

NEIL H. E. WESTE DAVID MONEY HARRIS

Lecture 7: Power

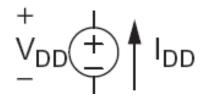
Outline

- Power and Energy
- Dynamic Power
- Static Power

Power and Energy

□ Power is drawn from a voltage source attached to the V_{DD} pin(s) of a chip.

□ Instantaneous Power: P(t) =


D Energy:
$$E =$$

Average Power:

$$P_{\rm avg} =$$

Power in Circuit Elements

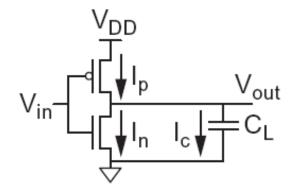
$$P_{VDD}\left(t\right) = I_{DD}\left(t\right)V_{DD}$$

$$P_{R}\left(t\right) = \frac{V_{R}^{2}\left(t\right)}{R} = I_{R}^{2}\left(t\right)R$$

$$E_{C} = \int_{0}^{\infty} I(t)V(t)dt = \int_{0}^{\infty} C \frac{dV}{dt}V(t)dt + \bigvee_{C} \frac{1}{1}C \downarrow_{C} = C dV/dt$$
$$= C \int_{0}^{V_{C}} V(t)dV = \frac{1}{2}CV_{C}^{2}$$

7: Power

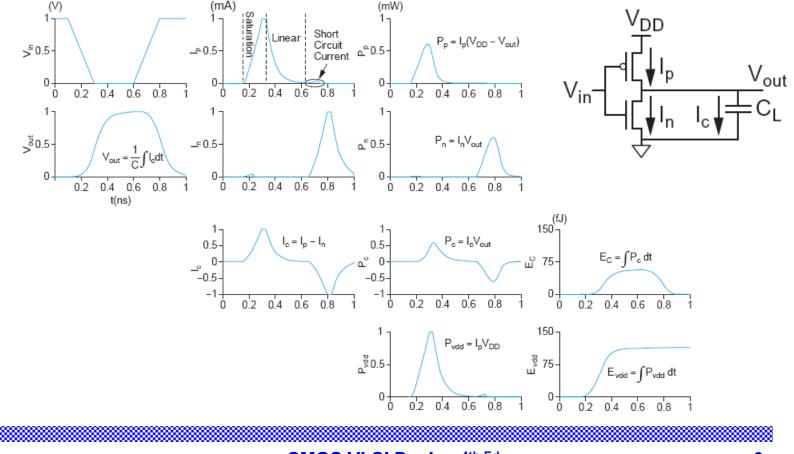
CMOS VLSI Design 4th Ed.


Charging a Capacitor

- When the gate output rises
 - Energy stored in capacitor is

$$E_C = \frac{1}{2} C_L V_{DD}^2$$

- But energy drawn from the supply is


$$E_{VDD} = \int_{0}^{\infty} I(t) V_{DD} dt = \int_{0}^{\infty} C_L \frac{dV}{dt} V_{DD} dt$$
$$= C_L V_{DD} \int_{0}^{V_{DD}} dV = C_L V_{DD}^2$$

- Half the energy from V_{DD} is dissipated in the pMOS transistor as heat, other half stored in capacitor
- ❑ When the gate output falls
 - Energy in capacitor is dumped to GND
 - Dissipated as heat in the nMOS transistor

Switching Waveforms

□ Example: V_{DD} = 1.0 V, C_{L} = 150 fF, f = 1 GHz

Switching Power

$$P_{\text{switching}} = \frac{1}{T} \int_{0}^{T} i_{DD}(t) V_{DD} dt$$
$$= \frac{V_{DD}}{T} \int_{0}^{T} i_{DD}(t) dt$$
$$= \frac{V_{DD}}{T} \left[T f_{\text{sw}} C V_{DD} \right]$$
$$= C V_{DD}^{2} f_{\text{sw}}$$

7: Power

CMOS VLSI Design ^{4th Ed.}

VDD

↓i_{DD}(t)

