
Appendix C:

C Programming

Digital Design &

Computer Architecture
Sarah Harris & David Harris

Digital Design & Computer Architecture Digital Building Blocks

Appendix C :: Topics

• C Basics
• Functions
• Operators
• Control Flow
• Loops
• Arrays & Strings
• Structures
• Memory
• Pointers
• Dynamic Memory Allocation

2

Digital Design & Computer Architecture Digital Building Blocks

Overview

• C programming language developed at Bell Labs
around 1973

• Capable of controlling a computer to do nearly
anything, including directly interacting with the
hardware

• Suitable for generating high performance code

• Relatively easy to use

• Available from supercomputers to microcontrollers

• Closely related to other important languages
including C++, C#, Objective C, Java, Arduino

3

Digital Design & Computer Architecture Digital Building Blocks

C is Libertarian

• Lets you do just about anything

• Interacts directly with the hardware

• Does NOT protect you from your own
stupidity

• Assumes YOU know the size of arrays and
variables

• Unless sandboxed, can write ANYWHERE in
memory

4

Digital Design & Computer Architecture Digital Building Blocks

Example

// factorial.c

// David_Harris@hmc.edu 22 October 2019

int fact(int n) {

 if (n <= 1) return 1;

 else return n*fact(n-1);

}

void main(void) {

 int result;

 result = fact(4);

}

5

mailto:David_Harris@hmc.edu

Digital Design & Computer Architecture Digital Building Blocks

Steps to C Programming

• Write code

• Compile code

• Execute code

• Debug code

6

Appendix C: C Programming

C Basics

Digital Design & Computer Architecture Digital Building Blocks

Comments

• Single-line comments begin with “//” and continue to
the end of the line.
x += 2; //This is a single-line comment.

• Multi-line comments begin with “/*” end with “*/”.
/* You can hide or disable a section of code such as this block
with a multi-line comment
 x = bob ? x : y;
 y -= 5;
*/

• Always start code with the file name, your name, email,
and date. This gives you copyright ownership & helps
the next programmer track you down.

8

Digital Design & Computer Architecture Digital Building Blocks

Constants, Defines, or Macros

• Constants are named using the #define directive
#define MAXGUESSES 5
#define PI 3.14159

• The # indicates that this line in the program will
be handled by the preprocessor.

• Before compilation, the preprocessor replaces
each occurrence of the identifier MAXGUESSES in
the program with 5.

• By convention, #define lines are located at the top
of the file and identifiers are written in all capital
letters.

9

Digital Design & Computer Architecture Digital Building Blocks

Global and Local Variables

• Global variables are declared outside of any
function

– Accessible from all functions

– Often lead to hard-to-debug code

– Should be avoided, especially in large programs

• Local variables are declared inside a function

– Only accessible in that function

– Should be your preferred choice

10

Digital Design & Computer Architecture Digital Building Blocks

Primitive Data Types

11

Digital Design & Computer Architecture Digital Building Blocks

Integer Sizes

• Integer sizes in C may vary with the machine

– int may be 16 or 32 bits

– long may be 32 or 64 bits

– Best to use sized types if size truly matters

– But their names are a bit cumbersome

– #include <stdint.h>

• Signed: int16_t, int32_t, int64_t

• Unsigned: uint16_t, uint32_t, uint64_t

12

Digital Design & Computer Architecture Digital Building Blocks

ASCII Table

https://commons.wikimedia.org/wiki/File:ASCII-Table.svg

13

Appendix C: C Programming

Functions

Digital Design & Computer Architecture Digital Building Blocks

Functions

• A function may take some inputs and may return at most
one output

• The type of the inputs is declared in the function
declaration

• Functions pass variables by value not reference
• Curly braces {} enclose the body of the function, which may

contain zero or more statements
• The type of returned value is declared in the function

declaration
• The return statement indicates the value that the function

should return to its caller
• A function must be either declared BEFORE it is used or a

function prototype declared BEFORE it is used

15

Digital Design & Computer Architecture Digital Building Blocks

Function Example

// Return the sum of the three input variables

int sum3(int a, int b, int c) {

 int result = a + b + c;

 return result;

