

Hard Drive Rock
E155 Final Project Report

December 13th, 2019
Erik Meike and Caleb Norfleet

Abstract:
Unconventional methods for music generation have recently become more popular and have
been featured in a number of viral YouTube videos such as Wintergartan’s “Marble Machine”.
For our project, we proposed an unconventional method of creating music involving driving the
actuators in hard drives to create musical tones. We created a four-track music playing system
that can be controlled via play and pause buttons and a volume knob. We also created an output
driver board PCBA for delivering high-power signals to the hard drives. We have successfully
demonstrated the ability to play several multi-track songs using our music generator system and
also characterized the output stage of our music generator as 97.5±1.0% efficient.

I. INTRODUCTION

Alternative music generation techniques have recently become more popular as
microcontrollers have become more available to the general public. In 2016, Wintergatan
released the single “Marble Machine” which used unconventional mechanical techniques 1

triggered by marbles to create a song. Their YouTube video became quite popular and has over
117 million views. Another YouTube video features a machine called the “floppotron” which
used 64 floppy disks and scanner motors to create music and is more similar to the method we
propose . 2

For our project, we proposed an unconventional method of creating music involving
driving the actuators in hard drives to create musical tones. The user interacts with our music
generator via a simple user interface which enables them to play or pause the song and set the
volume. The ATSAM determines when to play notes based on this input and communicates to
the FPGA over SPI which notes should be played at what volume. The FPGA then generates a
note signal based on this information. These note signals are delivered to output driver boards
which provide a high voltage and high current signal to the voice coil in our hard drives, causing
them to move at the desired audio frequency.

Figure 1: High-Level Block Diagram of Music Player System

II. MICROCONTROLLER

The user interacts with our music player system via a pair of buttons which allow them to
play or pause the music. In addition, a knob (potentiometer) allows for the user to set the volume
level. The ATSAM reads in these inputs using GPIOs and the ADC peripheral.

Songs are hardcoded in the form of arrays of notes with a frequency and a duration. One
such array is used for each track within the song, and up to four tracks are supported by our
system. Only one song is stored in the ATSAM at a time due to memory constraints, but
different songs can be easily ​#include ​-ed at the top of the source code in order to play
different music. A workflow for easily converting MIDI music files into note and duration arrays
which can be parsed by our code was developed based around an open source program created to
accomplish this task for the Arduboy game system . We’ve successfully used this workflow to 3

convert MIDI files for around a dozen songs to play on our system.

1 https://www.youtube.com/watch?v=IvUU8joBb1Q
2 https://www.youtube.com/watch?v=Oym7B7YidKs
3 https://github.com/MLXXXp/midi2tones

At startup, the ATSAM runs a number of initialization functions to set up the GPIO, SPI,
ADC, and timer/counter peripherals. It also initializes the song tracks and sets its current status
to paused. Progression through the song for each track is recorded in variables which indicate the
index of the current note and the amount of time remaining in that note. Another variable keeps
track of the amount of time until the next note change on any of the tracks.

After initialization, the ATSAM enters its main loop. In this loop it checks the values of
the input signals and uses these readings to update the current volume (which is applied to all the
tracks) and the song status (paused or not paused). If the music player is not paused, the ATSAM
uses the timer/counter to iterate through the song based on the minimum amount of time until the
next note change on any of the tracks. If this amount of time has passed, the ATSAM updates all
the tracks appropriately. The end of each track is indicated by a note with a duration of negative
one (individual tracks are allowed to end at different times), and rests are indicated by notes with
a frequency of zero. Once all tracks in the song have ended, all of the tracks are reset and the
status is set to paused such that the user can press the play button to hear the song again.

Every time that the notes being played or the current volume changes, the ATSAM
communicates the new note and volume status to the FPGA. For each note, the microcontroller
computes an associated 16-bit “tune word” (explained further in Section III). It also determines
an associated 8-bit volume level. Finally, it communicates the tune word and volume level to the
FPGA using SPI. In order to make it easier to implement the SPI slave module on the FPGA, we
decided on a specific methodology for using SPI. First, the ATSAM sets the clock select pin to
high (we decided to use an alternative pin for our clock select in order to control it more easily).
Next, the ATSAM sends three 8-bit packets of data for each track (the most significant byte of
the tune word, then the least significant byte of the tune word, and then the volume level byte)
using the “spiSendRecieve” command from the ATSAM libraries (with a polarity of zero and a
phase of one). Finally, the ATSAM sets the clock select pin to low to finish the transaction. Any
SPI transactions which do not involve exactly 24 bits per track (96 bits for four tracks) between
when clock select is set high and low will be disregarded by the FPGA. We decided on this
methodology in order to make it easy to avoid issues with dropped packets leading to data being
misinterpreted as the wrong type of information (tune word vs. volume level) without adding the
overhead of directly communicating which sort of information was being sent in each packet.

III. FPGA

Figure 2A: Block Diagram of SystemVerilog Deployed to FPGA

Figure 2B: Block Diagram of “noteCore” Waveform Generator for One of the Four Tracks

The first element of our FPGA block diagram is an SPI block which handles receiving

data from the SAM. This block is particularly interesting because it contains an asynchronous
interface between two clock domains: the FPGA’s 40MHz clock (clk) and the SPI clock (sck). In
order to avoid issues with this interface, we constrained the crossing between those two domains
to a single interaction in which the data read in from the SPI (in the sck domain) is copied to a
register in the clk domain. This interaction is constrained to only occur if chipSelect is low, and
all of the registers in the sck domain are constrained to only update if chipSelect is high. In
addition, from the SAM we ensure that a small amount of time passes in between when
chipSelect changes value and when sck is active. Thus, we can be confident that none of the
registers in the sck should be enabled at any point where they are being read from the clk
domain.