С

 f_{sw}

Activity Factor

- □ Suppose the system clock frequency = f
- **Let** $f_{sw} = \alpha f$, where $\alpha = activity factor$
 - If the signal is a clock, $\alpha = 1$
 - If the signal switches once per cycle, $\alpha = \frac{1}{2}$

Dynamic power:

$$P_{\rm switching} = \alpha C V_{DD}^2 f$$

Short Circuit Current

- When transistors switch, both nMOS and pMOS networks may be momentarily ON at once
- Leads to a blip of "short circuit" current.
- < 10% of dynamic power if rise/fall times are comparable for input and output</p>
- We will generally ignore this component

Power Dissipation Sources

- $\square P_{total} = P_{dynamic} + P_{static}$
- Dynamic power: P_{dynamic} = P_{switching} + P_{shortcircuit}
 - Switching load capacitances
 - Short-circuit current
- □ Static power: $P_{\text{static}} = (I_{\text{sub}} + I_{\text{gate}} + I_{\text{junct}} + I_{\text{contention}})V_{\text{DD}}$
 - Subthreshold leakage
 - Gate leakage
 - Junction leakage
 - Contention current

Dynamic Power Example

- □ 1 billion transistor chip
 - 50M logic transistors
 - Average width: 12 λ
 - Activity factor = 0.1
 - 950M memory transistors
 - Average width: 4 λ
 - Activity factor = 0.02
 - 1.0 V 65 nm process
 - $C = 1 \text{ fF}/\mu m \text{ (gate)} + 0.8 \text{ fF}/\mu m \text{ (diffusion)}$
- Estimate dynamic power consumption @ 1 GHz. Neglect wire capacitance and short-circuit current.

Solution

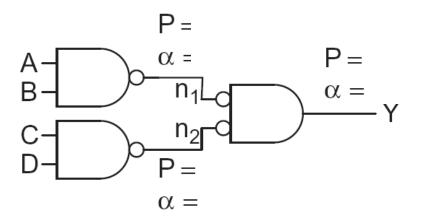
$$C_{\text{logic}} = (50 \times 10^{6})(12\lambda)(0.025\,\mu m \,/\,\lambda)(1.8\,fF \,/\,\mu m) = 27 \text{ nF}$$
$$C_{\text{mem}} = (950 \times 10^{6})(4\lambda)(0.025\,\mu m \,/\,\lambda)(1.8\,fF \,/\,\mu m) = 171 \text{ nF}$$
$$P_{\text{dynamic}} = [0.1C_{\text{logic}} + 0.02C_{\text{mem}}](1.0)^{2}(1.0 \text{ GHz}) = 6.1 \text{ W}$$

Dynamic Power Reduction

$$\square P_{\text{switching}} = \alpha C V_{DD}^{2} f$$

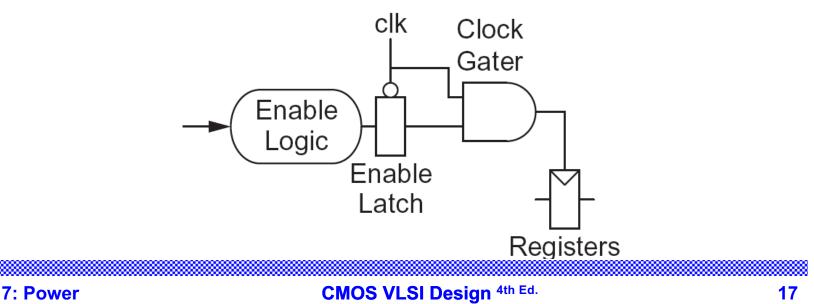
- □ Try to minimize:
 - Activity factor
 - Capacitance
 - Supply voltage
 - Frequency

Activity Factor Estimation


- $\Box \text{ Let } P_i = Prob(node i = 1)$
 - $-\overline{P}_i = 1-P_i$
- $\Box \ \alpha_i = \mathbf{P}_i * \mathbf{P}_i$
- □ Completely random data has P = 0.5 and α = 0.25
- Data is often not completely random
 - e.g. upper bits of 64-bit words representing bank account balances are usually 0
- Data propagating through ANDs and ORs has lower activity factor
 - Depends on design, but typically $\alpha \approx 0.1$