}

16

Digital Design & Computer Architecture Digital Building Blocks

Function Prototypes

// sum3example.c

// David_Harris@hmc.edu 22 October 2019

////////////////////////////////

// Prototypes

////////////////////////////////

int sum3(int, int, int); // needed because sum3 is called before declared

////////////////////////////////

// main

////////////////////////////////

void main(void) {

 int answer;

 answer = sum3(6, 7, 8);

}

////////////////////////////////

// other functions

// prototype not needed if these were moved before main

////////////////////////////////

int sum3(int a, int b, int c) {

 int result = a + b + c;

 return result;

}

17

mailto:David_Harris@hmc.edu

Digital Design & Computer Architecture Digital Building Blocks

Prototypes are Sometimes Unavoidable

// Prototypes needed for f1 and/or f2 because they

// can’t both be declared before each other

int f1(int);

int f2(int);

int f1(int n) {

 return f2(n-1) + 1;

}

int f2(int n) {

 return f1(n-1)*2;

}

void main(void) {

 int answer;

 answer = f1(5);

}

18

Digital Design & Computer Architecture Digital Building Blocks

Includes

• The function prototypes for the standard libraries
are included at the top of a file with the #include
directive:
 #include <stdio.h>

 #include <math.h>

• Your own function prototypes (or anything else
you want to include) is done with quotes instead
of brackets for relative or absolute path:
e.g., #include "other/myFuncs.h"

19

Appendix C: C Programming

Operators

Digital Design & Computer Architecture Digital Building Blocks

Boolean (True/False) in C

• A variable or expression is considered FALSE if its
value is 0

• A variable is considered TRUE if it has any other value

– 1, 42, and -1 are all TRUE for C

• Logical operators assign FALSE as 0 and TRUE as 1

21

Digital Design & Computer Architecture Digital Building Blocks

Operators and Precedence

22

Digital Design & Computer Architecture Digital Building Blocks

Operators Continued

23

Digital Design & Computer Architecture Digital Building Blocks

Operators Continued

24

Digital Design & Computer Architecture Digital Building Blocks

Operators Continued

25

Digital Design & Computer Architecture Digital Building Blocks

Examples

int a = 42;

int b = 0x15; // hexadecimal; = 21 in decimal

char c = 0b00001010; // binary; = 10 in decimal

char d = !c; // 0, because c was nonzero

char e = ~c; // 0b11110101 bitwise NOT

char f = e | c; // 0b11111111 bitwise OR

char g = c << 2; // 0b00101000 shift left by 2

int h = (a > b); // 1 because a is greater than b

int i = (a > b)&&(c != e); // 1 because both are TRUE

int j = (a > b) ? a : b; // 42 because a > b

int k = sizeof(a); // 4 on most computers

g &= c; // 0b00001000 bitwise AND

26

Appendix C: C Programming

Control Flow

Digital Design & Computer Architecture Digital Building Blocks

Control Flow Statements
if

if (expression)
 statement;

if/else
if (expression)
 statement1;
else
 statement2;

switch/case
switch (variable) {
 case (expression1): statement1; break;
 case (expression2): statement2; break;
 case (expression3): statement3; break;
 default: statement4;
}

Don’t forget “break” or “default”

28

Digital Design & Computer Architecture Digital Building Blocks

If example

if (n <= 1) return 1;

29

Digital Design & Computer Architecture Digital Building Blocks

Compound Statements

• When a statement has more than one line, enclose it in {}

if (answer == 42) {

 ultimateQuestion = 1;

 hitchhikersGuide = 1;

}

30

Digital Design & Computer Architecture Digital Building Blocks

If/else example

if (n <= 1) return 1;

else return fact(n-1);

31

Digital Design & Computer Architecture Digital Building Blocks

Switch/case example
switch (state) {

 case (0): if (ta) state = 0; else state = 1; break;

 case (1): state = 2; break;

 case (2): if (tb) state = 2; else state = 3; break;

 case (3): state = 0; break;

 default: state = 0;

}

32

Appendix C: C Programming

Loops

Digital Design & Computer Architecture Digital Building Blocks

Loops

while
while (condition)
 statement;

do/while
do {
 statement;
} while (condition);

for
for (initialization; condition; loop operation)
 statement;

