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Appendix C :: Topics

• C Basics
• Functions
• Operators
• Control Flow
• Loops
• Arrays & Strings
• Structures
• Memory
• Pointers
• Dynamic Memory Allocation
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Overview

• C programming language developed at Bell Labs 
around 1973

• Capable of controlling a computer to do nearly 
anything, including directly interacting with the 
hardware

• Suitable for generating high performance code

• Relatively easy to use

• Available from supercomputers to microcontrollers

• Closely related to other important languages 
including C++, C#, Objective C, Java, Arduino
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C is Libertarian

• Lets you do just about anything

• Interacts directly with the hardware

• Does NOT protect you from your own 
stupidity

• Assumes YOU know the size of arrays and 
variables

• Unless sandboxed, can write ANYWHERE in 
memory
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Example

// factorial.c

// David_Harris@hmc.edu 22 October 2019

int fact(int n) {

 if (n <= 1) return 1;

 else return n*fact(n-1);

}

void main(void) {

 int result;

 result = fact(4);

}
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Steps to C Programming

• Write code

• Compile code

• Execute code

• Debug code
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Comments

• Single-line comments begin with “//” and continue to 
the end of the line.
x += 2; //This is a single-line comment.

• Multi-line comments begin with “/*” end with “*/”.
/* You can hide or disable a section of code such as this block 
with a multi-line comment 
 x = bob ? x : y;
 y -= 5;
*/

• Always start code with the file name, your name, email, 
and date.  This gives you copyright ownership & helps 
the next programmer track you down.
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Constants, Defines, or Macros

• Constants are named using the #define directive
#define MAXGUESSES 5 
#define PI 3.14159

• The # indicates that this line in the program will 
be handled by the preprocessor.

• Before compilation, the preprocessor replaces 
each occurrence of the identifier MAXGUESSES in 
the program with 5.

• By convention, #define lines are located at the top 
of the file and identifiers are written in all capital 
letters. 
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Global and Local Variables

• Global variables are declared outside of any 
function 

– Accessible from all functions

– Often lead to hard-to-debug code

– Should be avoided, especially in large programs

• Local variables are declared inside a function

– Only accessible in that function

– Should be your preferred choice
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Primitive Data Types
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Integer Sizes

• Integer sizes in C may vary with the machine

– int may be 16 or 32 bits

– long may be 32 or 64 bits

– Best to use sized types if size truly matters

– But their names are a bit cumbersome

– #include <stdint.h>

• Signed:  int16_t, int32_t, int64_t

• Unsigned: uint16_t, uint32_t, uint64_t
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ASCII Table

https://commons.wikimedia.org/wiki/File:ASCII-Table.svg
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Functions

• A function may take some inputs and may return at most 
one output

• The type of the inputs is declared in the function 
declaration

• Functions pass variables by value not reference
• Curly braces {} enclose the body of the function, which may 

contain zero or more statements
• The type of returned value is declared in the function 

declaration
• The return statement indicates the value that the function 

should return to its caller
• A function must be either declared BEFORE it is used or a 

function prototype declared BEFORE it is used
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Function Example

// Return the sum of the three input variables

int sum3(int a, int b, int c) { 

  int result = a + b + c; 

  return result;

}
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Function Prototypes

// sum3example.c

// David_Harris@hmc.edu 22 October 2019

////////////////////////////////

// Prototypes

////////////////////////////////

int sum3(int, int, int); // needed because sum3 is called before declared

////////////////////////////////

// main

////////////////////////////////

void main(void) {

  int answer;

  answer = sum3(6, 7, 8);

}

 

////////////////////////////////

// other functions

// prototype not needed if these were moved before main

////////////////////////////////

int sum3(int a, int b, int c) {

  int result = a + b + c; 

  return result;

}
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Prototypes are Sometimes Unavoidable

// Prototypes needed for f1 and/or f2 because they

// can’t both be declared before each other

int f1(int);

int f2(int);

int f1(int n) {

  return f2(n-1) + 1;