Switching Probability

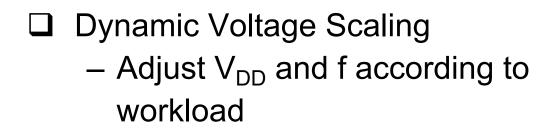
Gate	P _Y
AND2	$P_A P_B$
AND3	$P_{\mathcal{A}}P_{B}P_{C}$
OR2	$1 - \overline{P}_A \overline{P}_B$
NAND2	$1 - P_A P_B$
NOR2	$\overline{P}_{\mathcal{A}}\overline{P}_B$
XOR2	$P_{\mathcal{A}}\overline{P}_{B}+\overline{P}_{\mathcal{A}}P_{B}$

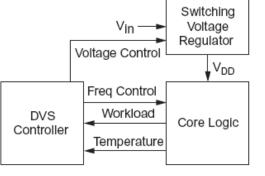

Example

- A 4-input AND is built out of two levels of gates
- Estimate the activity factor at each node if the inputs have P = 0.5

Clock Gating

- The best way to reduce the activity is to turn off the clock to registers in unused blocks
 - Saves clock activity ($\alpha = 1$)
 - Eliminates all switching activity in the block
 - Requires determining if block will be used




Capacitance

- Gate capacitance
 - Fewer stages of logic
 - Small gate sizes
- □ Wire capacitance
 - Good floorplanning to keep communicating blocks close to each other
 - Drive long wires with inverters or buffers rather than complex gates

Voltage / Frequency

- Run each block at the lowest possible voltage and frequency that meets performance requirements
- Voltage Domains
 - Provide separate supplies to different blocks
 - Level converters required when crossing from low to high V_{DD} domains

CMOS VLSI Design ^{4th Ed.}

VDDI

Static Power

- Static power is consumed even when chip is quiescent.
 - Leakage draws power from nominally OFF devices
 - Ratioed circuits burn power in fight between ON transistors

Static Power Example

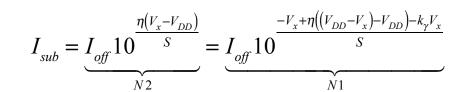
- □ Revisit power estimation for 1 billion transistor chip
- Estimate static power consumption
 - Subthreshold leakage
 - Normal V_t: 100 nA/μm
 - High V_t : 10 nA/ μ m
 - High Vt used in all memories and in 95% of logic gates
 - Gate leakage 5 nA/μm
 - Junction leakage negligible

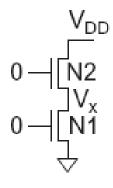
Solution

$$W_{\text{normal-V}_{t}} = (50 \times 10^{6})(12\lambda)(0.025\,\mu\text{m} / \lambda)(0.05) = 0.75 \times 10^{6} \,\mu\text{m}$$
$$W_{\text{high-V}_{t}} = \left[(50 \times 10^{6})(12\lambda)(0.95) + (950 \times 10^{6})(4\lambda) \right] (0.025\,\mu\text{m} / \lambda) = 109.25 \times 10^{6} \,\mu\text{m}$$
$$I_{sub} = \left[W_{\text{normal-V}_{t}} \times 100 \,\text{nA}/\mu\text{m} + W_{\text{high-V}_{t}} \times 10 \,\text{nA}/\mu\text{m} \right] / 2 = 584 \,\text{mA}$$
$$I_{gate} = \left[(W_{\text{normal-V}_{t}} + W_{\text{high-V}_{t}}) \times 5 \,\text{nA}/\mu\text{m} \right] / 2 = 275 \,\text{mA}$$
$$P_{static} = (584 \,\text{mA} + 275 \,\text{mA})(1.0 \,\text{V}) = 859 \,\text{mW}$$

Subthreshold Leakage

 $\Box \quad For V_{ds} > 50 \text{ mV}$


$$I_{sub} \approx I_{off} 10^{\frac{V_{gs} + \eta(V_{ds} - V_{DD}) - k_{\gamma}V_{sb}}{S}}$$