34

Digital Design & Computer Architecture Digital Building Blocks

While example

int fact(int n) {

 int result = 1;

 while (n > 1) {

 result = result * n; // or write result *= n;

 n = n – 1; // or write n--

 }

 return result;

}

// Alternative while loop is shorter but less clear

int fact(int n) {

 int result = 1;

 while (n > 1) result *= n--;

 return result;

}

35

Digital Design & Computer Architecture Digital Building Blocks

Do/while example

int fact(int n) {

 int result = 1;

 do {

 result *= n;

 } while (n-- > 1);

 return result;

}

• Do always executes the statement at least once.
• Longer and not preferred for this example

36

Digital Design & Computer Architecture Digital Building Blocks

For example
int fact(int n) {

 int result = 1;

 int i;

 for (i=1; i <= n; i++)

 result *= i;

 return result;

}

• First do initialization (i = 1)
• Then check condition (i<=n)

• If satisfied, do body (result *= i)
• Then do loop operation (i++)

• Then repeat from checking condition

37

Appendix C: C Programming

Arrays & Strings

Digital Design & Computer Architecture Digital Building Blocks

Data Types: Arrays

• Array contains multiple elements
 float accel[3];

• The elements are numbered from 0 to N−1, where
N is the length of the array

• Initialize your arrays.
– An uninitialized array can contain anything

• Arrays can be multidimensional
 #define NUMSTUDENTS 120

 #define NUMLABS 11

 int grades[NUMSTUDENTS][NUMLABS];

39

Digital Design & Computer Architecture Digital Building Blocks

Array Example

#include <math.h>

double mag(double v[3]) {

 return sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);

}

40

Digital Design & Computer Architecture Digital Building Blocks

Data Types: Strings

• A string is an array of characters

• Last entry is zero to indicate end (”NULL terminated”)
char name[20] = "BOB";

• Stored as:

 name[0] = 66; // ASCII value for B

 name[1] = 79; // ASCII value for O

 name[2] = 66; // ASCII value for B

 name[3] = 0; // NULL termination

 other entries are junk, ignored

41

Digital Design & Computer Architecture Digital Building Blocks

Examples: String Handling

#define MAXLEN 80

int strlen(char str[]) {

 int len=0;

 while (str[len] && len < MAXLEN) len++;

 return len;

}

void strcpy(char dest[], char src[]) {

 int i = 0;

 do {

 dest[i] = src[i];

 } while (src[i++] && i < MAXLEN);

}

42

Digital Design & Computer Architecture Digital Building Blocks

Examples: Using Strings

#include <string.h>

#define MAXLEN 80

void main(void) {

 char name[80];

 int len;

 char c;

 strcpy(name, "BOB"); // copy BOB into name

 len = strlen(name); // len = 3

 c = name[1]; // c = 'O' (79)

}

43

Appendix C: C Programming

Structures

Digital Design & Computer Architecture Digital Building Blocks

Structures

• Store a collection of related information

• General format:

struct name {

 type1 element1;

 type2 element2;

 ...

};

45

Digital Design & Computer Architecture Digital Building Blocks

Structures

struct contact {
 char name[30];
 int age;
 float height; // in meters
};

struct contact c1;
strcpy(c1.name, "Ben Bitdiddle”);
c1.age = 20;
c1.height = 1.82;

46

Digital Design & Computer Architecture Digital Building Blocks

Typedef

• If you’re using lots of the same structure, you can
shorten your typing by using typedef.

