bitline

stored

bit = 0

wordline = 1

stored

bit = 1

stored

bit = 0

stored

bit = 1

bitline =

(a) (b)

wordline = 1

wordline = 0

wordline = 0

bitline =

bitline =

bitline = 0

1

Z

Z

104

Digital Design & Computer Architecture Digital Building Blocks

Memory Array

wordline
311

10

2:4

Decoder

Address

01

00

stored

bit = 0
wordline

2

wordline
1

wordline
0

stored

bit = 1

stored

bit = 0

stored

bit = 1

stored

bit = 0

stored

bit = 0

stored

bit = 1

stored

bit = 1

stored

bit = 0

stored

bit = 0

stored

bit = 1

stored

bit = 1

bitline
2

bitline
1

bitline
0

Data
2

Data
1

Data
0

2

• Wordline:
– like an enable

– single row in memory array read/written

– corresponds to unique address

– only one wordline HIGH at once

105

Digital Design & Computer Architecture Digital Building Blocks

Types of Memory

• Random access memory (RAM): volatile

• Read only memory (ROM): nonvolatile

106

Digital Design & Computer Architecture Digital Building Blocks

RAM: Random Access Memory

• Volatile: loses its data when power off

• Read and written quickly

• Main memory in your computer is RAM
(DRAM)

 Historically called random access memory because any data
word accessed as easily as any other (in contrast to
sequential access memories such as a tape recorder)

107

Digital Design & Computer Architecture Digital Building Blocks

ROM: Read Only Memory

• Nonvolatile: retains data when power off

• Read quickly, but writing is impossible or
slow

• Flash memory in cameras, thumb drives, and
digital cameras are all ROMs

Historically called read only memory because ROMs were
written at time of fabrication or by burning fuses. Once a ROM
was configured, it could not be written again. This is no longer
the case for Flash memory and other types of ROMs.

108

Chapter 5: Digital Building Blocks

RAM

Digital Design & Computer Architecture Digital Building Blocks

Types of RAM

• DRAM (Dynamic random access memory)

• SRAM (Static random access memory)

• Differ in how they store data:
– DRAM uses a capacitor

– SRAM uses cross-coupled inverters

110

Digital Design & Computer Architecture Digital Building Blocks

Robert Dennard, 1932 -

• Invented DRAM in 1966
at IBM

• Others were skeptical
that the idea would
work

• By the mid-1970’s DRAM
in virtually all computers

111

Digital Design & Computer Architecture Digital Building Blocks

DRAM

stored

bit

wordline

bitline

wordline

bitline

stored

bit

• Data bits stored on capacitor

• Dynamic because the value needs to be refreshed
(rewritten) periodically and after read:

– Charge leakage from the capacitor degrades the value

– Reading destroys the stored value

112

Digital Design & Computer Architecture Digital Building Blocks

DRAM

wordline

bitline

wordline

bitline

+ +stored

bit = 1

stored

bit = 0

113

Digital Design & Computer Architecture Digital Building Blocks

SRAM

stored

bit

wordline

bitline

wordline

bitline bitline

114

Digital Design & Computer Architecture Digital Building Blocks

Memory Arrays Review

wordline
311

10

2:4

Decoder

Address

01

00

stored

bit = 0
wordline

2

wordline
1

wordline
0

stored

bit = 1

stored

bit = 0

stored

bit = 1

stored

bit = 0

stored

bit = 0

stored

bit = 1

stored

bit = 1

stored

bit = 0

stored

bit = 0

stored

bit = 1

stored

bit = 1

bitline
2

bitline
1

bitline
0

Data
2

Data
1

Data
0

2

wordline

bitline bitline

wordline

bitline

DRAM bit cell: SRAM bit cell:

115

Chapter 5: Digital Building Blocks

ROM

Digital Design & Computer Architecture Digital Building Blocks

ROM: Dot Notation

11

10

2:4

Decoder

Address

Data0Data1Data2

01

00

2

wordline

bitline

wordline

bitline

bit cell

containing 0

bit cell

containing 1

117

Digital Design & Computer Architecture Digital Building Blocks

ROM Storage

11

10

2:4

Decoder

Address

Data0Data1Data2

01

00

2

Address Data

11

10

01

00

depth

0 1 0

1 0 0

1 1 0

0 1 1

width

118

Digital Design & Computer Architecture Digital Building Blocks

Fujio Masuoka, 1944 -

• Developed memories and high speed
circuits at Toshiba, 1971-1994

• Invented Flash memory as an
unauthorized project pursued during
nights and weekends in the late 1970’s

