

NEIL H. E. WESTE DAVID MONEY HARRIS CLOC

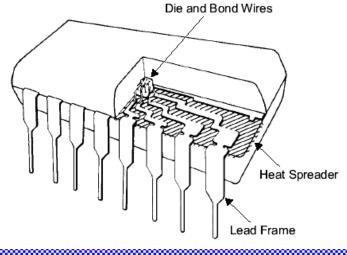
Lecture 19: Packaging, Power, & Clock

Outline

- Packaging
- Power Distribution
- Clock Distribution

Packages

- Package functions
 - Electrical connection of signals and power from chip to board
 - Little delay or distortion
 - Mechanical connection of chip to board
 - Removes heat produced on chip
 - Protects chip from mechanical damage
 - Compatible with thermal expansion
 - Inexpensive to manufacture and test


Package Types Through-hole vs. surface mount 84-pin PLCC 14-pin DIP 387-pin PGA Multichip Module 44-pin PLCC 86-pin TSOP 84-pin PGA 280-pin QFP XILINX® 40-pin DIP 560-pin BGA 296-pin PGA

21: Package, Power, and Clock CMOS VLSI Design ^{4th Ed.}

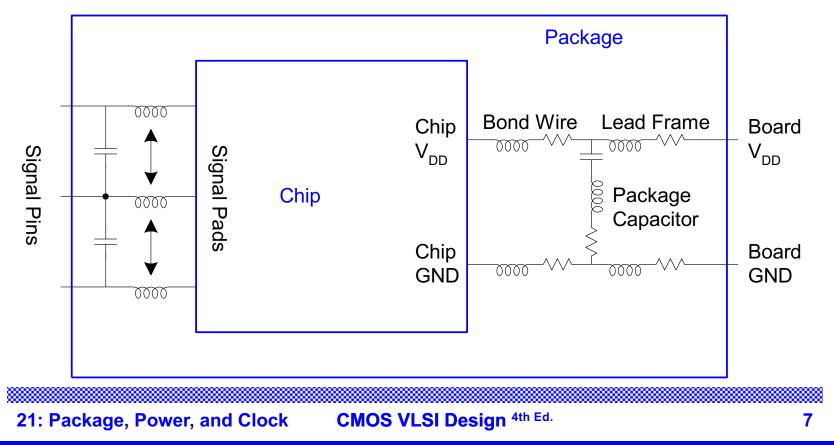
Chip-to-Package Bonding

□ Traditionally, chip is surrounded by *pad frame*

- Metal pads on 100 200 μm pitch
- Gold bond wires attach pads to package
- Lead frame distributes signals in package
- Metal heat spreader helps with cooling

21: Package, Power, and Clock

CMOS VLSI Design ^{4th Ed.}


Advanced Packages

- Bond wires contribute parasitic inductance
- Fancy packages have many signal, power layers
 - Like tiny printed circuit boards
- Flip-chip places connections across surface of die rather than around periphery
 - Top level metal pads covered with solder balls
 - Chip flips upside down
 - Carefully aligned to package (done blind!)
 - Heated to melt balls
 - Also called C4 (Controlled Collapse Chip Connection)

Package Parasitics

□ Use many V_{DD}, GND in parallel

– Inductance, I_{DD}

Heat Dissipation

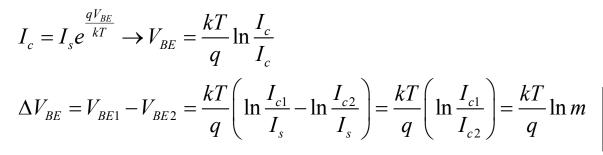
- 60 W light bulb has surface area of 120 cm²
- Itanium 2 die dissipates 130 W over 4 cm²
 - Chips have enormous power densities
 - Cooling is a serious challenge
- Package spreads heat to larger surface area
 - Heat sinks may increase surface area further
 - Fans increase airflow rate over surface area
 - Liquid cooling used in extreme cases (\$\$\$)

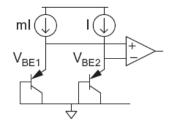
Thermal Resistance

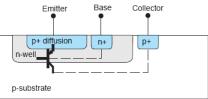
- $\Box \quad \Delta \mathsf{T} = \Theta_{\mathsf{ja}} \mathsf{P}$
 - $-\Delta T$: temperature rise on chip
 - Θ_{ja} : thermal resistance of chip junction to ambient
 - P: power dissipation on chip
- Thermal resistances combine like resistors
 - Series and parallel

$$\mathbf{D}_{ja} = \Theta_{jp} + \Theta_{pa}$$

Series combination


Example


- Your chip has a heat sink with a thermal resistance to the package of 4.0° C/W.
- The resistance from chip to package is 1° C/W.
- The system box ambient temperature may reach 55°
 C.
- □ The chip temperature must not exceed 100° C.
- What is the maximum chip power dissipation?