• typedef type name;

typedef struct contact {

 char name[30];

 int age;

 float height; // in meters

} contact; // defines contact as shorthand for "struct contact”

contact c1; // now we can declare the variable as type contact

47

Digital Design & Computer Architecture Digital Building Blocks

Structure Examples

typedef struct point {
 int x;
 int y;
} point;

point p1;
p1.x = 42; p1.y = 9;

typedef struct rect {
 point ll;
 point ur;
 int color;
} rect;

rect r1;
r1.color = 1;
r1.ll = p1;
r1.ur.x = r1.ll.x + width;
r1.ur.y = r1.ll.y + height;

48

Appendix C: C Programming

Memory

Digital Design & Computer Architecture Digital Building Blocks

Memory

• Variables are stored in memory

• Each primitive data type has a size

– char 1 byte

– short at least 2 bytes

– long at least 4 bytes, 8 on some 64-bit computers

– int at least 2 bytes, 4 on most 32 & 64-bit computers

– float 4 bytes

– double 8 bytes

• Arrays & structs stored in multiple consecutive locations

50

Digital Design & Computer Architecture Digital Building Blocks

Sizeof

• Sizeof operator returns size of a datatype

char c;

double d;

point p;

rect r;

int s1 = sizeof c; // s1 = 1

int s2 = sizeof(d); // s2 = 8

int s3 = sizeof(p); // s3 = 4 + 4 = 8

int s4 = sizeof(r); // s4 = 8 + 8 + 4 = 20

51

Digital Design & Computer Architecture Digital Building Blocks

Memory Example: Array

52

Digital Design & Computer Architecture Digital Building Blocks

Memory Example: Structure

53

Appendix C: C Programming

Pointers

Digital Design & Computer Architecture Digital Building Blocks

Pointers

• A pointer is an address in memory

• Pointer variables are declared with * and a data type
to which the pointer points
int salary1, salary2;

int *ptr; // a pointer to an integer

• & returns address of a variable
salary1 = 98500; // suppose this is at address 100 in memory

ptr = &salary1; // ptr contains 100 (the address of salary1)

• * dereferences a pointer (finds value it points to)
salary2 = *ptr + 1000; // salary2 gets 99500

55

Digital Design & Computer Architecture Digital Building Blocks

Arrays and Pointers

• An array in C is viewed as the address of the zeroth
element

• Equivalent to a pointer to the beginning of the array

56

Digital Design & Computer Architecture Digital Building Blocks

Pointer Example

Now add:
int ary[4]; // suppose at addresses 0x101C, 0x1020, 0x1024, 0x1028
int a = 37, b;
int *ptr;
int i;

Address Data Var. Name

0x103C x

0x1038 x

0x1034 x

0x1030 x

0x102C x

0x1028 x

0x1024 x

0x1020 x

0x101C x

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x

57

Digital Design & Computer Architecture Digital Building Blocks

Pointer Example

Now add:
int ary[4]; // suppose at addresses 0x101C, 0x1020, 0x1024, 0x1028
int a = 37, b;
int *ptr;
int i;

Address Data Var. Name

0x103C x

0x1038 x

0x1034 x

0x1030 x

0x102C x

0x1028 x ary[3]

0x1024 x ary[2]

0x1020 x ary[1]

0x101C x ary[0]

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x

58

Digital Design & Computer Architecture Digital Building Blocks

Pointer Example

Now add:
int ary[4]; // suppose at addresses 0x101C, 0x1020, 0x1024, 0x1028
int a = 37, b; // suppose at addresses 0x102C, 0x1030
int *ptr;
int i;

Address Data Var. Name

0x103C x

0x1038 x

0x1034 x

0x1030 x b

0x102C 37 a

0x1028 x ary[3]

0x1024 x ary[2]

0x1020 x ary[1]

0x101C x ary[0]

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x

59

Digital Design & Computer Architecture Digital Building Blocks

Pointer Example

Now add:
int ary[4]; // suppose at addresses 0x101C, 0x1020, 0x1024, 0x1028
int a = 37, b; // suppose at addresses 0x102C, 0x1030
int *ptr; // suppose ptr is at address 0x1034, initially undefined
int i;

Address Data Var. Name

0x103C x

0x1038 x

0x1034 x ptr

0x1030 x b

0x102C 37 a

0x1028 x ary[3]

0x1024 x ary[2]

0x1020 x ary[1]

0x101C x ary[0]

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x

60

Digital Design & Computer Architecture Digital Building Blocks

Pointer Example

Now add:
int ary[4]; // suppose at addresses 0x101C, 0x1020, 0x1024, 0x1028
int a = 37, b; // suppose at addresses 0x102C, 0x1030
int *ptr; // suppose ptr is at address 0x1034, initially undefined
int i;