• The process of erasing the memory
reminded him of the flash of a camera

• Toshiba slow to commercialize the
idea; Intel was first to market in 1988

• Flash has grown into a $25 billion per
year market

119

Digital Design & Computer Architecture Digital Building Blocks

ROM Logic

Data2 = A1  A0

Data1 = A1 + A0

Data0 = A1A0

11

10

2:4

Decoder

Address

Data0Data1Data2

01

00

2

120

Digital Design & Computer Architecture Digital Building Blocks

11

10

2:4

Decoder

A, B

ZYX

01

00

2

Example: Logic with ROMs

11

10

2:4

Decoder

A, B

ZYX

01

00

2

Implement the following logic functions using a 22 × 3-bit ROM:
– X = AB

– Y = A + B

– Z = A B

121

Digital Design & Computer Architecture Digital Building Blocks

Logic with Any Memory Array

wordline
311

10

2:4

Decoder

Address

01

00

stored

bit = 0
wordline

2

wordline
1

wordline
0

stored

bit = 1

stored

bit = 0

stored

bit = 1

stored

bit = 0

stored

bit = 0

stored

bit = 1

stored

bit = 1

stored

bit = 0

stored

bit = 0

stored

bit = 1

stored

bit = 1

bitline
2

bitline
1

bitline
0

Data
2

Data
1

Data
0

2

Data2 = A1  A0

Data1 = A1 + A0

Data0 = A1A0

122

Digital Design & Computer Architecture Digital Building Blocks

Logic with Memory Arrays

wordline3
11

10

2:4

Decoder

A, B

01

00

stored

bit = 1
wordline2

wordline1

wordline0

stored

bit = 1

stored

bit = 0

stored

bit = 0

stored

bit = 1

stored

bit = 1

stored

bit = 0

stored

bit = 1

stored

bit = 0

stored

bit = 0

stored

bit = 0

stored

bit = 0

bitline2 bitline1 bitline0

X Y Z

2

Implement the following logic functions using a 22 × 3-bit
memory array:

– X = AB

– Y = A + B

– Z = A B

123

Digital Design & Computer Architecture Digital Building Blocks

Logic with Memory Arrays

stored

bit = 1

stored

bit = 0

00

01

2:4

Decoder

A

stored

bit = 0

bitline

stored

bit = 0

Y

B

10

11

4-word x 1-bit Array

A B Y

0 0

0 1

1 0

1 1

0

0

0

1

Truth

Table

A1

A0

Called lookup tables (LUTs): look up output at each input
combination (address)

124

Chapter 5: Digital Building Blocks

SystemVerilog &

Multiported

Memories

Digital Design & Computer Architecture Digital Building Blocks

SystemVerilog RAM

// 256 x 3 RAM with one read/write port

module ram(input logic clk, we,

 input logic [7:0] a,

 input logic [2:0] wd,

 output logic [2:0] rd);

 logic [2:0] RAM[255:0];

 assign rd = RAM[a];

 always @(posedge clk)

 if (we)

 RAM[a] <= wd;

endmodule

126

Digital Design & Computer Architecture Digital Building Blocks

SystemVerilog ROM

// 128 x 32 ROM with one read port

// Contents initialized from file

module rom(input logic [6:0] a,

 output logic [31:0] rd);

 logic [31:0] ROM[127:0];

 // initialize contents from file

 initial

 $readmemh("memfile.dat", ROM);

 // read port

 assign rd = ROM[a];

endmodule

127

Digital Design & Computer Architecture Digital Building Blocks

SystemVerilog ROM memfile

// memfile.dat

// Contains up to 128 lines of 32-bit hex numbers

// defining the contents of the ROM

01234567

89ABCDEF

FFFFFFFF

A5A5A5A5

…

128

Digital Design & Computer Architecture Digital Building Blocks

Multi-ported Memories

A1

A3

WD3

WE3

A2

CLK

Array

RD2

RD1
M

M

N

N

N

M

• Port: address/data pair

• 3-ported memory
– 2 read ports (A1/RD1, A2/RD2)

– 1 write port (A3/WD3, WE3 enables writing)

• Register file: small multi-ported memory

129

Digital Design & Computer Architecture Digital Building Blocks

SystemVerilog Memory Arrays
// 32 x 32 register file with 2 read, 1 write port

// register 0 hardwired to read as 0

module regfile(input logic clk,

 input logic we3,

 input logic [4:0] ra1, ra2, wa3,

 input logic [31:0] wd3,

 output logic [31:0] rd1, rd2);

 logic [31:0] rf[31:0];

 always_ff @(posedge clk)

 if (we3) rf[wa3] <= wd3;

 assign rd1 = (ra1 == 5’b00000) ? 32’b0 : rf[ra1];

 assign rd2 = (ra2 == 5’b00000) ? 32’b0 : rf[ra2];

endmodule

130

Chapter 5: Digital Building Blocks

Logic Arrays:

