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Outline
q Pseudo-nMOS Logic
q Dynamic Logic
q Pass Transistor Logic
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Introduction
q What makes a circuit fast?

– I = C dV/dt    ->  tpd ≈ (C/I) ΔV
– low capacitance
– high current
– small swing

q Logical effort is proportional to C/I
q pMOS are the enemy!

– High capacitance for a given current
q Can we take the pMOS capacitance off the input?
q Various circuit families try to do this…
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Pseudo-nMOS
q In the old days, nMOS processes had no pMOS

– Instead, use pull-up transistor that is always ON
q In CMOS, use a pMOS that is always ON

– Ratio issue
– Make pMOS about ¼ effective strength of 

pulldown network
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Pseudo-nMOS Gates
q Design for unit current on output

to compare with unit inverter.
q pMOS fights nMOS
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Pseudo-nMOS Gates
q Design for unit current on output

to compare with unit inverter.
q pMOS fights nMOS
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Pseudo-nMOS Design
q Ex: Design a k-input AND gate using pseudo-nMOS.  

Estimate the delay driving a fanout of H

q G = 1 * 8/9 = 8/9
q F = GBH = 8H/9
q P = 1 + (4+8k)/9 = (8k+13)/9
q N = 2
q D = NF1/N + P = 
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Pseudo-nMOS Power
q Pseudo-nMOS draws power whenever Y = 0

– Called static power     P = IDDVDD

– A few mA / gate * 1M gates would be a problem

– Explains why nMOS went extinct

q Use pseudo-nMOS sparingly for wide NORs
q Turn off pMOS when not in use
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Ratio Example
q The chip contains a 32 word x 48 bit ROM

– Uses pseudo-nMOS decoder and bitline pullups
– On average, one wordline and 24 bitlines are high

q Find static power drawn by the ROM 
– Ion-p = 36 µA, VDD = 1.0 V

q Solution:
pull-up pull-up

static pull-up

36 µW

(31 24) 1.98 mW
DDP V I

P P
= =

= + =
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Dynamic Logic
q Dynamic gates uses a clocked pMOS pullup
q Two modes: precharge and evaluate
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The Foot
q What if pulldown network is ON during precharge?
q Use series evaluation transistor to prevent fight.
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Logical Effort
Inverter NAND2 NOR2
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Monotonicity
q Dynamic gates require monotonically rising inputs 

during evaluation
– 0 -> 0
– 0 -> 1
– 1 -> 1
– But not 1 -> 0
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Monotonicity Woes
q But dynamic gates produce 

monotonically falling 
outputs during evaluation

q Illegal for one dynamic gate 
to drive another!
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Domino Gates
q Follow dynamic stage with inverting static gate

– Dynamic / static pair is called domino gate
– Produces monotonic outputs

f Precharge Evaluate
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Domino Optimizations
q Each domino gate triggers next one, like a string of 

dominos toppling over
q Gates evaluate sequentially but precharge in parallel
q Thus evaluation is more critical than precharge
q HI-skewed static stages can perform logic
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Dual-Rail Domino
q Domino only performs noninverting functions:

– AND, OR but not NAND, NOR, or XOR
q Dual-rail domino solves this problem

– Takes true and complementary inputs 
– Produces true and complementary outputs

sig_h sig_l Meaning
0 0 Precharged
0 1 �0�
1 0 �1�
1 1 invalid
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Example: AND/NAND
q Given A_h, A_l, B_h, B_l
q Compute Y_h = AB, Y_l = AB
q Pulldown networks are conduction complements

Y_hf

f

Y_l
A_h
B_hB_lA_l

= A*B= A*B
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Example: XOR/XNOR
q Sometimes possible to share transistors

Y_hf

f

Y_l
A_l

B_h

= A xor B

B_l

A_hA_lA_h= A xnor B
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Leakage
q Dynamic node floats high during evaluation

– Transistors are leaky (IOFF > 0)
– Dynamic value will leak away over time
– Formerly milliseconds, now nanoseconds

q Use keeper to hold dynamic node
– Must be weak enough not to fight evaluation

A

f
H

2
2

1 k
X Y

weak keeper



CMOS VLSI DesignCMOS VLSI Design 4th Ed.10: Circuit Families 21

Charge Sharing
q Dynamic gates suffer from charge sharing
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Secondary Precharge
q Solution: add secondary precharge transistors

– Typically need to precharge every other node
q Big load capacitance CY helps as well
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Noise Sensitivity
q Dynamic gates are very sensitive to noise

– Inputs: VIH ≈ Vtn

– Outputs: floating output susceptible noise
q Noise sources

– Capacitive crosstalk
– Charge sharing
– Power supply noise
– Feedthrough noise
– And more!
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Power
q Domino gates have high activity factors

– Output evaluates and precharges
• If output probability = 0.5, α = 0.5

– Output rises and falls on half the cycles
– Clocked transistors have α = 1

q Leads to very high power consumption
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Domino Summary
q Domino logic is attractive for high-speed circuits

– 1.3 – 2x faster than static CMOS
– But many challenges:

• Monotonicity, leakage, charge sharing, noise
q Widely used in high-performance microprocessors in 

1990s when speed was king
q Largely displaced by static CMOS now that power is 

the limiter
q Still used in memories for area efficiency



CMOS VLSI DesignCMOS VLSI Design 4th Ed.10: Circuit Families 26

Pass Transistor Circuits
q Use pass transistors like switches to do logic
q Inputs drive diffusion terminals as well as gates

q CMOS + Transmission Gates:
– 2-input multiplexer
– Gates should be restoring
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LEAP
q LEAn integration with Pass transistors
q Get rid of pMOS transistors

– Use weak pMOS feedback to pull fully high
– Ratio constraint
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CPL
q Complementary Pass-transistor Logic

– Dual-rail form of pass transistor logic
– Avoids need for ratioed feedback
– Optional cross-coupling for rail-to-rail swing
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Pass Transistor Summary
q Researchers investigated pass transistor logic for 

general purpose applications in the 1990�s
– Benefits over static CMOS were small or negative
– No longer generally used

q However, pass transistors still have a niche in 
special circuits such as memories where they offer 
small size and the threshold drops can be managed