Address Data Var. Name

0x103C x

0x1038 x i

0x1034 x ptr

0x1030 x b

0x102C 37 a

0x1028 x ary[3]

0x1024 x ary[2]

0x1020 x ary[1]

0x101C x ary[0]

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x

61

Digital Design & Computer Architecture Digital Building Blocks

Pointer Example

Now add:
int ary[4]; // suppose at addresses 0x101C, 0x1020, 0x1024, 0x1028
int a = 37, b; // suppose at addresses 0x102C, 0x1030
int *ptr; // suppose ptr is at address 0x1034, initially undefined
int i;

for (i=0; i<3; i++) ary[i] = i*i;
ptr = &a;
b = *ptr;
*ptr = 3;
ptr = ary;
ptr[1] = b;
*(ptr+2) = 7;
ary[4] = 1;
*(ptr+5) = 2;

Address Data Var. Name

0x103C x

0x1038 x i

0x1034 x ptr

0x1030 x b

0x102C 37 a

0x1028 x ary[3]

0x1024 x ary[2]

0x1020 x ary[1]

0x101C x ary[0]

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x

62

Digital Design & Computer Architecture Digital Building Blocks

Pointer Example

Now add:
int ary[4]; // suppose at addresses 0x101C, 0x1020, 0x1024, 0x1028
int a = 37, b; // suppose at addresses 0x102C, 0x1030
int *ptr; // suppose ptr is at address 0x1034, initially undefined
int i;

for (i=0; i<3; i++) ary[i] = i*i; // Note: ary[3] not changed
ptr = &a;
b = *ptr;
*ptr = 3;
ptr = ary;
ptr[1] = b;
*(ptr+2) = 7;
ary[4] = 1;
*(ptr+5) = 2;

Address Data Var. Name

0x103C x

0x1038 3 i

0x1034 x ptr

0x1030 x b

0x102C 37 a

0x1028 x ary[3]

0x1024 4 ary[2]

0x1020 1 ary[1]

0x101C 0 ary[0]

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x

63

Digital Design & Computer Architecture Digital Building Blocks

Pointer Example

Now add:
int ary[4]; // suppose at addresses 0x101C, 0x1020, 0x1024, 0x1028
int a = 37, b; // suppose at addresses 0x102C, 0x1030
int *ptr; // suppose ptr is at address 0x1034, initially undefined
int i;

for (i=0; i<3; i++) ary[i] = i*i;
ptr = &a; // ptr = 0x102C
b = *ptr;
*ptr = 3;
ptr = ary;
ptr[1] = b;
*(ptr+2) = 7;
ary[4] = 1;
*(ptr+5) = 2;

Address Data Var. Name

0x103C x

0x1038 3 i

0x1034 0x102C ptr

0x1030 x b

0x102C 37 a

0x1028 x ary[3]

0x1024 4 ary[2]

0x1020 1 ary[1]

0x101C 0 ary[0]

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x

64

Digital Design & Computer Architecture Digital Building Blocks

Pointer Example

Now add:
int ary[4]; // suppose at addresses 0x101C, 0x1020, 0x1024, 0x1028
int a = 37, b; // suppose at addresses 0x102C, 0x1030
int *ptr; // suppose ptr is at address 0x1034, initially undefined
int i;

for (i=0; i<3; i++) ary[i] = i*i;
ptr = &a; // ptr = 0x102C
b = *ptr; // dereference pointer, b = 37
*ptr = 3;
ptr = ary;
ptr[1] = b;
*(ptr+2) = 7;
ary[4] = 1;
*(ptr+5) = 2;

Address Data Var. Name

0x103C x

0x1038 3 i

0x1034 0x102C ptr

0x1030 37 b

0x102C 37 a

0x1028 x ary[3]

0x1024 4 ary[2]

0x1020 1 ary[1]

0x101C 0 ary[0]

