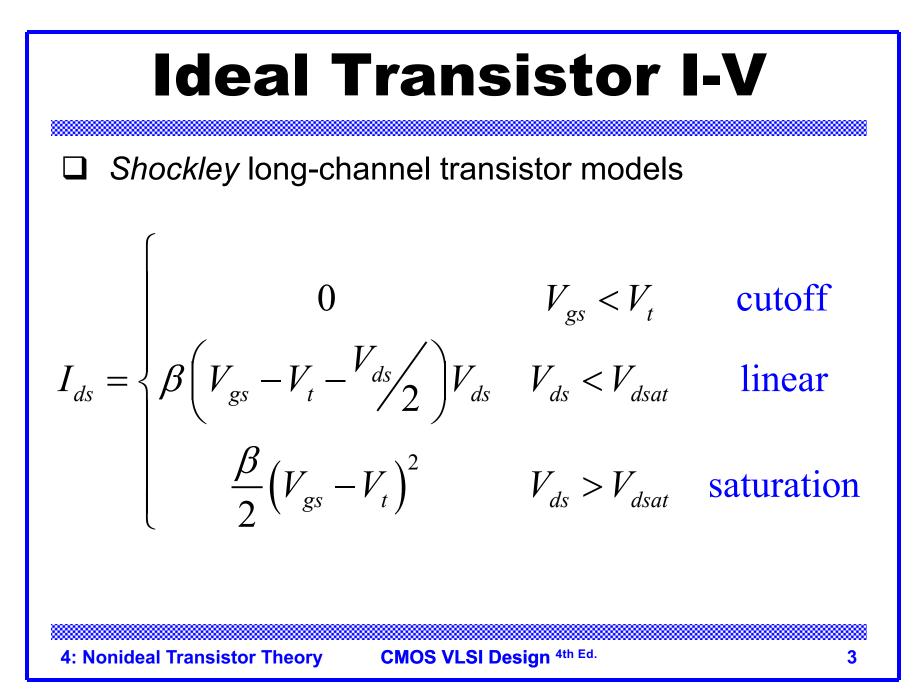
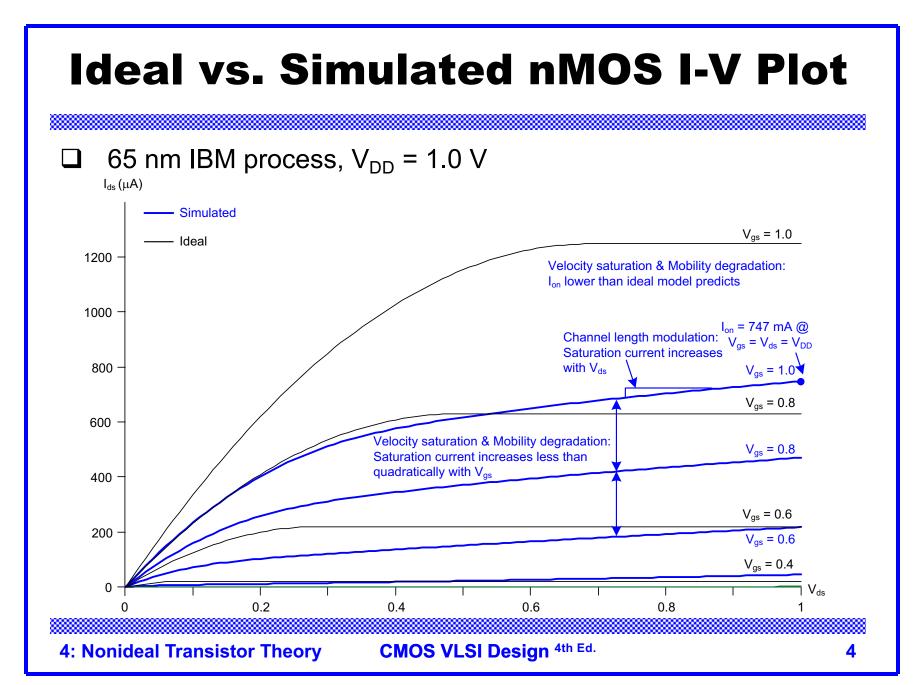