} 

int f2(int n) {

  return f1(n-1)*2;

}

void main(void) {

  int answer;

  answer = f1(5);

}
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Includes

• The function prototypes for the standard libraries 
are included at the top of a file with the #include 
directive:
   #include <stdio.h> 

   #include <math.h> 

• Your own function prototypes (or anything else 
you want to include) is done with quotes instead 
of brackets for relative or absolute path:
e.g., #include "other/myFuncs.h" 
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Boolean (True/False) in C

• A variable or expression is considered FALSE if its 
value is 0

• A variable is considered TRUE if it has any other value

– 1, 42, and -1 are all TRUE for C

• Logical operators assign FALSE as 0 and TRUE as 1
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Operators and Precedence
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Operators Continued
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Operators Continued
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Operators Continued
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Examples

int a = 42;

int b = 0x15;  // hexadecimal; = 21 in decimal

char c = 0b00001010; // binary; = 10 in decimal

char d = !c;   // 0, because c was nonzero

char e = ~c;   // 0b11110101 bitwise NOT

char f = e | c;  // 0b11111111 bitwise OR

char g = c << 2;  // 0b00101000 shift left by 2

int h = (a > b);  // 1 because a is greater than b

int i = (a > b)&&(c != e); // 1 because both are TRUE

int j = (a > b) ? a : b; // 42 because a > b

int k = sizeof(a);  // 4 on most computers

g &= c;   // 0b00001000 bitwise AND
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Control Flow Statements
if

if (expression)
  statement; 

if/else
if (expression)
  statement1; 
else
  statement2;

switch/case
switch (variable) {
  case (expression1): statement1; break;
  case (expression2): statement2; break;
  case (expression3): statement3; break;
  default: statement4;
} 

Don’t forget “break” or “default”
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If example

if (n <= 1) return 1;
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Compound Statements

• When a statement has more than one line, enclose it in {}

if (answer == 42) {

  ultimateQuestion = 1;

  hitchhikersGuide = 1;

}
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If/else example

if (n <= 1) return 1;

else        return fact(n-1);
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Switch/case example
switch (state) {

  case (0): if (ta) state = 0; else state = 1; break;

  case (1): state = 2; break;

  case (2): if (tb) state = 2; else state = 3; break;

  case (3): state = 0; break;

  default:  state = 0;

} 
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Loops

while
while (condition)
  statement;

do/while
do {
  statement;
} while (condition); 

for
for (initialization; condition; loop operation)
  statement;
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While example

int fact(int n) {

  int result = 1;

  while (n > 1) {

    result = result * n; // or write result *= n;

    n = n – 1;           // or write n--

  }

  return result;

}

// Alternative while loop is shorter but less clear

int fact(int n) {

  int result = 1;

  while (n > 1) result *= n--;  

  return result;

}
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Do/while example

int fact(int n) {

  int result = 1;

  do {

    result *= n;

  } while (n-- > 1);

  return result;

}

• Do always executes the statement at least once.
• Longer and not preferred for this example
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For example
int fact(int n) {

  int result = 1;

  int i;

  for (i=1; i <= n; i++) 

    result *= i;

  return result;

}

• First do initialization (i = 1)
• Then check condition (i<=n)

• If satisfied, do body (result *= i)
• Then do loop operation (i++)

• Then repeat from checking condition
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Data Types: Arrays

• Array contains multiple elements
 float accel[3];

• The elements are numbered from 0 to N−1, where 
N is the length of the array

• Initialize your arrays. 
– An uninitialized array can contain anything

• Arrays can be multidimensional
 #define NUMSTUDENTS 120

 #define NUMLABS 11

 int grades[NUMSTUDENTS][NUMLABS];
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Array Example

#include <math.h>

double mag(double v[3]) {

  return sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);

}
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Data Types: Strings

• A string is an array of characters

• Last entry is zero to indicate end (”NULL terminated”)
char name[20] = "BOB";

