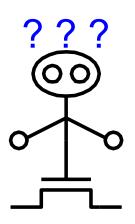


Lecture 6: Logical Effort

NEIL H. E. WESTE DAVID MONEY HARRIS


Outline

- □ Logical Effort
- Delay in a Logic Gate
- Multistage Logic Networks
- Choosing the Best Number of Stages
- Example
- Summary

Introduction

□ Chip designers face a bewildering array of choices

- What is the best circuit topology for a function?
- How many stages of logic give least delay?
- How wide should the transistors be?
- Logical effort is a method to make these decisions
 - Uses a simple model of delay
 - Allows back-of-the-envelope calculations
 - Helps make rapid comparisons between alternatives
 - Emphasizes remarkable symmetries

Example

A[3:0] A[3:0]

4:16 Decode

16

1 Help Ben Bitdiddle design the decoder for a register file.

- Decoder specifications:
 - 16 word register file
 - Each word is 32 bits wide
 - Each bit presents load of 3 unit-sized transistors
 - True and complementary address inputs A[3:0]
 - Each input may drive 10 unit-sized transistors
- Ben needs to decide:
 - How many stages to use?
 - How large should each gate be?
 - How fast can decoder operate?

6: Logical Effort

CMOS VLSI Design ^{4th Ed.}

16 words

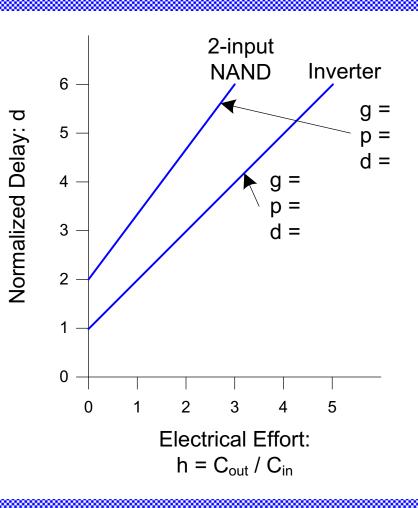
32 bits

Register File

Delay in a Logic Gate

- Express delays in process-independent unit
- Delay has two components: d = f + p
 - *f*: *effort delay* = *gh* (a.k.a. stage effort)
 - Again has two components
 - g: logical effort
 - Measures relative ability of gate to deliver current
 - -g = 1 for inverter
- $\square \quad h: electrical effort = C_{out} / C_{in}$
 - Ratio of output to input capacitance
 - Sometimes called fanout
 - p: parasitic delay
 - Represents delay of gate driving no load
 - Set by internal parasitic capacitance
- 6: Logical Effort

≈ 3 ps in 65 nm process60 ps in 0.6 μm process


 d_{abs}

3RC

T =

Delay Plots

d = f + p= gh + p

6: Logical Effort

Computing Logical Effort

- DEF: Logical effort is the ratio of the input capacitance of a gate to the input capacitance of an inverter delivering the same output current.
- Measure from delay vs. fanout plots
- Or estimate by counting transistor widths

6: Logical Effort

CMOS VLSI Design 4th Ed.

Catalog of Gates

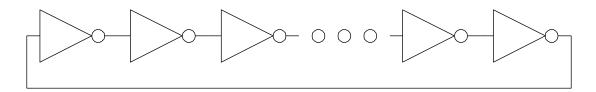
□ Logical effort of common gates

Gate type	Number of inputs				
	1	2	3	4	n
Inverter	1				
NAND		4/3	5/3	6/3	(n+2)/3
NOR		5/3	7/3	9/3	(2n+1)/3
Tristate / mux	2	2	2	2	2
XOR, XNOR		4, 4	6, 12, 6	8, 16, 16, 8	

6: Logical Effort

Catalog of Gates

Parasitic delay of common gates

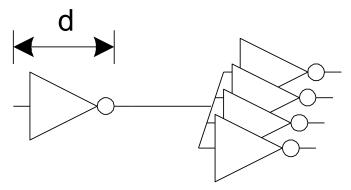

– In multiples of p_{inv} (~1)