Lecture 4: Nonideal Transistor Theory

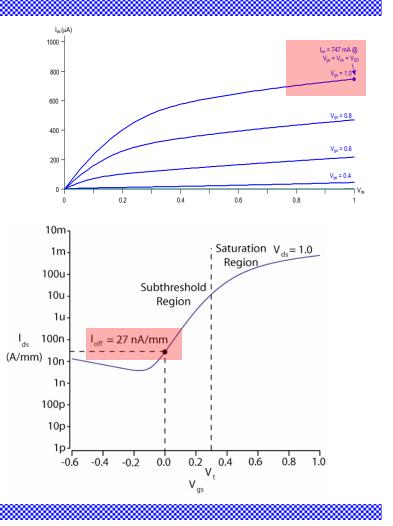

NEIL H. E. WESTE DAVID MONEY HARRIS


Outline

Nonideal Transistor Behavior

- High Field Effects
 - Mobility Degradation
 - Velocity Saturation
- Channel Length Modulation
- Threshold Voltage Effects
 - Body Effect
 - Drain-Induced Barrier Lowering
 - Short Channel Effect
- Leakage
 - Subthreshold Leakage
 - Gate Leakage
 - Junction Leakage

Process and Environmental Variations



ON and OFF Current

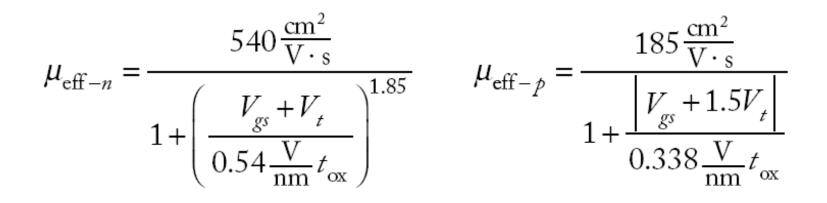
$$\Box I_{on} = I_{ds} @ V_{gs} = V_{ds} = V_{DD}$$
- Saturation

$$\Box \quad \mathbf{I}_{off} = \mathbf{I}_{ds} @ \mathbf{V}_{gs} = 0, \ \mathbf{V}_{ds} = \mathbf{V}_{DD}$$
$$- Cutoff$$

4: Nonideal Transistor Theory

CMOS VLSI Design ^{4th Ed.}

Electric Fields Effects


- □ Vertical electric field: $E_{vert} =$
 - Attracts carriers into channel
 - Long channel: $Q_{channel}$ proportional to E_{vert}
- □ Lateral electric field: $E_{lat} =$
 - Accelerates carriers from drain to source
 - Long channel: v = μE_{lat}

Coffee Cart Analogy

- Tired student runs from VLSI lab to coffee cart
- □ Freshmen are pouring out of the physics lecture hall
- \Box V_{ds} is how long you have been up
 - Your velocity = fatigue × mobility
- \Box V_{gs} is a wind blowing you against the glass (SiO₂) wall
- $\hfill \Box$ At high $V_{gs},$ you are buffeted against the wall
 - Mobility degradation
- $\hfill \hfill \hfill$
 - Velocity saturation
 - Don't confuse this with the saturation region

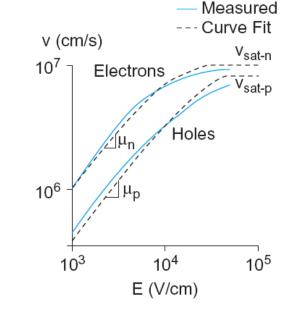
Mobility Degradation

High E_{vert} effectively reduces mobility
 Collisions with oxide interface

CMOS VLSI Design ^{4th Ed.}

Velocity Saturation

□ At high E_{lat}, carrier velocity rolls off


- Carriers scatter off atoms in silicon lattice
- Velocity reaches v_{sat}
 - Electrons: 10⁷ cm/s
 - Holes: 8 x 10⁶ cm/s

 $E < E_c$ E_c

 $E \ge E_c$

Better model

 $\frac{\mu_{\rm eff}E}{1+\frac{E}{E_c}}$

4: Nonideal Transistor Theory

CMOS VLSI Design 4th Ed.