• Stored as:

 name[0] = 66; // ASCII value for B

 name[1] = 79; // ASCII value for O

 name[2] = 66; // ASCII value for B

 name[3] = 0;   // NULL termination

 other entries are junk, ignored
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Examples: String Handling

#define MAXLEN 80

int strlen(char str[]) {

  int len=0;

  while (str[len] && len < MAXLEN) len++;

  return len;

}

void strcpy(char dest[], char src[]) {

  int i = 0;

  do { 

    dest[i] = src[i];

  } while (src[i++] && i < MAXLEN);

}
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Examples: Using Strings

#include <string.h>

#define MAXLEN 80

void main(void) {

  char name[80];

  int len;

  char c;

  strcpy(name, "BOB"); // copy BOB into name

  len = strlen(name);  // len = 3

  c = name[1];         // c = 'O' (79)

}
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Structures

• Store a collection of related information

• General format:

struct name {

  type1 element1;

  type2 element2;

  ... 

}; 
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Structures

struct contact {
  char name[30];
  int age;
  float height; // in meters
};

struct contact c1;
strcpy(c1.name, "Ben Bitdiddle”);
c1.age = 20;
c1.height = 1.82; 
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Typedef

• If you’re using lots of the same structure, you can 
shorten your typing by using typedef.

• typedef type name;

typedef struct contact { 

  char name[30];

  int age;

  float height; // in meters 

} contact; // defines contact as shorthand for "struct contact”

contact c1; // now we can declare the variable as type contact 
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Structure Examples

typedef struct point {
  int x;
  int y;
} point;

point p1;
p1.x = 42; p1.y = 9;

typedef struct rect {
  point ll;
  point ur;
  int color;
} rect;

rect r1;
r1.color = 1;
r1.ll = p1;
r1.ur.x = r1.ll.x + width;
r1.ur.y = r1.ll.y + height;
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Memory

• Variables are stored in memory

• Each primitive data type has a size

– char  1 byte

– short  at least 2 bytes

– long  at least 4 bytes, 8 on some 64-bit computers

– int  at least 2 bytes, 4 on most 32 & 64-bit computers

– float  4 bytes

– double  8 bytes

• Arrays & structs stored in multiple consecutive locations
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Sizeof

• Sizeof operator returns size of a datatype

char c;

double d;

point p;

rect r;

int s1 = sizeof c;  // s1 = 1

int s2 = sizeof(d); // s2 = 8

int s3 = sizeof(p); // s3 = 4 + 4 = 8

int s4 = sizeof(r); // s4 = 8 + 8 + 4 = 20
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Memory Example: Array
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Memory Example: Structure
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Pointers

• A pointer is an address in memory

• Pointer variables are declared with * and a data type 
to which the pointer points
int salary1, salary2; 

int *ptr; // a pointer to an integer

• & returns address of a variable
salary1 = 98500; // suppose this is at address 100 in memory

ptr = &salary1; // ptr contains 100 (the address of salary1)

• * dereferences a pointer (finds value it points to)
salary2 = *ptr + 1000; // salary2 gets 99500
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Arrays and Pointers

• An array in C is viewed as the address of the zeroth 
element

• Equivalent to a pointer to the beginning of the array
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Pointer Example

Now add:
int ary[4]; // suppose at addresses 0x101C, 0x1020, 0x1024, 0x1028
int a = 37, b;
int *ptr;
int i;

Address Data Var. Name

0x103C x

0x1038 x

0x1034 x

0x1030 x

0x102C x

0x1028 x

0x1024 x

0x1020 x

0x101C x

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x
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Pointer Example

Now add:
int ary[4]; // suppose at addresses 0x101C, 0x1020, 0x1024, 0x1028
int a = 37, b;
int *ptr;
int i;

Address Data Var. Name

0x103C x

0x1038 x

0x1034 x

0x1030 x

0x102C x

0x1028 x ary[3]

0x1024 x ary[2]

0x1020 x ary[1]

0x101C x ary[0]

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x
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Pointer Example

Now add:
int ary[4]; // suppose at addresses 0x101C, 0x1020, 0x1024, 0x1028
int a = 37, b; // suppose at addresses 0x102C, 0x1030
int *ptr;
int i;