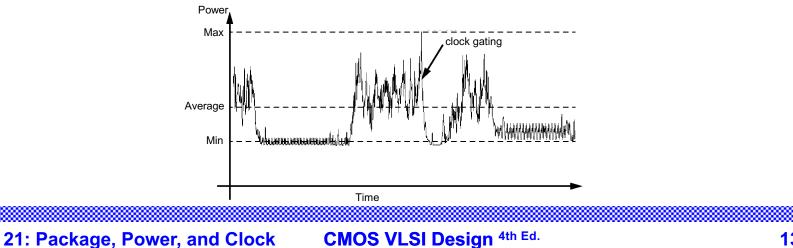

```
\Box (100-55 C) / (4 + 1 C/W) = 9 W
```

Temperature Sensor

- Monitor die temperature and throttle performance if it gets too hot
- Use a pair of pnp bipolar transistors
 - Vertical pnp available in CMOS

Voltage difference is proportional to absolute temp
 Measure with on-chip A/D converter

Power Distribution


Power Distribution Network functions

- Carry current from pads to transistors on chip
- Maintain stable voltage with low noise
- Provide average and peak power demands
- Provide current return paths for signals
- Avoid electromigration & self-heating wearout
- Consume little chip area and wire
- Easy to lay out

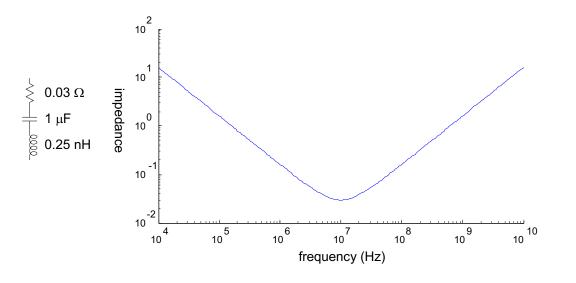
Power Requirements

- \Box V_{DD} = V_{DDnominal} V_{droop}
- Want V_{droop} < +/- 10% of V_{DD}
- □ Sources of V_{droop}
 - IR drops
 - L di/dt noise

I_{DD} changes on many time scales

IR Drop

□ A chip draws 24 W from a 1.2 V supply. The power supply impedance is $5 \text{ m}\Omega$. What is the IR drop?

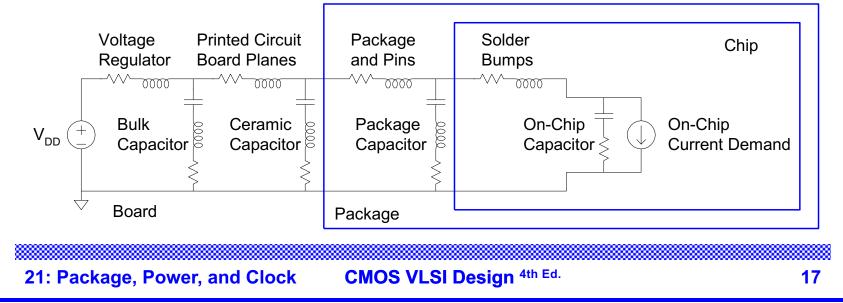

L di/dt Noise

- A 1.2 V chip switches from an idle mode consuming 5W to a full-power mode consuming 53 W. The transition takes 10 clock cycles at 1 GHz. The supply inductance is 0.1 nH. What is the L di/dt droop?

21: Package, Power, and Clock CMOS VLSI Design ^{4th Ed.}

Bypass Capacitors

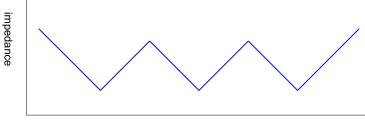
- Need low supply impedance at all frequencies
- $\hfill\square$ Ideal capacitors have impedance decreasing with ω
- Real capacitors have parasitic R and L
 - Leads to resonant frequency of capacitor



CMOS VLSI Design 4th Ed.