Vel Sat I-V Effects

 $\hfill\square$ Ideal transistor ON current increases with $V_{DD}{}^2$

$$I_{ds} = \mu C_{ox} \frac{W}{L} \frac{\left(V_{gs} - V_{t}\right)^{2}}{2} = \frac{\beta}{2} \left(V_{gs} - V_{t}\right)^{2}$$

□ Velocity-saturated ON current increases with V_{DD}

$$I_{ds} = C_{ox}W(V_{gs} - V_t)v_{sat}$$

Real transistors are partially velocity saturated

- Approximate with α -power law model
- I_{ds} scales with $V_{DD}{}^{\alpha}$
- $-1 < \alpha < 2$ determined empirically (≈ 1.3 for 65 nm)

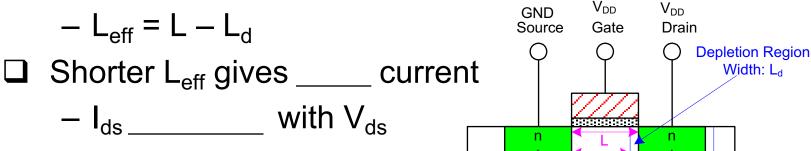
α -Power Model

$$I_{ds} = \begin{cases} 0 & V_{gs} < V_t & \text{cutoff} \\ I_{dsat} \frac{V_{ds}}{V_{dsat}} & V_{ds} < V_{dsat} & \text{linear} \\ I_{dsat} & V_{ds} > V_{dsat} & \text{saturation} \\ & & & \\$$

$$I_{dsat} = P_c \frac{\beta}{2} \left(V_{gs} - V_t \right)^{\alpha}$$
$$V_{dsat} = P_v \left(V_{gs} - V_t \right)^{\alpha/2}$$

4: Nonideal Transistor Theory

CMOS VLSI Design ^{4th Ed.}


_ V_{ds}

Channel Length Modulation

□ Reverse-biased p-n junctions form a *depletion region*

- Region between n and p with no carriers
- Width of depletion L_d region grows with reverse bias

CMOS VLSI Design 4th Ed.

Even in saturation

4: Nonideal Transistor Theory

12

^p GND

bulk Si

Chan Length Mod I-V

$$I_{ds} = \frac{\beta}{2} \left(V_{gs} - V_t \right)^2 \left(1 + \lambda V_{ds} \right)$$

- \Box λ = channel length modulation coefficient
 - not feature size
 - Empirically fit to I-V characteristics

Threshold Voltage Effects

- \Box V_t is V_{gs} for which the channel starts to invert
- Ideal models assumed V_t is constant
- Really depends (weakly) on almost everything else:
 - Body voltage: Body Effect
 - Drain voltage: Drain-Induced Barrier Lowering
 - Channel length: Short Channel Effect

Body Effect

- Body is a fourth transistor terminal
- V_{sb} affects the charge required to invert the channel
 - Increasing V_s or decreasing V_b increases V_t

$$V_t = V_{t0} + \gamma \left(\sqrt{\phi_s + V_{sb}} - \sqrt{\phi_s} \right)$$

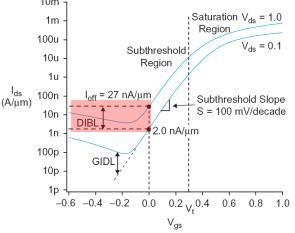
- \Box V_{t0} = nominal threshold voltage
- $\Box \quad \phi_{s} = surface \ potential \ at \ threshold$ $\phi_{s} = 2v_{T} \ln \frac{N_{A}}{n_{i}}$
 - Depends on doping level N_A
 - And intrinsic carrier concentration n_i
 - γ = body effect coefficient

$$\gamma = \frac{t_{\rm ox}}{\varepsilon_{\rm ox}} \sqrt{2q\varepsilon_{\rm si}N_A} = \frac{\sqrt{2q\varepsilon_{\rm si}N_A}}{C_{\rm ox}}$$

Body Effect Cont.