Address Data Var. Name

0x103C x

0x1038 x

0x1034 x

0x1030 x b

0x102C 37 a

0x1028 x ary[3]

0x1024 x ary[2]

0x1020 x ary[1]

0x101C x ary[0]

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x
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Pointer Example

Now add:
int ary[4]; // suppose at addresses 0x101C, 0x1020, 0x1024, 0x1028
int a = 37, b; // suppose at addresses 0x102C, 0x1030
int *ptr;  // suppose ptr is at address 0x1034, initially undefined
int i;

Address Data Var. Name

0x103C x

0x1038 x

0x1034 x ptr

0x1030 x b

0x102C 37 a

0x1028 x ary[3]

0x1024 x ary[2]

0x1020 x ary[1]

0x101C x ary[0]

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x
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Pointer Example

Now add:
int ary[4]; // suppose at addresses 0x101C, 0x1020, 0x1024, 0x1028
int a = 37, b; // suppose at addresses 0x102C, 0x1030
int *ptr;  // suppose ptr is at address 0x1034, initially undefined
int i;

Address Data Var. Name

0x103C x

0x1038 x i

0x1034 x ptr

0x1030 x b

0x102C 37 a

0x1028 x ary[3]

0x1024 x ary[2]

0x1020 x ary[1]

0x101C x ary[0]

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x
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Pointer Example

Now add:
int ary[4]; // suppose at addresses 0x101C, 0x1020, 0x1024, 0x1028
int a = 37, b; // suppose at addresses 0x102C, 0x1030
int *ptr;  // suppose ptr is at address 0x1034, initially undefined
int i;

for (i=0; i<3; i++) ary[i] = i*i;
ptr = &a;
b = *ptr;
*ptr = 3;
ptr = ary;
ptr[1] = b;
*(ptr+2) = 7;
ary[4] = 1;
*(ptr+5) = 2;

Address Data Var. Name

0x103C x

0x1038 x i

0x1034 x ptr

0x1030 x b

0x102C 37 a

0x1028 x ary[3]

0x1024 x ary[2]

0x1020 x ary[1]

0x101C x ary[0]

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x
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Pointer Example

Now add:
int ary[4]; // suppose at addresses 0x101C, 0x1020, 0x1024, 0x1028
int a = 37, b; // suppose at addresses 0x102C, 0x1030
int *ptr;  // suppose ptr is at address 0x1034, initially undefined
int i;

for (i=0; i<3; i++) ary[i] = i*i; // Note: ary[3] not changed
ptr = &a;
b = *ptr;
*ptr = 3;
ptr = ary;
ptr[1] = b;
*(ptr+2) = 7;
ary[4] = 1;
*(ptr+5) = 2;

Address Data Var. Name

0x103C x

0x1038 3 i

0x1034 x ptr

0x1030 x b

0x102C 37 a

0x1028 x ary[3]

0x1024 4 ary[2]

0x1020 1 ary[1]

0x101C 0 ary[0]

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x

63



Digital Design & Computer Architecture Digital Building Blocks

Pointer Example

Now add:
int ary[4]; // suppose at addresses 0x101C, 0x1020, 0x1024, 0x1028
int a = 37, b; // suppose at addresses 0x102C, 0x1030
int *ptr;  // suppose ptr is at address 0x1034, initially undefined
int i;

for (i=0; i<3; i++) ary[i] = i*i;
ptr = &a;     // ptr = 0x102C
b = *ptr;
*ptr = 3;
ptr = ary;
ptr[1] = b;
*(ptr+2) = 7;
ary[4] = 1;
*(ptr+5) = 2;

Address Data Var. Name

0x103C x

0x1038 3 i

0x1034 0x102C ptr

0x1030 x b

0x102C 37 a

0x1028 x ary[3]

0x1024 4 ary[2]

0x1020 1 ary[1]

0x101C 0 ary[0]

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x
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Pointer Example