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x

65

Digital Design & Computer Architecture Digital Building Blocks

Pointer Example

Now add:
int ary[4]; // suppose at addresses 0x101C, 0x1020, 0x1024, 0x1028
int a = 37, b; // suppose at addresses 0x102C, 0x1030
int *ptr; // suppose ptr is at address 0x1034, initially undefined
int i;

for (i=0; i<3; i++) ary[i] = i*i;
ptr = &a; // ptr = 0x102C
b = *ptr; // dereference pointer, b = 37
*ptr = 3; // a = 3
ptr = ary;
ptr[1] = b;
*(ptr+2) = 7;
ary[4] = 1;
*(ptr+5) = 2;

Address Data Var. Name

0x103C x

0x1038 3 i

0x1034 0x102C ptr

0x1030 37 b

0x102C 3 a

0x1028 x ary[3]

0x1024 4 ary[2]

0x1020 1 ary[1]

0x101C 0 ary[0]

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x

66

Digital Design & Computer Architecture Digital Building Blocks

Pointer Example

Now add:
int ary[4]; // suppose at addresses 0x101C, 0x1020, 0x1024, 0x1028
int a = 37, b; // suppose at addresses 0x102C, 0x1030
int *ptr; // suppose ptr is at address 0x1034, initially undefined
int i;

for (i=0; i<3; i++) ary[i] = i*i;
ptr = &a; // ptr = 0x102C
b = *ptr; // dereference pointer, b = 37
*ptr = 3; // a = 3
ptr = ary; // ptr = 0x101C
ptr[1] = b;
*(ptr+2) = 7;
ary[4] = 1;
*(ptr+5) = 2;

Address Data Var. Name

0x103C x

0x1038 3 i

0x1034 0x101C ptr

0x1030 37 b

0x102C 3 a

0x1028 x ary[3]

0x1024 4 ary[2]

0x1020 1 ary[1]

0x101C 0 ary[0]

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x

67

Digital Design & Computer Architecture Digital Building Blocks

Pointer Example

Now add:
int ary[4]; // suppose at addresses 0x101C, 0x1020, 0x1024, 0x1028
int a = 37, b; // suppose at addresses 0x102C, 0x1030
int *ptr; // suppose ptr is at address 0x1034, initially undefined
int i;

for (i=0; i<3; i++) ary[i] = i*i;
ptr = &a; // ptr = 0x102C
b = *ptr; // dereference pointer, b = 37
*ptr = 3; // a = 3
ptr = ary; // ptr = 0x101C
ptr[1] = b; // ary[1] = 37
*(ptr+2) = 7;
ary[4] = 1;
*(ptr+5) = 2;

Address Data Var. Name

0x103C x

0x1038 3 i

0x1034 0x101C ptr

0x1030 37 b

0x102C 3 a

0x1028 x ary[3]

0x1024 4 ary[2]

0x1020 37 ary[1]

0x101C 0 ary[0]

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x

68

Digital Design & Computer Architecture Digital Building Blocks

Pointer Example

Now add:
int ary[4]; // suppose at addresses 0x101C, 0x1020, 0x1024, 0x1028
int a = 37, b; // suppose at addresses 0x102C, 0x1030
int *ptr; // suppose ptr is at address 0x1034, initially undefined
int i;

for (i=0; i<3; i++) ary[i] = i*i;
ptr = &a; // ptr = 0x102C
b = *ptr; // dereference pointer, b = 37
*ptr = 3; // a = 3
ptr = ary; // ptr = 0x101C
ptr[1] = b; // ary[1] = 37
*(ptr+2) = 7; // ary[2] = 7, note offset is in int sizes, not bytes
ary[4] = 1;
*(ptr+5) = 2;

Address Data Var. Name

0x103C x

0x1038 3 i

0x1034 0x101C ptr

0x1030 37 b

0x102C 3 a

0x1028 x ary[3]

0x1024 7 ary[2]

0x1020 37 ary[1]

0x101C 0 ary[0]

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x

69

Digital Design & Computer Architecture Digital Building Blocks

Pointer Example

Now add:
int ary[4]; // suppose at addresses 0x101C, 0x1020, 0x1024, 0x1028
int a = 37, b; // suppose at addresses 0x102C, 0x1030
int *ptr; // suppose ptr is at address 0x1034, initially undefined
int i;

for (i=0; i<3; i++) ary[i] = i*i;
ptr = &a; // ptr = 0x102C
b = *ptr; // dereference pointer, b = 37
*ptr = 3; // a = 3
ptr = ary; // ptr = 0x101C
ptr[1] = b; // ary[1] = 37
*(ptr+2) = 7; // ary[2] = 7, note offset is in int sizes, not bytes
ary[4] = 1; // a = 1, BAD: trash variable past end of array
*(ptr+5) = 2;