□ For small source-to-body voltage, treat as linear

$$V_t = V_{t0} + k_\gamma V_{sb}$$

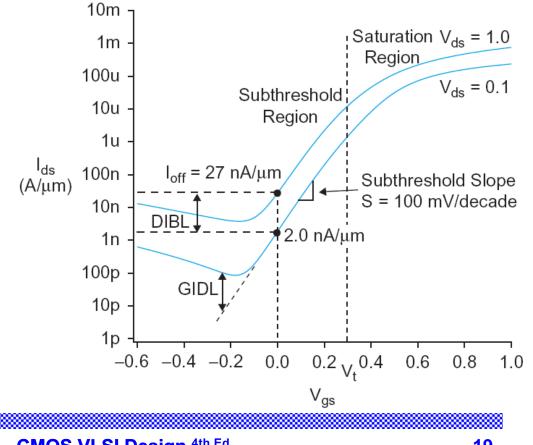

$$k_{\gamma} = \frac{\gamma}{2\sqrt{\phi_s}} = \frac{\sqrt{\frac{q\varepsilon_{si}N_A}{\upsilon_T \ln \frac{N_A}{n_i}}}}{2C_{ox}}$$

DIBL

- Electric field from drain affects channel
- More pronounced in small transistors where the drain is closer to the channel
- Drain-Induced Barrier Lowering
 - Drain voltage also affect V_t

$$V_t' = V_t - \eta V_{ds}$$

High drain voltage causes current to



Short Channel Effect

- In small transistors, source/drain depletion regions extend into the channel
 - Impacts the amount of charge required to invert the channel
 - And thus makes V_t a function of channel length
- \Box Short channel effect: V_t increases with L
 - Some processes exhibit a reverse short channel effect in which V_t decreases with L

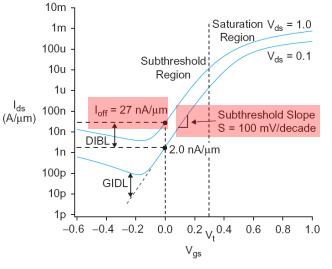
Leakage

- What about current in cutoff?
- Simulated results
- What differs?

CMOS VLSI Design 4th Ed.

Leakage Sources

- Subthreshold conduction
 - Transistors can't abruptly turn ON or OFF
 - Dominant source in contemporary transistors
- Gate leakage
 - Tunneling through ultrathin gate dielectric
- Junction leakage
 - Reverse-biased PN junction diode current


Subthreshold Leakage

Subthreshold leakage exponential with V_{gs}

$$I_{ds} = I_{ds0} e^{\frac{V_{gs} - V_{t0} + \eta V_{ds} - k_{\gamma} V_{sb}}{n v_T}} \left(1 - e^{\frac{-V_{ds}}{v_T}} \right)$$

- **n** is process dependent
 - typically 1.3-1.7

❑ Rewrite relative to I_{off} on log scale

$$I_{ds} = I_{\text{off}} 10^{\frac{V_{gs} + \eta (V_{ds} - V_{dd}) - k\gamma V_{sb}}{S}} \left(1 - e^{\frac{-V_{ds}}{v_t}}\right) \qquad S = \left[\frac{d \left(\log_{10} I_{ds}\right)}{dV_{gs}}\right]^{-1} = nv_T \ln 10$$

I S ≈ 100 mV/decade @ room temperature

4: Nonideal Transistor Theory CMOS VLSI Design ^{4th Ed.}

Gate Leakage

10⁹

10⁶

10³

100

10-3

10-6

 10^{-9}

0

 $J_{\rm G}$ (A/cm²)

V_{DD} trend

0.3

0.6

0.9

 V_{DD}

1.2

1.5

From [Song01]