Now add:
int ary[4]; // suppose at addresses 0x101C, 0x1020, 0x1024, 0x1028
int a = 37, b; // suppose at addresses 0x102C, 0x1030
int *ptr;  // suppose ptr is at address 0x1034, initially undefined
int i;

for (i=0; i<3; i++) ary[i] = i*i;
ptr = &a;     // ptr = 0x102C
b = *ptr;     // dereference pointer, b = 37
*ptr = 3;
ptr = ary;
ptr[1] = b;
*(ptr+2) = 7;
ary[4] = 1;
*(ptr+5) = 2;

Address Data Var. Name

0x103C x

0x1038 3 i

0x1034 0x102C ptr

0x1030 37 b

0x102C 37 a

0x1028 x ary[3]

0x1024 4 ary[2]

0x1020 1 ary[1]

0x101C 0 ary[0]

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x
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Pointer Example

Now add:
int ary[4]; // suppose at addresses 0x101C, 0x1020, 0x1024, 0x1028
int a = 37, b; // suppose at addresses 0x102C, 0x1030
int *ptr;  // suppose ptr is at address 0x1034, initially undefined
int i;

for (i=0; i<3; i++) ary[i] = i*i;
ptr = &a;     // ptr = 0x102C
b = *ptr;     // dereference pointer, b = 37
*ptr = 3;     // a = 3
ptr = ary;
ptr[1] = b;
*(ptr+2) = 7;
ary[4] = 1;
*(ptr+5) = 2;

Address Data Var. Name

0x103C x

0x1038 3 i

0x1034 0x102C ptr

0x1030 37 b

0x102C 3 a

0x1028 x ary[3]

0x1024 4 ary[2]

0x1020 1 ary[1]

0x101C 0 ary[0]

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x
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Pointer Example

Now add:
int ary[4]; // suppose at addresses 0x101C, 0x1020, 0x1024, 0x1028
int a = 37, b; // suppose at addresses 0x102C, 0x1030
int *ptr;  // suppose ptr is at address 0x1034, initially undefined
int i;

for (i=0; i<3; i++) ary[i] = i*i;
ptr = &a;     // ptr = 0x102C
b = *ptr;     // dereference pointer, b = 37
*ptr = 3;     // a = 3
ptr = ary;    // ptr = 0x101C
ptr[1] = b;
*(ptr+2) = 7;
ary[4] = 1;
*(ptr+5) = 2;

Address Data Var. Name

0x103C x

0x1038 3 i

0x1034 0x101C ptr

0x1030 37 b

0x102C 3 a

0x1028 x ary[3]

0x1024 4 ary[2]

0x1020 1 ary[1]

0x101C 0 ary[0]

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x
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Pointer Example

Now add:
int ary[4]; // suppose at addresses 0x101C, 0x1020, 0x1024, 0x1028
int a = 37, b; // suppose at addresses 0x102C, 0x1030
int *ptr;  // suppose ptr is at address 0x1034, initially undefined
int i;

for (i=0; i<3; i++) ary[i] = i*i;
ptr = &a;     // ptr = 0x102C
b = *ptr;     // dereference pointer, b = 37
*ptr = 3;     // a = 3
ptr = ary;    // ptr = 0x101C
ptr[1] = b;   // ary[1] = 37
*(ptr+2) = 7;
ary[4] = 1;
*(ptr+5) = 2;

Address Data Var. Name

0x103C x

0x1038 3 i

0x1034 0x101C ptr

0x1030 37 b

0x102C 3 a

0x1028 x ary[3]

0x1024 4 ary[2]

0x1020 37 ary[1]

0x101C 0 ary[0]

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x
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Pointer Example

Now add:
int ary[4]; // suppose at addresses 0x101C, 0x1020, 0x1024, 0x1028
int a = 37, b; // suppose at addresses 0x102C, 0x1030
int *ptr;  // suppose ptr is at address 0x1034, initially undefined
int i;

for (i=0; i<3; i++) ary[i] = i*i;
ptr = &a;     // ptr = 0x102C
b = *ptr;     // dereference pointer, b = 37
*ptr = 3;     // a = 3
ptr = ary;    // ptr = 0x101C
ptr[1] = b;   // ary[1] = 37
*(ptr+2) = 7; // ary[2] = 7, note offset is in int sizes, not bytes
ary[4] = 1;
*(ptr+5) = 2;

