

NEIL H. E. WESTE DAVID MONEY HARRIS

Lecture 18: Circuit **Pitfalls**

Outline

- Variation
- Noise Budgets
- Reliability
- Circuit Pitfalls

Variation

- Process
 - Threshold
 - Channel length
 - Interconnect dimensions
- Environment
 - Voltage
 - Temperature
- □ Aging / Wearout

Process Variation

Threshold Voltage

- Depends on placement of dopants in channel
- Standard deviation inversely proportional to channel area

$$\sigma_{V_t} = \frac{t_{\text{ox}}}{\varepsilon_{\text{ox}}} \frac{\sqrt[4]{q^3 \varepsilon_{\text{si}} \phi_b N_a}}{\sqrt{2LW}} = \frac{A_{V_t}}{\sqrt{LW}}$$

- Channel Length
 - Systematic across-chip linewidth variation (ACLV)
 - Random line edge roughness (LER)

Interconnect

Courtesy Texas Instruments

- Etching variations affect w, s, h

16: Circuit Pitfalls

Spatial Distribution

Variations show spatial correlation

- Lot-to-lot (L2L)
- Wafer-to-wafer (W2W)
- Die-to-die (D2D) / inter-die
- Within-die (WID) / intradie
- Closer transistors match better

Courtesy M. Pelgrom

Environmental Variation

Voltage

- V_{DD} is usually designed +/- 10%
- Regulator error
- On-chip droop from switching activity
- □ Temperature
 - Ambient temperature ranges
 - On-die temperature elevated
 by chip power consumption

Courtesy IBM

Standard	Minimum	Maximum
Commercial	0 °C	70 °C
Industrial	−40 °C	85 °C
Military	−55 °C	125 °C

[Harris01b]

Aging

□ Transistors change over time as they wear out

- Hot carriers
- Negative bias temperature instability
- Time-dependent dielectric breakdown
- Causes threshold voltage changes
- More on this later...

Process Corners

Model extremes of process variations in simulation

- □ Corners
 - Typical (T)
 - Fast (F)
 - Slow (S)
- □ Factors
 - nMOS speed
 - pMOS speed
 - Wire
 - Voltage
 - Temperature

Corner	Voltage	Temperature		
F	1.98	0 °C		
Т	1.8	70 °C		
S	1.62	125 °C		

16: Circuit Pitfalls

Corner Checks

Circuits are simulated in different corners to verify different performance and correctness specifications

Corner					Purpose
nMOS	pMOS	Wire	V_{DD}	Temp	
Т	Т	Т	S	S	Timing specifications (binned parts)
S	S	S	S	S	Timing specifications (conservative)
F	F	F	F	F	Race conditions, hold time constraints, pulse collapse, noise
S	S	;	F	S	Dynamic power
F	F	F	F	S	Subthreshold leakage noise and power, overall noise analysis
S	S	F	S	S	Races of gates against wires
F	F	S	F	F	Races of wires against gates
S	F	Т	F	F	Pseudo-nMOS and ratioed circuits noise margins, memory read/write,
					race of pMOS against nMOS
F	S	Т	F	F	Ratioed circuits, memory read/write, race of nMOS against pMOS

Monte Carlo Simulation

- As process variation increases, the worst-case corners become too pessimistic for practical design
- Monte Carlo: repeated simulations with parameters randomly varied each time
- □ Look at scatter plot of results to predict yield
- $\Box \quad Ex: impact of V_t variation$
 - ON-current
 - leakage

Noise

Sources

- Power supply noise / ground bounce
- Capacitive coupling
- Charge sharing
- Leakage
- Noise feedthrough
- ❑ Consequences
 - Increased delay (for noise to settle out)
 - Or incorrect computations

Reliability

Hard Errors

- Oxide wearout
- Interconnect wearout
- Overvoltage failure
- Latchup
- Soft Errors
- Characterizing reliability
 - Mean time between failures (MTBF)
 - # of devices × hours of operation / number of failures
 - Failures in time (FIT)
 - # of failures / thousand hours / million devices

Accelerated Lifetime Testing

- Expected reliability typically exceeds 10 years
- But products come to market in 1-2 years
- Accelerated lifetime testing required to predict adequate long-term reliability

Hot Carriers

- Electric fields across channel impart high energies to some carriers
 - These "hot" carriers may be blasted into the gate oxide where they become trapped
 - Accumulation of charge in oxide causes shift in V_{t} over time
 - Eventually V_t shifts too far for devices to operate correctly
- $\hfill\square$ Choose V_{DD} to achieve reasonable product lifetime
 - Worst problems for inverters and NORs with slow input risetime and long propagation delays

16: Circuit Pitfalls

NBTI

- Negative bias temperature instability
- Electric field applied across oxide forms dangling bonds called traps at Si-SiO₂ interface
- \Box Accumulation of traps causes V_t shift
- Most pronounced for pMOS transistors with strong negative bias (V_g = 0, V_s = V_{DD}) at high temperature

$$\Delta V_t = k e^{\frac{E_{\text{ox}}}{E_0}} t^{0.25} \qquad \qquad E_{\text{ox}} = V_{DD}/t_{\text{ox}}$$