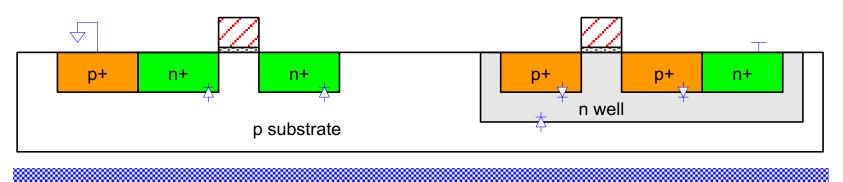
1.8

- Carriers tunnel thorough very thin gate oxides
- Exponentially sensitive to t_{ox} and V_{DD}

$$I_{\text{gate}} = W\!A \left(\frac{V_{DD}}{t_{\text{ox}}}\right)^2 e^{-B \frac{t_{\text{ox}}}{V_{DD}}}$$

- A and B are tech constants
- Greater for electrons
 - So nMOS gates leak more
- Negligible for older processes ($t_{ox} > 20 \text{ Å}$)
 - **I** Critically important at 65 nm and below ($t_{ox} \approx 10.5 \text{ Å}$)

10 Å


12 Å

15 Å 19 Å

Junction Leakage

□ Reverse-biased p-n junctions have some leakage

- Ordinary diode leakage
- Band-to-band tunneling (BTBT)
- Gate-induced drain leakage (GIDL)

CMOS VLSI Design ^{4th Ed.}

Diode Leakage

□ Reverse-biased p-n junctions have some leakage

$$I_D = I_S \left(e^{\frac{V_D}{v_T}} - 1 \right)$$

□ At any significant negative diode voltage, $I_D = -I_s$

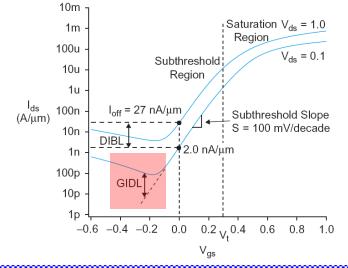
I_s depends on doping levels

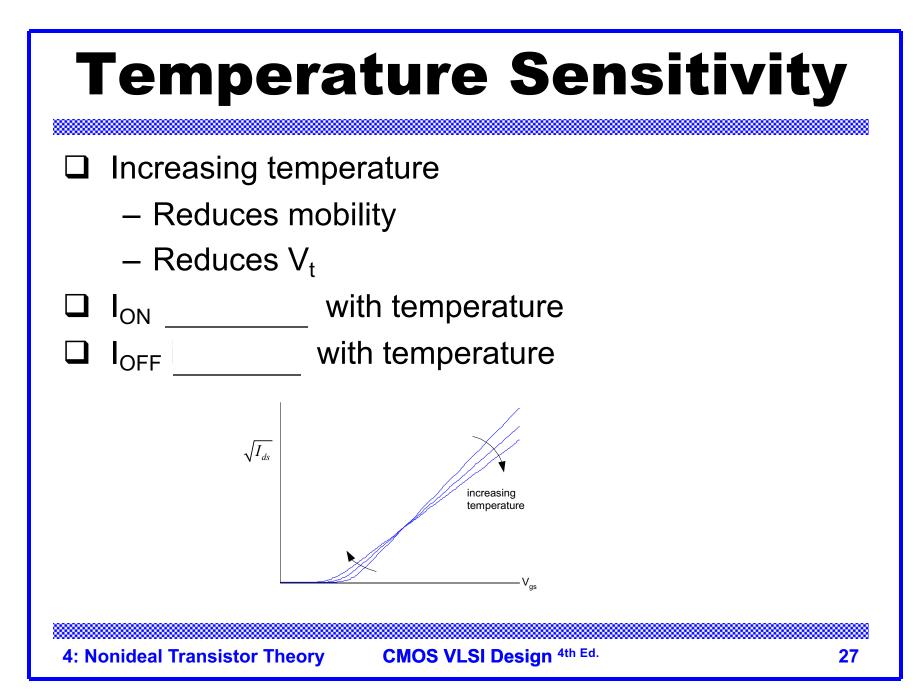
- And area and perimeter of diffusion regions
- Typically < 1 fA/ μ m² (negligible)