PLAs & FPGAs

Digital Design & Computer Architecture Digital Building Blocks

Logic Arrays

• PLAs (Programmable logic arrays)
– AND array followed by OR array

– Combinational logic only

– Fixed internal connections

• FPGAs (Field programmable gate arrays)
– Array of Logic Elements (LEs)

– Combinational and sequential logic

– Programmable internal connections

132

Digital Design & Computer Architecture Digital Building Blocks

PLAs: Programmable Logic Arrays

X Y

A B C

AND ARRAY

OR ARRAY

ABC

AB

ABC

AND

ARRAY

OR

ARRAY

Inputs

Outputs

Implicants

N

M

P

• X = ABC + ABC

• Y = AB

133

Digital Design & Computer Architecture Digital Building Blocks

PLAs: Dot Notation

X Y

ABC

AB

ABC

A B C

AND ARRAY

OR ARRAY

134

• X = ABC + ABC

• Y = AB

AND

ARRAY

OR

ARRAY

Inputs

Outputs

Implicants

N

M

P

Digital Design & Computer Architecture Digital Building Blocks

FPGAs: Field Programmable Gate Arrays

• Composed of:
– LEs (Logic elements): perform logic

– IOEs (Input/output elements): interface with outside
world

– Programmable interconnection: connect LEs and
IOEs

– Some FPGAs include other building blocks such as
multipliers and RAMs

135

Digital Design & Computer Architecture Digital Building Blocks

General FPGA Layout

136

Digital Design & Computer Architecture Digital Building Blocks

LE: Logic Element

• Composed of:
– LUTs (lookup tables): perform combinational logic

– Flip-flops: perform sequential logic

– Multiplexers: connect LUTs and flip-flops

137

Digital Design & Computer Architecture Digital Building Blocks

Altera Cyclone IV LE

From Cyclone IV datasheet

138

Digital Design & Computer Architecture Digital Building Blocks

Altera Cyclone IV LE

• The Altera Cyclone IV LE has:
– 1 four-input LUT

– 1 registered output

– 1 combinational output

139

Digital Design & Computer Architecture Digital Building Blocks

LE Configuration Example

Show how to configure a Cyclone IV LE to perform the following
functions:

– X = ABC + ABC

– Y = AB
LUT output

0 0

0 1

1 0

1 1

0

1

0

0

data 2
0

0

0

0

0 0

0 1

1 0

1 1

1

1

1

1

0

0

1

0

X

X

X

X

X

X

X

X

data 1

(A) (B) (C) (X)

data 1

0

A
B
0 Y

data 4data 3

data 2
data 3
data 4

LUT

data 1

0

A
B

C
X

data 2
data 3
data 4

LUT

LUT output
0

1

0

1

0

0

1

0

data 2
0

0

1

1

X

X

X

X

data 1

(A) (B) (Y)

data 4data 3
X

X

X

X

LE 1

LE 2

140

Digital Design & Computer Architecture Digital Building Blocks

Logic Elements Example 1

141

How many Cyclone IV LEs are required to build

 Y = A1  A2  A3  A4  A5  A6

Solution:

 2 LEs

 First computes Y1 = A1  A2  A3  A4 (function of 4 variables)

 Second computes Y = Y1  A5  A6 (function of 3 variables)

Digital Design & Computer Architecture Digital Building Blocks

Logic Elements Example 2

142

How many Cyclone IV LEs are required to build

 32-bit 2:1 multiplexer

Solution:

 32 LEs

 A 1-bit mux is a function of 3 variables and fits in one LE

 A 32-bit mux requires 32 copies

Digital Design & Computer Architecture Digital Building Blocks

Logic Elements Example 3

143

How many Cyclone IV LEs are required to build

 Arbitrary FSM with 2 bits of state, 2 inputs, 3 outputs

Solution:

 5 LEs

 One LE can hold a bit of state and the next state logic, which is a

 function of 4 variables (2 inputs, 2 bits of state)

 One LE can compute a bit of output, which is a function of

 2 variables (2 bits of state)

 Thus 2 LEs are needed for state and 3 LEs for outputs

Digital Design & Computer Architecture Digital Building Blocks

FPGA Design Flow

Using a CAD tool (such as Altera’s Quartus II)

• Enter the design using schematic entry or an HDL

• Simulate the design

• Synthesize design and map it onto FPGA

• Download the configuration onto the FPGA

• Test the design

144

Digital Design & Computer Architecture Digital Building Blocks

Digital Design and Computer Architecture Lecture Notes

© 2021 Sarah Harris and David Harris

These notes may be used and modified for educational and/or
non-commercial purposes so long as the source is attributed.

About these Notes

145

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145