TDDB

- □ Time-dependent dielectric breakdown
 - Gradual increase in gate leakage when an electric field is applied across an oxide
 - a.k.a stress-induced leakage current
- □ For 10-year life at 125 C, keep E_{ox} below ~0.7 V/nm

Electromigration

- "Electron wind" causes movement of metal atoms along wires
- Excessive electromigration leads to open circuits
- Most significant for unidirectional (DC) current
 - Depends on current density J_{dc} (current / area)
 - Exponential dependence on temperature
 - Black's Equation: $MTTF \propto \frac{e^{\frac{\omega_a}{kT}}}{J_{dc}{}^n}$

– Typical limits: $J_{dc} < 1 - 2 \text{ mA} / \mu m^2$

[Christiansen06]

16: Circuit Pitfalls

Electromigration Video

16: Circuit Pitfalls

Electromigration Video 2

In-situ Observation of Electromigration via HVSEM

J. Doan, S. Lee J. Bravman, P. Flinn, *T. Marieb

Dept. of Materials Science & Engineering, Stanford University *Components Research, Intel Corporation - Santa Clara

> Aluminum Alloy Study: Alscnt01 1/19/97

> > Copyright © 1997 by J. C. Doan

16: Circuit Pitfalls

Self-Heating

□ Current through wire resistance generates heat

- Oxide surrounding wires is a thermal insulator
- Heat tends to build up in wires
- Hotter wires are more resistive, slower

□ Self-heating limits AC current densities for reliability

$$I_{rms} = \sqrt{\frac{\int_{0}^{T} I(t)^{2} dt}{T}}$$

– Typical limits: J_{rms} < 15 mA / μm^2

Overvoltage Failure

- High voltages can blow out tiny transistors
- Electrostatic discharge (ESD)
 - kilovolts from static electricity when the package pins are handled
- Oxide breakdown
 - In a 65 nm process, $V_g \approx 3 \text{ V}$ causes arcing through thin gate oxides
- Dependence Punchthrough
 - High $V_{\rm ds}$ causes depletion region between source and drain to touch, leading to high current flow and destructive overheating

16: Circuit Pitfalls

Latchup

- □ Latchup: positive feedback leading to V_{DD} GND short
 - Major problem for 1970's CMOS processes before it was well understood
- lacksquare Avoid by minimizing resistance of body to GND / V_{DD}
 - Use plenty of substrate and well taps

Guard Rings

- Latchup risk greatest when diffusion-to-substrate diodes could become forward-biased
- Surround sensitive region with guard ring to collect injected charge

Soft Errors

- In 1970's, DRAMs were observed to randomly flip bits
 - Ultimately linked to alpha particles and cosmic ray neutrons
- Collisions with atoms create electron-hole pairs in substrate
 - These carriers are collected on p-n junctions, disturbing the voltage

[Baumann05]

Radiation Hardening

□ Radiation hardening reduces soft errors

- Increase node capacitance to minimize impact of collected charge
- Or use redundancy
- E.g. dual-interlocked cell

□ Error-correcting codes

Correct for soft errors that do occur

Circuit Pitfalls

Detective puzzle

- Given circuit and symptom, diagnose cause and recommend solution
- All these pitfalls have caused failures in real chips

- Circuit
 - 2:1 multiplexer

Principle:

Symptom

- Mux works when selected D is 0 but not 1.
- Or fails at low V_{DD} .
- Or fails in SFSF corner.

16: Circuit Pitfalls

Solution:

- Circuit
 - Latch

- □ Symptom
 - Load a 0 into Q
 - Set $\phi = 0$
 - Eventually Q spontaneously flips to 1

Solution:

16: Circuit Pitfalls

- Domino AND gate

□ Symptom

- Precharge gate (Y=0)
- Then evaluate
- Eventually Y spontaneously flips to 1

16: Circuit Pitfalls

Circuit

Pseudo-nMOS OR

Symptom

- When only one input is true, Y = 0.
- Perhaps only happens in SF corner.

Solution:

16: Circuit Pitfalls

Circuit

- Latch

Symptom

- Q stuck at 1.
- May only happen for certain latches where input is driven by a small gate located far away.

16: Circuit Pitfalls

Solutions:

Circuit

- Domino AND gate

Symptom

Precharge gate while

A = B = 0, so Z = 0

- A rises
- Z is observed to sometimes rise

Solutions:

- Circuit
 - Dynamic gate + latch

Principle:

Solution:

Symptom

- Precharge gate while transmission gate latch is opaque
- Evaluate
- When latch becomes transparent, X falls

- Circuit
 - Latch

- Symptom
 - Q changes while latch is opaque
 - Especially if D comes from a far-away driver

16: Circuit Pitfalls

CMOS VLSI Design 4th Ed.

Summary

- □ Static CMOS gates are very robust
 - Will settle to correct value if you wait long enough
- Other circuits suffer from a variety of pitfalls
 - Tradeoff between performance & robustness
- Essential to check circuits for pitfalls
 - For large chips, you need an automatic checker.
 - Design rules aren't worth the paper they are printed on unless you back them up with a tool.