Address Data Var. Name

0x103C x

0x1038 3 i

0x1034 0x101C ptr

0x1030 37 b

0x102C 1 a

0x1028 x ary[3]

0x1024 7 ary[2]

0x1020 37 ary[1]

0x101C 0 ary[0]

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x

70

Digital Design & Computer Architecture Digital Building Blocks

Pointer Example

Now add:
int ary[4]; // suppose at addresses 0x101C, 0x1020, 0x1024, 0x1028
int a = 37, b; // suppose at addresses 0x102C, 0x1030
int *ptr; // suppose ptr is at address 0x1034, initially undefined
int i;

for (i=0; i<3; i++) ary[i] = i*i;
ptr = &a; // ptr = 0x102C
b = *ptr; // dereference pointer, b = 37
*ptr = 3; // a = 3
ptr = ary; // ptr = 0x101C
ptr[1] = b; // ary[1] = 37
*(ptr+2) = 7; // ary[2] = 7, note offset is in int sizes, not bytes
ary[4] = 1; // a = 1, BAD: trash variable past end of array
*(ptr+5) = 2; // b = 2, BAD: trash variable past end of array

Address Data Var. Name

0x103C x

0x1038 3 i

0x1034 0x101C ptr

0x1030 2 b

0x102C 1 a

0x1028 x ary[3]

0x1024 7 ary[2]

0x1020 37 ary[1]

0x101C 0 ary[0]

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x

71

Digital Design & Computer Architecture Digital Building Blocks

Another Example

#include <stdio.h>

int main (void)
{
 char age = 30;
 char *p;
 p = &age;
 printf("age = %d\n", age);
 printf("p = %p\n", p);
 printf("*p = %d\n", *p);
 printf("sizeof(age) = %ld\n", sizeof(age));
 printf("sizeof(p) = %ld\n", sizeof(p));
 *p = 40;
 printf("*p = %d\n", *p);
 printf("age = %d\n", age);
 return 0;
}

age = 30
 p = 0x7ffee311e82b
 *p = 30
sizeof(age) = 1
 sizeof(p) = 8
 *p = 40
 age = 40

Program OutputC Code

72

Digital Design & Computer Architecture Digital Building Blocks

Another Example

#include <stdio.h>

int main (void)
{
 char age = 30;
 char *p;
 p = &age;
 printf("age = %d\n", age);
 printf("p = %p\n", p);
 printf("*p = %d\n", *p);
 printf("sizeof(age) = %ld\n", sizeof(age));
 printf("sizeof(p) = %ld\n", sizeof(p));
 *p = 40;
 printf("*p = %d\n", *p);
 printf("age = %d\n", age);
 return 0;
}

age = 30
 p = 0x7ffee311e82b
 *p = 30
sizeof(age) = 1
 sizeof(p) = 8
 *p = 40
 age = 40

Program OutputC Code

73

Digital Design & Computer Architecture Digital Building Blocks

Pointers and Structures

rect *rptr; // Let rptr know it’s pointing to a rect
rptr = &r1; // Have rptr point at r1

(*rptr).color = 3; // Change r1.color to 3
rptr->color = 4; // Change r1.color to 4

// Use dot “.” when you are using the structure name.
// Arrow “->” (member access operator) is preferred when you are using the
pointer.