Gate type	Number of inputs				
	1	2	3	4	n
Inverter	1				
NAND		2	3	4	n
NOR		2	3	4	n
Tristate / mux	2	4	6	8	2n
XOR, XNOR		4	6	8	

6: Logical Effort

Example: Ring Oscillator

□ Estimate the frequency of an N-stage ring oscillator



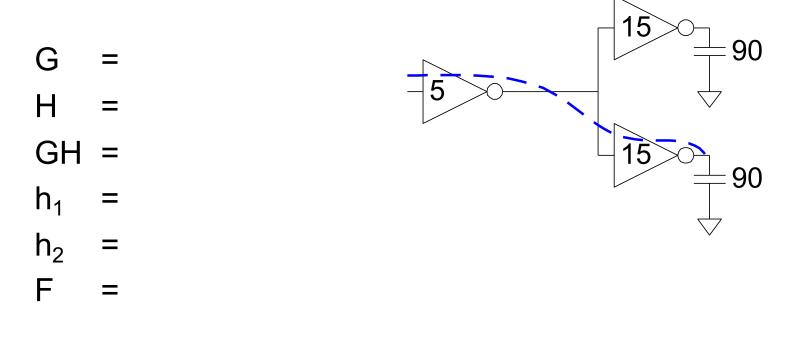
Logical Effort:g =Electrical Effort:h =Parasitic Delay:p =Stage Delay:d =Frequency: $f_{osc} =$

6: Logical Effort

Example: FO4 Inverter

□ Estimate the delay of a fanout-of-4 (FO4) inverter

- Logical Effort: g = Electrical Effort: h = Parasitic Delay: p =
- Stage Delay: d =


Multistage Logic Networks Logical effort generalizes to multistage networks $G = ||g_i|$ Path Logical Effort C_{out-path} \Box Path Electrical Effort H =in-path Path Effort $F = \prod f_i = \prod g_i h_i$: 20 $g_3 = 4/3$ $g_2 = 5/3$ $g_4 = 1$ h₄ = 20/z $g_1 = 1$ $h_1 = x/10$ $h_2 = y/x$ $h_{3} = z/y$ 6: Logical Effort CMOS VLSI Design 4th Ed. 12

Multistage Logic Networks Logical effort generalizes to multistage networks Path Logical Effort $G = [g_i]$ **D** Path Electrical Effort $H = \frac{C_{out-path}}{C_{out-path}}$ in– path Path Effort $F = \prod f_i = \prod g_i h_i$

 $\Box \quad Can we write F = GH?$

Paths that Branch

□ No! Consider paths that branch:

Branching Effort

□ Introduce *branching effort*

- Accounts for branching between stages in path

$$b = \frac{C_{\text{on path}} + C_{\text{off path}}}{C_{\text{on path}}}$$

 $B = \prod b_i$

Note: $\prod h_i = BH$

Now we compute the path effort
 F = GBH

Multistage Delays

- □ Path Effort Delay $D_F = \sum f_i$
- Path Parasitic Delay P = P

$$P = \sum p_i$$

Path Delay

$$D = \sum d_i = D_F + P$$

Designing Fast Circuits

$$D = \sum d_i = D_F + P$$

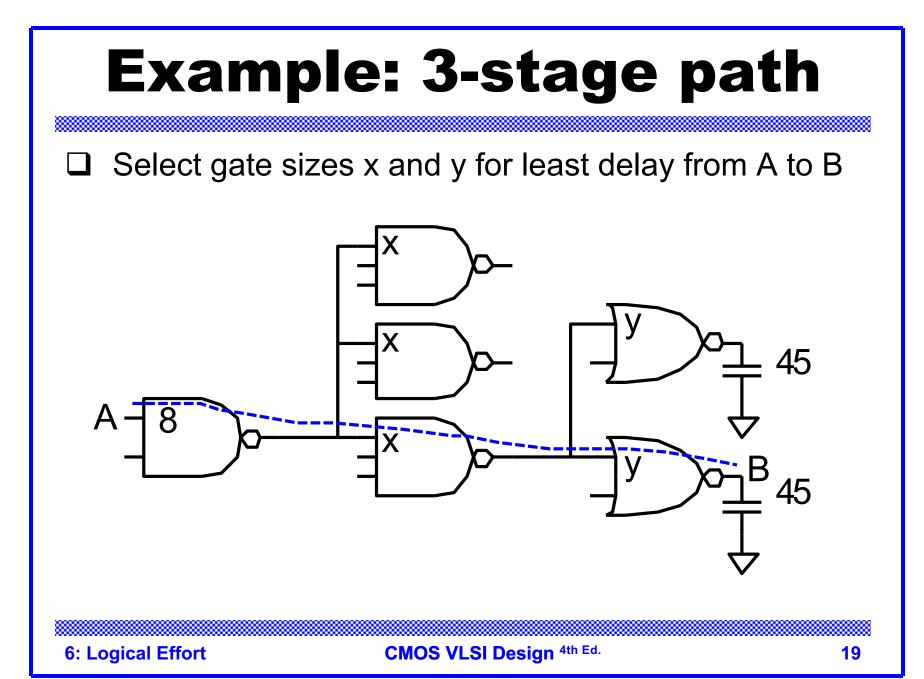
Delay is smallest when each stage bears same effort

$$\hat{f} = g_i h_i = F^{\frac{1}{N}}$$

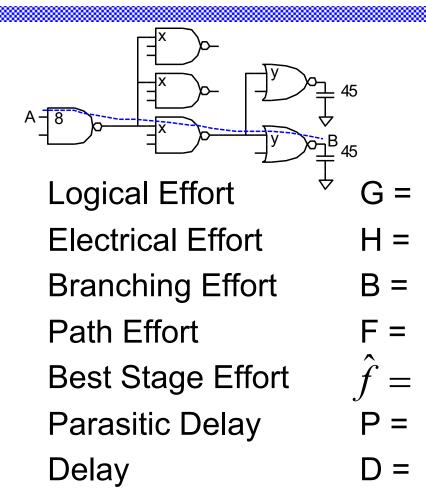
Thus minimum delay of N stage path is

□ This is a key result of logical effort

- Find fastest possible delay
- Doesn't require calculating gate sizes

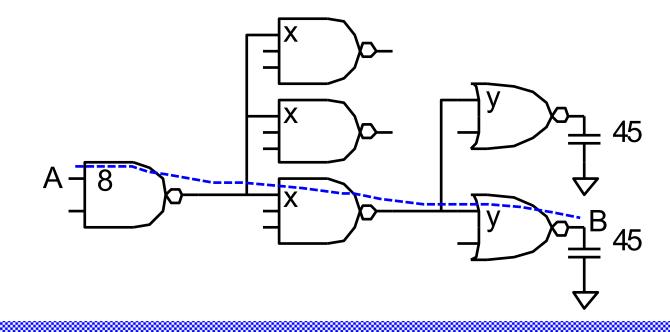

6: Logical Effort

Gate Sizes


How wide should the gates be for least delay?

$$\hat{f} = gh = g \frac{C_{out}}{C_{in}}$$
$$\Rightarrow C_{in_i} = \frac{g_i C_{out}}{\hat{f}}$$

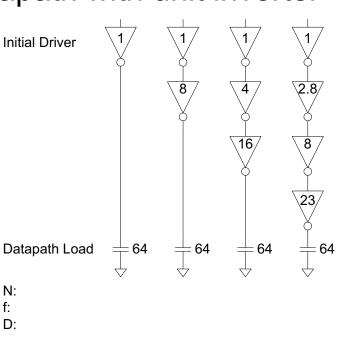
- Working backward, apply capacitance transformation to find input capacitance of each gate given load it drives.
- Check work by verifying input cap spec is met.


Example: 3-stage path

6: Logical Effort

Example: 3-stage path

- Work backward for sizes
 - y =
 - x =



Best Number of Stages

□ How many stages should a path use?