Power System Model

Power comes from regulator on system board

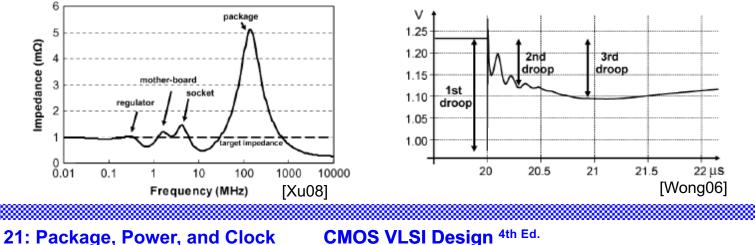

- Board and package add parasitic R and L
- Bypass capacitors help stabilize supply voltage
- But capacitors also have parasitic R and L
- □ Simulate system for time and frequency responses

Frequency Response

Multiple capacitors in parallel

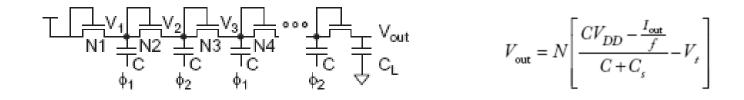
- Large capacitor near regulator has low impedance at low frequencies
- But also has a low self-resonant frequency
- Small capacitors near chip and on chip have low impedance at high frequencies
- Choose caps to get low impedance at all frequencies

frequency (Hz)


21: Package, Power, and Clock

CMOS VLSI Design ^{4th Ed.}

Example: Pentium 4

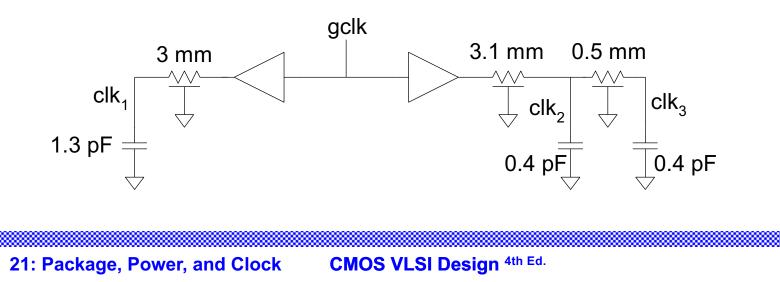

- Power supply impedance for Pentium 4
 - Spike near 100 MHz caused by package L
- Step response to sudden supply current chain
 - 1st droop: on-chip bypass caps
 - 2nd droop: package capacitance

Charge Pumps

- Sometimes a different supply voltage is needed but little current is required
 - 20 V for Flash memory programming
 - Negative body bias for leakage control during sleep
- Generate the voltage on-chip with a charge pump

Energy Scavenging

- Ultra-low power systems can scavenge their energy from the environment rather than needing batteries
 - Solar calculator (solar cells)
 - RFID tags (antenna)
 - Tire pressure monitors powered by vibrational energy of tires (piezoelectric generator)
- Thin film microbatteries deposited on the chip can store energy for times of peak demand

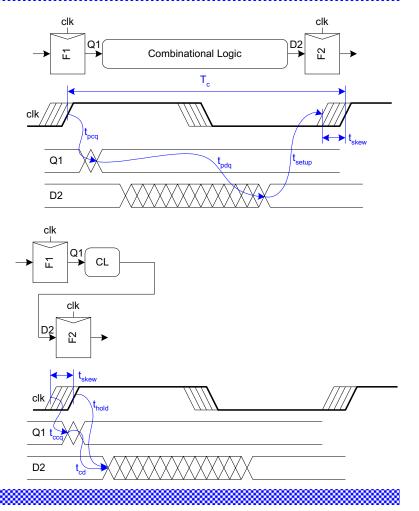

Clock Distribution

- On a small chip, the clock distribution network is just a wire
 - And possibly an inverter for clkb
- On practical chips, the RC delay of the wire resistance and gate load is very long
 - Variations in this delay cause clock to get to different elements at different times
 - This is called *clock skew*
- Most chips use repeaters to buffer the clock and equalize the delay
 - Reduces but doesn't eliminate skew