Address Data Var. Name

0x103C x

0x1038 3 i

0x1034 0x101C ptr

0x1030 37 b

0x102C 3 a

0x1028 x ary[3]

0x1024 7 ary[2]

0x1020 37 ary[1]

0x101C 0 ary[0]

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x
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Pointer Example

Now add:
int ary[4]; // suppose at addresses 0x101C, 0x1020, 0x1024, 0x1028
int a = 37, b; // suppose at addresses 0x102C, 0x1030
int *ptr;  // suppose ptr is at address 0x1034, initially undefined
int i;

for (i=0; i<3; i++) ary[i] = i*i;
ptr = &a;     // ptr = 0x102C
b = *ptr;     // dereference pointer, b = 37
*ptr = 3;     // a = 3
ptr = ary;    // ptr = 0x101C
ptr[1] = b;   // ary[1] = 37
*(ptr+2) = 7; // ary[2] = 7, note offset is in int sizes, not bytes
ary[4] = 1;   // a = 1, BAD: trash variable past end of array
*(ptr+5) = 2;

Address Data Var. Name

0x103C x

0x1038 3 i

0x1034 0x101C ptr

0x1030 37 b

0x102C 1 a

0x1028 x ary[3]

0x1024 7 ary[2]

0x1020 37 ary[1]

0x101C 0 ary[0]

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x
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Pointer Example

Now add:
int ary[4]; // suppose at addresses 0x101C, 0x1020, 0x1024, 0x1028
int a = 37, b; // suppose at addresses 0x102C, 0x1030
int *ptr;  // suppose ptr is at address 0x1034, initially undefined
int i;

for (i=0; i<3; i++) ary[i] = i*i;
ptr = &a;     // ptr = 0x102C
b = *ptr;     // dereference pointer, b = 37
*ptr = 3;     // a = 3
ptr = ary;    // ptr = 0x101C
ptr[1] = b;   // ary[1] = 37
*(ptr+2) = 7; // ary[2] = 7, note offset is in int sizes, not bytes
ary[4] = 1;   // a = 1, BAD: trash variable past end of array
*(ptr+5) = 2; // b = 2, BAD: trash variable past end of array

Address Data Var. Name

0x103C x

0x1038 3 i

0x1034 0x101C ptr

0x1030 2 b

0x102C 1 a

0x1028 x ary[3]

0x1024 7 ary[2]

0x1020 37 ary[1]

0x101C 0 ary[0]

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x
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Another Example

#include <stdio.h>

int main (void)
{
  char age = 30;
  char *p;
  p = &age;
  printf("age = %d\n", age);
  printf("p = %p\n", p);
  printf("*p = %d\n", *p);
  printf("sizeof(age) = %ld\n", sizeof(age));
  printf("sizeof(p) = %ld\n", sizeof(p));
  *p = 40;
  printf("*p = %d\n", *p);
  printf("age = %d\n", age);
  return 0;
}

age = 30
          p = 0x7ffee311e82b
         *p = 30
sizeof(age) = 1
  sizeof(p) = 8
         *p = 40
        age = 40

Program OutputC Code
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Another Example

#include <stdio.h>

int main (void)
{
  char age = 30;
  char *p;
  p = &age;
  printf("age = %d\n", age);
  printf("p = %p\n", p);
  printf("*p = %d\n", *p);
  printf("sizeof(age) = %ld\n", sizeof(age));
  printf("sizeof(p) = %ld\n", sizeof(p));
  *p = 40;
  printf("*p = %d\n", *p);
  printf("age = %d\n", age);
  return 0;
}

age = 30
          p = 0x7ffee311e82b
         *p = 30
sizeof(age) = 1
  sizeof(p) = 8
         *p = 40
        age = 40

Program OutputC Code
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Pointers and Structures

rect *rptr; // Let rptr know it’s pointing to a rect 
rptr = &r1; // Have rptr point at r1

(*rptr).color = 3;  // Change r1.color to 3
rptr->color = 4;    // Change r1.color to 4

// Use dot “.” when you are using the structure name.
// Arrow “->” (member access operator) is preferred when you are using the 
pointer.