- Minimizing number of stages is not always fastest
- Example: drive 64-bit datapath with unit inverter

D =

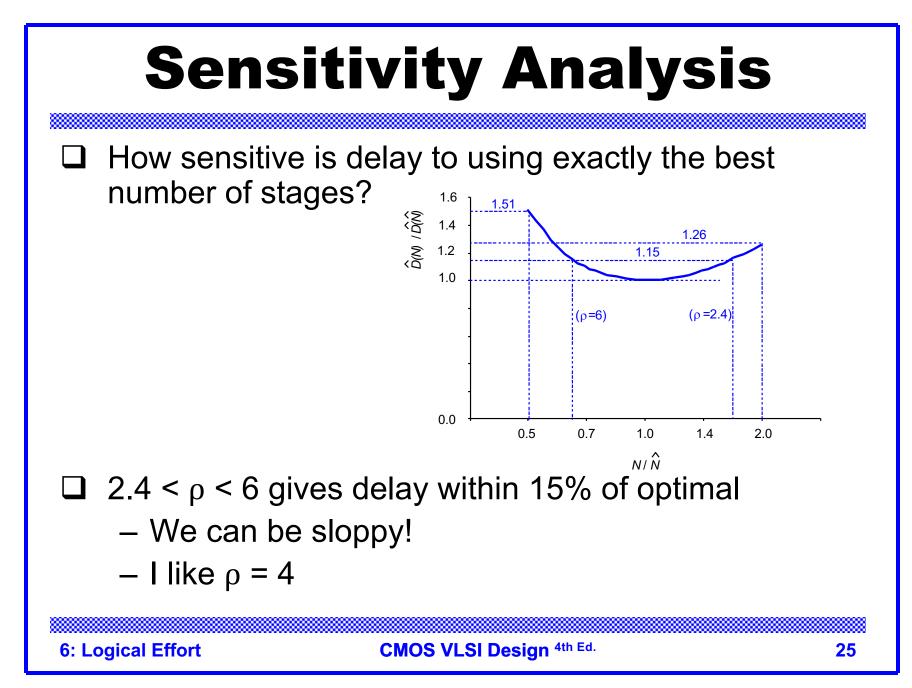
CMOS VLSI Design 4th Ed.

Derivation
Consider adding inverters to end of path
- How many give least delay?

$$D = NF^{\frac{1}{N}} + \sum_{i=1}^{n_1} p_i + (N - n_1) p_{inv}$$

$$\sum_{\substack{n, \text{Stages} \\ n, \text{Stages} \\ \text{Path EffortF}} \longrightarrow 0 = 0$$

$$\frac{\partial D}{\partial N} = -F^{\frac{1}{N}} \ln F^{\frac{1}{N}} + F^{\frac{1}{N}} + p_{inv} = 0$$

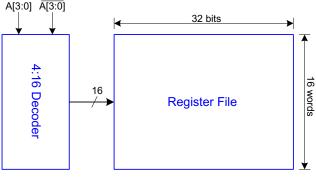

 \Box Define best stage effort $\rho = F^{\frac{1}{N}}$

$$p_{inv} + \rho \left(1 - \ln \rho \right) = 0$$

6: Logical Effort

Best Stage Effort

- $\square p_{inv} + \rho (1 \ln \rho) = 0 \text{ has no closed-form solution}$
- □ Neglecting parasitics ($p_{inv} = 0$), we find $\rho = 2.718$ (e) □ For $p_{inv} = 1$, solve numerically for $\rho = 3.59$



