

NEIL H. E. WESTE DAVID MONEY HARRIS

Lecture 10: Circuit Families

Outline

- Pseudo-nMOS Logic
- Dynamic Logic
- Pass Transistor Logic

Introduction

What makes a circuit fast?

- -I = C dV/dt -> $t_{pd} \approx (C/I) \Delta V$
- low capacitance
- high current
- small swing
- □ Logical effort is proportional to C/I
- □ pMOS are the enemy!
 - High capacitance for a given current
 - Can we take the pMOS capacitance off the input?
 - Various circuit families try to do this...

Pseudo-nMOS

□ In the old days, nMOS processes had no pMOS

- Instead, use pull-up transistor that is always ON
- In CMOS, use a pMOS that is always ON
 - Ratio issue
 - Make pMOS about ¼ effective strength of pulldown network

10: Circuit Families

CMOS VLSI Design 4th Ed.

1.8

Pseudo-nMOS Gates

 Design for unit current on output to compare with unit inverter.
 pMOS fights nMOS

Pseudo-nMOS Gates

Design for unit current on output to compare with unit inverter.
 pMOS fights nMOS

Pseudo-nMOS Design Ex: Design a k-input AND gate using pseudo-nMOS. Estimate the delay driving a fanout of H Pseudo-nMOS ln₁ G =Y 0 Η In_k

CMOS VLSI Design 4th Ed.

Pseudo-nMOS Power

□ Pseudo-nMOS draws power whenever Y = 0

- Called static power $P = I_{DD}V_{DD}$
- A few mA / gate * 1M gates would be a problem
- Explains why nMOS went extinct
- □ Use pseudo-nMOS sparingly for wide NORs

□ Turn off pMOS when not in use

Ratio Example

□ The chip contains a 32 word x 48 bit ROM

- Uses pseudo-nMOS decoder and bitline pullups
- On average, one wordline and 24 bitlines are high
- □ Find static power drawn by the ROM

$$-I_{on-p} = 36 \ \mu A, V_{DD} = 1.0 \ V$$

Solution:

$$P_{\text{pull-up}} =$$

 $P_{\text{static}} =$

10: Circuit Families

Dynamic Logic

- Dynamic gates uses a clocked pMOS pullup
- □ Two modes: *precharge* and *evaluate*

The Foot

What if pulldown network is ON during precharge?
Use series evaluation transistor to prevent fight.

Logical Effort

Monotonicity

Dynamic gates require *monotonically rising* inputs during evaluation

Monotonicity Woes

- But dynamic gates produce monotonically falling outputs during evaluation
- Illegal for one dynamic gate to drive another!

Domino Gates

□ Follow dynamic stage with inverting static gate

- Dynamic / static pair is called domino gate
- Produces monotonic outputs

Domino Optimizations

- Each domino gate triggers next one, like a string of dominos toppling over
- Gates evaluate sequentially but precharge in parallel
- □ Thus evaluation is more critical than precharge
- □ HI-skewed static stages can perform logic

10: Circuit Families

CMOS VLSI Design 4th Ed.

Dual-Rail Domino

- Domino only performs noninverting functions:
 - AND, OR but not NAND, NOR, or XOR
- Dual-rail domino solves this problem
 - Takes true and complementary inputs
 - Produces true and complementary outputs

sig_h	sig_l	Meaning	
0	0	Precharged	Y_I
0	1	ʻ0'	inputs \rightarrow \overline{f} f
1	0	'1'	$\phi \rightarrow \zeta$
1	1	invalid	\checkmark

10: Circuit Families

CMOS VLSI Design 4th Ed

Example: AND/NAND

- Given A_h, A_I, B_h, B_I
- $\Box \quad \text{Compute Y}_h = AB, Y_I = \overline{AB}$
- Pulldown networks are conduction complements

10: Circuit Families

Leakage

- Dynamic node floats high during evaluation
 - Transistors are leaky $(I_{OFF} > 0)$
 - Dynamic value will leak away over time
 - Formerly milliseconds, now nanoseconds
- Use keeper to hold dynamic node
 - Must be weak enough not to fight evaluation

Charge Sharing

Dynamic gates suffer from charge sharing

 $V_x = V_y =$

10: Circuit Families

Secondary Precharge

Solution: add secondary precharge transistors

- Typically need to precharge every other node Big load capacitance C_Y helps as well

10: Circuit Families

Noise Sensitivity

Dynamic gates are very sensitive to noise

- Inputs: $V_{IH} \approx V_{tn}$
- Outputs: floating output susceptible noise
- Noise sources
 - Capacitive crosstalk
 - Charge sharing
 - Power supply noise
 - Feedthrough noise
 - And more!

Power

Domino gates have high activity factors

Output evaluates and precharges

• If output probability = 0.5, α = 0.5

Output rises and falls on half the cycles

– Clocked transistors have $\alpha = 1$

□ Leads to very high power consumption

Domino Summary

- Domino logic is attractive for high-speed circuits
 - 1.3 2x faster than static CMOS
 - But many challenges:
 - Monotonicity, leakage, charge sharing, noise
- Widely used in high-performance microprocessors in 1990s when speed was king
- Largely displaced by static CMOS now that power is the limiter
- Still used in memories for area efficiency

Pass Transistor Circuits

- Use pass transistors like switches to do logic
- Inputs drive diffusion terminals as well as gates
- □ CMOS + Transmission Gates:
 - 2-input multiplexer
 - Gates should be restoring

LEAP

- □ LEAn integration with Pass transistors
- Get rid of pMOS transistors
 - Use weak pMOS feedback to pull fully high
 - Ratio constraint

CPL

Complementary Pass-transistor Logic

- Dual-rail form of pass transistor logic
- Avoids need for ratioed feedback
- Optional cross-coupling for rail-to-rail swing

Pass Transistor Summary

- Researchers investigated pass transistor logic for general purpose applications in the 1990's
 - Benefits over static CMOS were small or negative
 - No longer generally used
- However, pass transistors still have a niche in special circuits such as memories where they offer small size and the threshold drops can be managed