Address Data Var. Name

0x103C x

0x1038 3 i

0x1034 0x101C ptr

0x1030 2 b

0x102C 1 a

0x1028 x ary[3]

0x1024 7 ary[2]

0x1020 37 ary[1]

0x101C 0 ary[0]

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x
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Passing Structures to Functions

Complex data structures and arrays are normally passed to C 
programs by address rather than copied; it’s more efficient.

void createRect(int xl, int yl, int width, int height, int color, rect *r) {
  r->ll.x = x1; r->ll.y = yl; 
  r->ur.x = xl + width; r->ur.y = yl + height;
  r->color = color;
}

int main(void) {
  rect r1;
  createRect(3, 5, 10, 20, 1, &r1);
}
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Multidimensional Arrays

• Stored in consecutive addresses

– last dimension first

double field[2][3][3];

Address0 Entry

0x1068 field[1][2][2]

0x1060 field[1][2][1]

0x1068 field[1][2][0]

0x1060 field[1][1][2]

0x1068 field[1][1][1]

0x1060 field[1][1][0]

0x1068 field[1][0][2]

0x1060 field[1][0][1]

0x1068 field[1][0][0]

0x1060 field[0][2][2]

0x1068 field[0][2][1]

0x1060 field[0][2][0]

0x1068 field[0][1][2]

0x1060 field[0][1][1]

0x1058 field[0][1][0]

0x1050 field[0][0][2]

0x1048 field[0][0][1]

0x1040 field[0][0][0]
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Complex Structures in Memory

typedef struct foo {

  double d[4][5];

  unsigned short s[16];

} foo;

foo z[10];

int s5 = sizeof(z[0]);

// 8*4*5 + 2*16 = 192 = 0xC0

int s5 = sizeof(z); 

// 10*192 = 1920 = 0x780

Address Entry

0x277E z[9].s[15]

.. …

0x217E z[1][s[15]

.. …

0x20C0 z[1].d[0][0]

0x20BE z[0].s[15]

… …

0x20A2 z[0].s[1]

0x20A0 z[0].s[0]

0x2098 z[0].d[3][4]

… …

0x2008 z[0].d[0][1]

0x2000 z[0].d[0][0]
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Memory Allocation

• malloc returns a pointer to allocated memory of a 
certain number of bytes.

• free frees this memory.

• These functions are declared in stdlib

• int *ary = (int*)malloc(10*sizeof(int));
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Example: Variable Sized Arrays

• In standard C, multidimensional array sizes must be 
declared at compile time.

• Treat variable-sized M row x N column array as 1-
dimensional array of M x N entries
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Variable Dimension Matrix Example

#include <stdlib.h> // for malloc

double* newMatrix(int m, int n) {
  double *mat;

  mat = (double*)malloc(m*n*sizeof(double));
  return mat;
}

double* newIdentityMatrix(int n) {
  double *mat = newMatrix(n, n);
  int i, j;

  for (i=0; i<n; i++) 
    for (j=0; j<n; j++)
      mat[j+i*n] = (i==j);
  return mat;
}
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Variable Dimension Matrix Example

void scaleMatrix(double *mat, double *scaled, int m, int n, double c) {

  int i, j;

  for (i=0; i<m; i++) 

    for (j=0; j<n; j++)

      scaled[j+i*n] = mat[j+i*n]*c;

}

int main(void) {

  double *m1, *m2;

  m1 = newIdentityMatrix(3);

  m2 = newMatrix(3, 3);

  scaleMatrix(m1, m2, 3, 3, 10);

  free(m1);

}
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