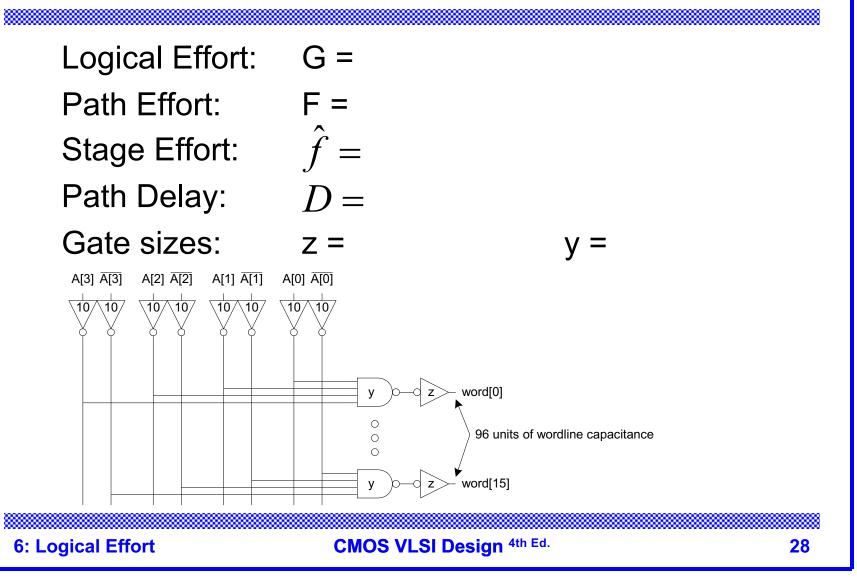
Example, Revisited

Help Ben Bitdiddle design the decoder for a register file.

- Decoder specifications:
 - 16 word register file
 - Each word is 32 bits wide
 - Each bit presents load of 3 unit-sized transistors
 - True and complementary address inputs A[3:0]
 - Each input may drive 10 unit-sized transistors
- Ben needs to decide:
 - How many stages to use?
 - How large should each gate be?
 - How fast can decoder operate?

6: Logical Effort

Number of Stages


Decoder effort is mainly electrical and branching
 Electrical Effort: H =
 Branching Effort: B =

If we neglect logical effort (assume G = 1)
 Path Effort: F =

Number of Stages: N =

Try a -stage design

Gate Sizes & Delay

Comparison

Compare many alternatives with a spreadsheet

D = N(76.8 G)^{1/N} + P

Design	Ν	G	Ρ	D
NOR4	1	3	4	234
NAND4-INV	2	2	5	29.8
NAND2-NOR2	2	20/9	4	30.1
INV-NAND4-INV	3	2	6	22.1
NAND4-INV-INV	4	2	7	21.1
NAND2-NOR2-INV-INV	4	20/9	6	20.5
NAND2-INV-NAND2-INV	4	16/9	6	19.7
INV-NAND2-INV-NAND2-INV	5	16/9	7	20.4
NAND2-INV-NAND2-INV-INV-INV	6	16/9	8	21.6

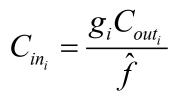
6: Logical Effort

Review of Definitions

Term	Stage	Path
number of stages	1	Ν
logical effort	g	$G = \prod g_i$
electrical effort	$h = \frac{C_{\text{out}}}{C_{\text{in}}}$	$H = \frac{C_{\text{out-path}}}{C_{\text{in-path}}}$
branching effort	$b = \frac{C_{\text{on-path}} + C_{\text{off-path}}}{C_{\text{on-path}}}$	$B = \prod b_i$
effort	f = gh	F = GBH
effort delay	f	$D_F = \sum f_i$
parasitic delay	р	$P = \sum p_i$
delay	d = f + p	$D = \sum d_i = D_F + P$

6: Logical Effort

CMOS VLSI Design 4th Ed.


Method of Logical Effort

- 1) Compute path effort
- 2) Estimate best number of stages
- 3) Sketch path with N stages
- 4) Estimate least delay
- 5) Determine best stage effort
- 6) Find gate sizes

F = GBH

 $N = \log_4 F$

$$D = NF^{\frac{1}{N}} + P$$
$$\hat{f} = F^{\frac{1}{N}}$$

Limits of Logical Effort

- □ Chicken and egg problem
 - Need path to compute G
 - But don't know number of stages without G
- □ Simplistic delay model
 - Neglects input rise time effects
- Interconnect
 - Iteration required in designs with wire
- □ Maximum speed only
 - Not minimum area/power for constrained delay

Summary

□ Logical effort is useful for thinking of delay in circuits

- Numeric logical effort characterizes gates
- NANDs are faster than NORs in CMOS
- Paths are fastest when effort delays are ~4
- Path delay is weakly sensitive to stages, sizes
- But using fewer stages doesn't mean faster paths
- Delay of path is about log₄F FO4 inverter delays
- Inverters and NAND2 best for driving large caps
- □ Provides language for discussing fast circuits
 - But requires practice to master