1
$$I_{off}$$
 = leakage at V_{gs} = 0, V_{ds} = V_{DD}

Typical values in 65 nm $I_{off} = 100 \text{ nA/}\mu\text{m} @ V_t = 0.3 \text{ V}$ $I_{off} = 10 \text{ nA/}\mu\text{m} @ V_t = 0.4 \text{ V}$ $I_{off} = 1 \text{ nA/}\mu\text{m} @ V_t = 0.5 \text{ V}$ $\eta = 0.1$ $k_{\gamma} = 0.1$ S = 100 mV/decade

Stack Effect

□ Series OFF transistors have less leakage $-V_x > 0$, so N2 has negative V_{qs}

 $V_{x} = \frac{\eta V_{DD}}{1 + 2\eta + k_{\gamma}}$ $I_{sub} = I_{off} 10^{\frac{-\eta V_{DD} \left(\frac{1 + \eta + k_{\gamma}}{1 + 2\eta + k_{\gamma}}\right)}{S}} \approx I_{off} 10^{\frac{-\eta V_{DD}}{S}}$

Leakage through 2-stack reduces ~10xLeakage through 3-stack reduces further

Leakage Control

□ Leakage and delay trade off

- Aim for low leakage in sleep and low delay in active mode
- □ To reduce leakage:
 - Increase V_t : *multiple* V_t
 - Use low V_t only in critical circuits
 - Increase V_s: *stack effect*
 - Input vector control in sleep
 - Decrease V_b
 - Reverse body bias in sleep
 - Or forward body bias in active mode

Gate Leakage

- □ Extremely strong function of t_{ox} and V_{gs}
 - Negligible for older processes
 - Approaches subthreshold leakage at 65 nm and below in some processes
- □ An order of magnitude less for pMOS than nMOS
- □ Control leakage in the process using t_{ox} > 10.5 Å
 - High-k gate dielectrics help
 - Some processes provide multiple tox
 - e.g. thicker oxide for 3.3 V I/O transistors

Control leakage in circuits by limiting V_{DD}

NAND3 Leakage Example

□ 100 nm process

 $I_{gn} = 6.3 \text{ nA}$ $I_{gp} = 0$

 $I_{offn} = 5.63 \text{ nA}$ $I_{offp} = 9.3 \text{ nA}$

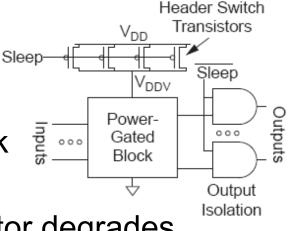
Input State (ABC)	l _{sub}	l _{gate}	I _{total}	V _x	٧ _z
000	0.4	0	0.4	stack effect	stack effect
001	0.7	0	0.7	stack effect	$V_{DD} - V_t$
010	0	1.3	1.3	intermediate	intermediate
011	3.8	0	10.1	$V_{DD} - V_t$	$V_{DD} - V_t$
100	0.7	6.3	7.0	0	stack effect
101	3.8	6.3	10.1	0	$V_{DD} - V_t$
110	5.6	12.6	18.2	0	0
111	28	18.9	46.9	0	0

Data from [Lee03]

С-В-

А

7: Power


CMOS VLSI Design 4th Ed.

Junction Leakage

- □ From reverse-biased p-n junctions
 - Between diffusion and substrate or well
- Ordinary diode leakage is negligible
- □ Band-to-band tunneling (BTBT) can be significant
 - Especially in high-V $_{\rm t}$ transistors where other leakage is small
 - Worst at V_{db} = V_{DD}
- □ Gate-induced drain leakage (GIDL) exacerbates
 - Worst for V_{gd} = - V_{DD} (or more negative)

Power Gating

- Turn OFF power to blocks when they are idle to save leakage
 - Use virtual V_{DD} (V_{DDV})
 - Gate outputs to prevent invalid logic levels to next block

- Voltage drop across sleep transistor degrades performance during normal operation
 - Size the transistor wide enough to minimize impact
- Switching wide sleep transistor costs dynamic power
 Only justified when circuit sleeps long enough