Address Data Var. Name

0x103C x

0x1038 3 i

0x1034 0x101C ptr

0x1030 2 b

0x102C 1 a

0x1028 x ary[3]

0x1024 7 ary[2]

0x1020 37 ary[1]

0x101C 0 ary[0]

0x1018 1 r1.color

0x1014 9 + height r1.ur.y

0x1010 42 + width r1.ur.x

0x100C 9 r1.ll.y

0x1008 42 r1.ll.x

0x1004 9 p1.y

0x1000 42 p1.x

74

Appendix C: C Programming

Memory

Odds & Ends

Digital Design & Computer Architecture Digital Building Blocks

Passing Structures to Functions

Complex data structures and arrays are normally passed to C
programs by address rather than copied; it’s more efficient.

void createRect(int xl, int yl, int width, int height, int color, rect *r) {
 r->ll.x = x1; r->ll.y = yl;
 r->ur.x = xl + width; r->ur.y = yl + height;
 r->color = color;
}

int main(void) {
 rect r1;
 createRect(3, 5, 10, 20, 1, &r1);
}

76

Digital Design & Computer Architecture Digital Building Blocks

Multidimensional Arrays

• Stored in consecutive addresses

– last dimension first

double field[2][3][3];

Address0 Entry

0x1068 field[1][2][2]

0x1060 field[1][2][1]

0x1068 field[1][2][0]

0x1060 field[1][1][2]

0x1068 field[1][1][1]

0x1060 field[1][1][0]

0x1068 field[1][0][2]

0x1060 field[1][0][1]

0x1068 field[1][0][0]

0x1060 field[0][2][2]

0x1068 field[0][2][1]

0x1060 field[0][2][0]

0x1068 field[0][1][2]

0x1060 field[0][1][1]

0x1058 field[0][1][0]

0x1050 field[0][0][2]

0x1048 field[0][0][1]

0x1040 field[0][0][0]

77

Digital Design & Computer Architecture Digital Building Blocks

Complex Structures in Memory

typedef struct foo {

 double d[4][5];

 unsigned short s[16];

} foo;

foo z[10];

int s5 = sizeof(z[0]);

// 8*4*5 + 2*16 = 192 = 0xC0

int s5 = sizeof(z);

// 10*192 = 1920 = 0x780

Address Entry

0x277E z[9].s[15]

.. …

0x217E z[1][s[15]

.. …

0x20C0 z[1].d[0][0]

0x20BE z[0].s[15]

… …

0x20A2 z[0].s[1]

0x20A0 z[0].s[0]

0x2098 z[0].d[3][4]

… …

0x2008 z[0].d[0][1]

0x2000 z[0].d[0][0]

78

Appendix C: C Programming

Dynamic

Memory

Allocation

Digital Design & Computer Architecture Digital Building Blocks

Memory Allocation

• malloc returns a pointer to allocated memory of a
certain number of bytes.

• free frees this memory.

• These functions are declared in stdlib

• int *ary = (int*)malloc(10*sizeof(int));

80

Digital Design & Computer Architecture Digital Building Blocks

Example: Variable Sized Arrays

• In standard C, multidimensional array sizes must be
declared at compile time.

• Treat variable-sized M row x N column array as 1-
dimensional array of M x N entries

81

Digital Design & Computer Architecture Digital Building Blocks

Variable Dimension Matrix Example

#include <stdlib.h> // for malloc

double* newMatrix(int m, int n) {
 double *mat;

 mat = (double*)malloc(m*n*sizeof(double));
 return mat;
}

double* newIdentityMatrix(int n) {
 double *mat = newMatrix(n, n);
 int i, j;

 for (i=0; i<n; i++)
 for (j=0; j<n; j++)
 mat[j+i*n] = (i==j);
 return mat;
}

82

Digital Design & Computer Architecture Digital Building Blocks

Variable Dimension Matrix Example

void scaleMatrix(double *mat, double *scaled, int m, int n, double c) {

 int i, j;

 for (i=0; i<m; i++)

 for (j=0; j<n; j++)

 scaled[j+i*n] = mat[j+i*n]*c;

}

int main(void) {

 double *m1, *m2;

 m1 = newIdentityMatrix(3);

 m2 = newMatrix(3, 3);

 scaleMatrix(m1, m2, 3, 3, 10);

 free(m1);

}

83

Digital Design & Computer Architecture Digital Building Blocks

Digital Design and Computer Architecture Lecture Notes

© 2021 Sarah Harris and David Harris

These notes may be used and modified for educational and/or
non-commercial purposes so long as the source is attributed.

About these Notes

84

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84