Band-to-Band Tunneling

□ Tunneling across heavily doped p-n junctions

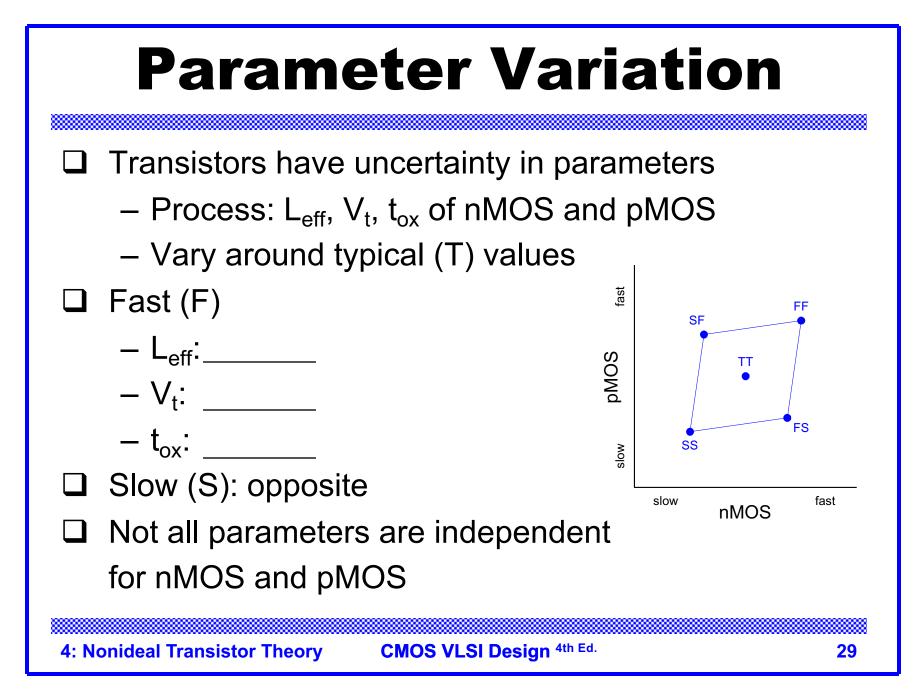
- Especially sidewall between drain & channel when *halo doping* is used to increase V_t
- Increases junction leakage to significant levels


$$I_{BTBT} = WX_j A \frac{E_j}{E_g^{0.5}} V_{dd} e^{-B \frac{E_g^{1.5}}{E_j}} \qquad \qquad E_j = \sqrt{\frac{2qN_{balo}N_{sd}}{\varepsilon \left(N_{balo} + N_{sd}\right)}} \left(V_{DD} + v_T \ln \frac{N_{balo}N_{sd}}{n_i^2}\right)$$


- X_j: sidewall junction depth
- E_g: bandgap voltage
- A, B: tech constants

Gate-Induced Drain Leakage

Occurs at overlap between gate and drain


- Most pronounced when drain is at $V_{\text{DD}},$ gate is at a negative voltage
- Thwarts efforts to reduce subthreshold leakage using a negative gate voltage

So What?

- □ So what if transistors are not ideal?
 - They still behave like switches.
- □ But these effects matter for...
 - Supply voltage choice
 - Logical effort
 - Quiescent power consumption
 - Pass transistors
 - Temperature of operation

Environmental Variation

 $\hfill\square\hfill V_{DD}$ and T also vary in time and space

General Fast:

Corner	Voltage	Temperature	
F			
Т	1.8	70 C	
S			

Process Corners

- Process corners describe worst case variations
 - If a design works in all corners, it will probably work for any variation.
- Describe corner with four letters (T, F, S)
 - nMOS speed
 - pMOS speed
 - Voltage
 - Temperature

Important Corners

□ Some critical simulation corners include

Purpose	nMOS	pMOS	V _{DD}	Тетр
Cycle time				
Power				
Subthreshold				
leakage				