Example

□ Skew comes from differences in gate and wire delay

- With right buffer sizing, clk_1 and clk_2 could ideally arrive at the same time.
- But power supply noise changes buffer delays
- clk₂ and clk₃ will always see RC skew


Review: Skew Impact

- Ideally full cycle is available for work
 Skew adds sequencing overhead
- Increases hold time too

$$t_{pd} \leq T_c - \underbrace{\left(t_{pcq} + t_{\text{setup}} + t_{\text{skew}}\right)}_{\text{skew}}$$

sequencing overhead

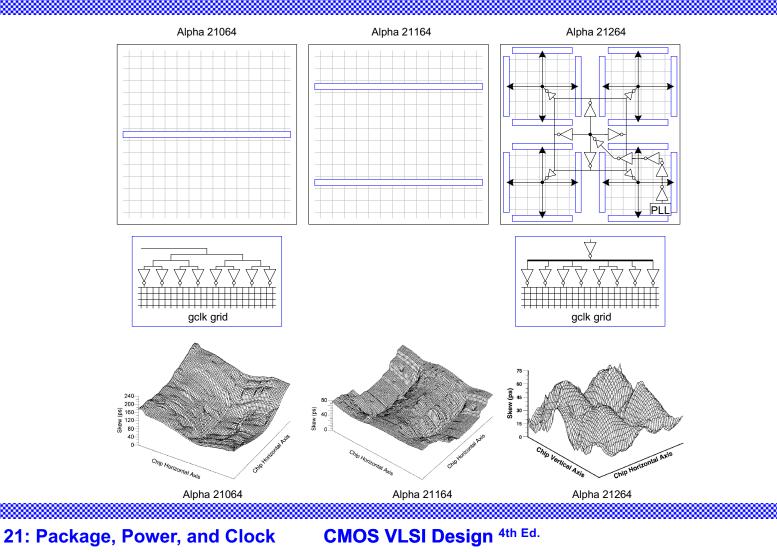
$$t_{cd} \ge t_{\text{hold}} - t_{ccq} + t_{\text{skew}}$$

21: Package, Power, and Clock

CMOS VLSI Design ^{4th Ed.}

Solutions

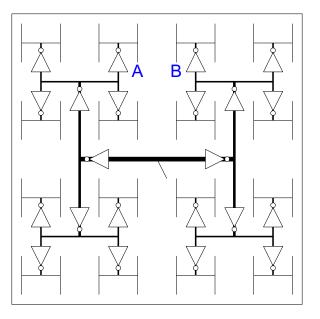
- □ Reduce clock skew
 - Careful clock distribution network design
 - Plenty of metal wiring resources
- □ Analyze clock skew
 - Only budget actual, not worst case skews
 - Local vs. global skew budgets
- Tolerate clock skew
 - Choose circuit structures insensitive to skew


Clock Dist. Networks

- □ Ad hoc
- Grids
- H-tree
- Hybrid

Clock Grids

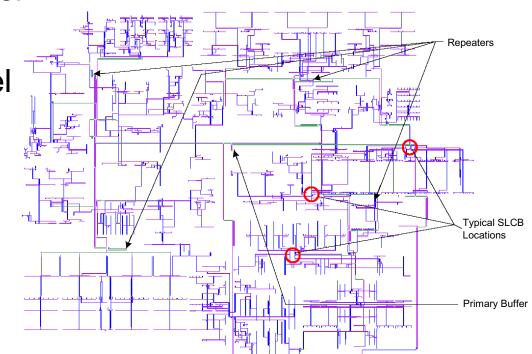
- □ Use grid on two or more levels to carry clock
- Make wires wide to reduce RC delay
- Ensures low skew between nearby points
- But possibly large skew across die


Alpha Clock Grids

H-Trees

Fractal structure

- Gets clock arbitrarily close to any point
- Matched delay along all paths
- Delay variations cause skew
- □ A and B might see big skew



21: Package, Power, and Clock

CMOS VLSI Design ^{4th Ed.}

Itanium 2 H-Tree

- □ Four levels of buffering:
 - Primary driver
 - Repeater
 - Second-level clock buffer
 - Gater
- Route around obstructions

Hybrid Networks

- Use H-tree to distribute clock to many points
- Tie these points together with a grid
- □ Ex: IBM Power4, PowerPC
 - H-tree drives 16-64 sector buffers
 - Buffers drive total of 1024 points
 - All points shorted together with grid