

NEIL H. E. WESTE DAVID MONEY HARRIS

Lecture 1: Circuits & Layout

Outline

- □ A Brief History
- CMOS Gate Design
- Pass Transistors
- CMOS Latches & Flip-Flops
- Standard Cell Layouts
- Stick Diagrams

A Brief History

□ 1958: First integrated circuit

- Flip-flop using two transistors
- Built by Jack Kilby at Texas Instruments

2010

- Intel Core i7 µprocessor
 - 2.3 billion transistors
- 64 Gb Flash memory
 - > 16 billion transistors

Courtesy Texas Instruments

Growth Rate

- □ 53% compound annual growth rate over 50 years
 - No other technology has grown so fast so long
- Driven by miniaturization of transistors
 - Smaller is cheaper, faster, lower in power!
 - Revolutionary effects on society

Invention of the Transistor

- Vacuum tubes ruled in first half of 20th century Large, expensive, power-hungry, unreliable
- 1947: first point contact transistor
 - John Bardeen and Walter Brattain at Bell Labs
 - See Crystal Fire
 - by Riordan, Hoddeson

CMOS VLSI Design ^{4th Ed.}

AT&T Archives. Reprinted with permission.

Transistor Types

Bipolar transistors

- npn or pnp silicon structure
- Small current into very thin base layer controls large currents between emitter and collector
- Base currents limit integration density
- Metal Oxide Semiconductor Field Effect Transistors
 - nMOS and pMOS MOSFETS
 - Voltage applied to insulated gate controls current between source and drain
 - Low power allows very high integration

MOS Integrated Circuits

1970's processes usually had only nMOS transistors Inexpensive, but consume power while idle

□ 1980s-present: CMOS processes for low idle power

1: Circuits & Layout

CMOS VLSI Design 4th Ed.

Moore's Law: Then

- □ 1965: Gordon Moore plotted transistor on each chip
 - Fit straight line on semilog scale
 - Transistor counts have doubled every 26 months

Integration Levels

- SSI: 10 gates
- **MSI**: 1000 gates
- LSI: 10,000 gates
- VLSI: > 10k gates

1: Circuits & Layout

And Now...

1: Circuits & Layout

Corollaries

□ Many other factors grow exponentially

- Ex: clock frequency, processor performance

1: Circuits & Layout

CMOS Gate Design

- □ Activity:
 - Sketch a 4-input CMOS NOR gate

1: Circuits & Layout

Series and Parallel

- nMOS: 1 = ON
- pMOS: 0 = ON
- Series: both must be ON
- □ *Parallel*: either can be ON

Conduction Complement

- Complementary CMOS gates always produce 0 or 1
- Ex: NAND gate
 - Series nMOS: Y=0 when both inputs are 1
 - Thus Y=1 when either input is 0
 - Requires parallel pMOS
- Rule of Conduction Complements
 - Pull-up network is complement of pull-down
 - Parallel -> series, series -> parallel

Α

Β

Example: 03AI

$\Box \quad Y = \overline{\left(A + B + C\right) \cdot D}$

1: Circuits & Layout

Signal Strength

- □ *Strength* of signal
 - How close it approximates ideal voltage source
- \Box V_{DD} and GND rails are strongest 1 and 0
- nMOS pass strong 0
 - But degraded or weak 1
- pMOS pass strong 1
 - But degraded or weak 0
- Thus nMOS are best for pull-down network

Pass Transistors

Transistors can be used as switches

1: Circuits & Layout

Transmission Gates

Pass transistors produce degraded outputs
Transmission gates pass both 0 and 1 well

Tristates

□ *Tristate buffer* produces Z when not enabled

EN	А	Y
0	0	
0	1	
1	0	
1	1	

1: Circuits & Layout

CMOS VLSI Design 4th Ed.

Nonrestoring Tristate

□ Transmission gate acts as tristate buffer

- Only two transistors
- But nonrestoring
 - Noise on A is passed on to Y

1: Circuits & Layout

Tristate Inverter

□ Tristate inverter produces restored output

- Violates conduction complement rule
- Because we want a Z output

1: Circuits & Layout

CMOS VLSI Design 4th Ed.

Multiplexers

□ 2:1 multiplexer chooses between two inputs

S	D1	D0	Y
0	Х	0	
0	Х	1	
1	0	Х	
1	1	X	

Gate-Level Mux Design

- \Box $Y = SD_1 + \overline{S}D_0$ (too many transistors)
- □ How many transistors are needed?

Inverting Mux

- □ Inverting multiplexer
 - Use compound AOI22
 - Or pair of tristate inverters
 - Essentially the same thing
- Noninverting multiplexer adds an inverter

4:1 Multiplexer

□ 4:1 mux chooses one of 4 inputs using two selects

- Two levels of 2:1 muxes
- Or four tristates

D Latch

□ When CLK = 1, latch is *transparent*

- D flows through to Q like a buffer

□ When CLK = 0, the latch is *opaque*

Q holds its old value independent of D

□ a.k.a. transparent latch or level-sensitive latch

D Latch Design

Multiplexer chooses D or old Q

D Flip-flop

- When CLK rises, D is copied to Q
- □ At all other times, Q holds its value
- a.k.a. positive edge-triggered flip-flop, master-slave flip-flop

D Flip-flop Operation

1: Circuits & Layout

Race Condition

□ Back-to-back flops can malfunction from clock skew

- Second flip-flop fires late
- Sees first flip-flop change and captures its result
- Called hold-time failure or race condition

Nonoverlapping Clocks

□ Nonoverlapping clocks can prevent races

As long as nonoverlap exceeds clock skew
We will use them in this class for safe design

- Industry manages skew more carefully instead

Gate Layout

- □ Layout can be very time consuming
 - Design gates to fit together nicely
 - Build a library of standard cells
- □ Standard cell design methodology
 - V_{DD} and GND should abut (standard height)
 - Adjacent gates should satisfy design rules
 - nMOS at bottom and pMOS at top
 - All gates include well and substrate contacts

Example: Inverter

Example: NAND3

- Horizontal N-diffusion and p-diffusion strips
- Vertical polysilicon gates
- □ Metal1 V_{DD} rail at top
- Metal1 GND rail at bottom
- $\Box 32 \lambda by 40 \lambda$

Stick Diagrams

□ Stick diagrams help plan layout quickly

- Need not be to scale
- Draw with color pencils or dry-erase markers

Wiring Tracks

□ A *wiring track* is the space required for a wire

- 4 λ width, 4 λ spacing from neighbor = 8 λ pitch □ Transistors also consume one wiring track

Well spacing

 $\hfill\square$ Wells must surround transistors by 6 λ

- Implies 12 λ between opposite transistor flavors
- Leaves room for one wire track

Area Estimation

□ Estimate area by counting wiring tracks

– Multiply by 8 to express in λ

Example: 03AI

□ Sketch a stick diagram for O3AI and estimate area

$$- Y = (A + B + C) \bullet D$$

1: Circuits & Layout