The signal generation stage is designed to be as general purpose as possible. It is capable
of resampling and outputting any repeating arbitrary waveform at nearly any repetition rate. The
core is a look-up table (LUT) which is used to source the appropriate output amplitude for any
given time. The LUT is currently configured to represent the first quadrant of the output
waveform. The remaining quadrants are produced by sampling the LUT backwards and/or
inverting the sign of the output. Samples are generated whenever the PWM generator creates an
interrupt asking for a new value for the next PWM cycle (which occurs every 2​8​ clock cycles).
The output wave signal is eight bits plus a sign bit.

The PWM generator produces a PWM output based off of the result from the waveform
generator. The core is an eight bit counter. This counter is allowed to run continuously and
overflows every 2​8​ input cycles. The output pin is asserted whenever the current timer value is
less than or equal to the signal generator’s output amplitude. Every time the counter overflows,
an interrupt is triggered and sent to the signal generator to request an amplitude for the next
cycle. Finally, the PWM output and the sign of the output from the waveform generator is used
to determine the correct output signals to the output driver boards for each track (see section IV).

A testbench was also created to verify the functionality of the SystemVerilog design for
the FPGA. Waveforms were generated using ModelSim and it was found that the output
waveform and sign bits matched expected values.

Figure 3: Testing the FPGA Design Using ModelSim

IV. NEW HARDWARE

Several HDDs were obtained and disassembled to get direct access to the read/write head
coil. The internal connections were traced such that all connections could be made with the
externally available pins. The remaining HDDs were connected by removing the controller and
connecting to the appropriate outer chassis contacts. An H-bridge was chosen as the output stage
due to the increased power handling capabilities relative to our proposed alternative solutions.
The H-bridge was created out of N-channel MOSFETS due to their superior current carrying
capabilities. This means the high-side FET requires a voltage above V​in ​to turn on. An integrated
FET driver with charge pump was used to produce the higher voltages. Designing an H-bridge
also comes with a new set of issues to resolve such as ensuring that both FETs on either side of
the push-pull driver are not on at the same time. The fet driver was chosen to have the required
dead time to ensure that both FETs are never on at the same time.

A PCB was created to ease the assembly of the final product. The driver array was
separated into a single driver per PCB to allow for modularity in the final product. A single
power supply was chosen to keep the wiring as simple as possible since each PCB requires 4
control wires. The traces were designed to handle 4 amps continuously without overheating to
ensure the PCB can not overload and has a large safety factor when driving an 8Ω load off of 5
volts.

Figure 4: Schematics of Circuitry

V. RESULTS

The final system is capable of playing back a pre-programmed song hardcoded in note and
duration format. This format can be easily generated from a MIDI file by selecting the tracks
desired and using an open-source program . The final UI has play, pause, and volume input. One 4

notable difference between the initial proposal and final project was that we decided to only have
one song longer song with four tracks loaded onto the system at a time (instead of several shorter
songs) due to memory constraints on the ATSAM.

The final PCB driver was tested to measure the efficiency of the output drivers. This was not
listed as a requirement in the initial proposal, however it seemed to provide a significant impact
on the scalability of the project, so it was considered for the final design. To measure the
efficiency of the PCB component, it was isolated from the remainder of the project. The output
was connected to an 8Ω resistor to make output power calculations easier and match the typical
audio output efficiency testing standard. The voltage across the resistor was then measured with

4 https://github.com/MLXXXp/midi2tones

an oscilloscope, and later a high speed benchtop multimeter to calculate power. The resistance of
the resistor was measured to be 8.357Ω by using a 4 wire resistance measurement since this has a
large effect on the calculated final output power. The final resulting efficiency of the output
driver was 97.5%±1% at an output power of 1.69 watts. The quiescent current was 7.29mA when
the output was disabled.

Appendix A: Bill of Materials

Part Quantity Link Cost

0.33uF 25v 0805 capacitor 16 https://www.digikey.com/
product-detail/en/samsung
-electro-mechanics/CL21
B334KAFNNNE/1276-18
08-1-ND/3889894

$0.17

100uF 25v capacitor 4 HMC Makerspace n/a

SD0805S040S0R5 schottky
diode

24 https://www.digikey.com/
product-detail/en/avx-cor
poration/SD0805S040S0
R5/478-7802-1-ND/3749
494

$0.44

4-pin screw terminal 4 https://www.digikey.com/
product-detail/en/te-conne
ctivity-amp-connectors/28
2837-4/A124423-ND/218
7975

$1.58

2-pin screw terminal 8 https://www.digikey.com/
product-detail/en/te-conne
ctivity-amp-connectors/28
2837-2/A113320-ND/218
7973

$1.04

AOT2618L N channel
MOSFET

16 https://www.digikey.com/
product-detail/en/alpha-o
mega-semiconductor-inc/
AOT2618L/785-1438-5-
ND/3603378

$0.797

LM27222 MOSFET driver 8 https://www.digikey.com/
product-detail/en/texas-in
struments/LM27222MX-
NOPB/296-35268-1-ND/
3738976

$2.402

PCB 4 jlcpcb.com $19.11 (for ten)

3.5” HDD 4 Engineering server
graveyard

n/a

2.5” HDD 4 Engineering server
graveyard

n/a

Total cost: $79.00

Appendix B: C Code for Microcontroller

// finalProject.c

// ​cnorfleet@hmc.edu​, ​emeike@hmc.edu
// 15 November 2019

//

// Sends song notes and volumes to FPGA over SPI

// Note: store song pitch in Hz, dur in ms

#include ​<​stdio.h​>
#include ​<​math.h​>
#include ​"​SAM4S4B_libraries/SAM4S4B.h​"
#include ​"​ArduboyTonesPitches.h​"
#define TONES_END ​-​1

// Song to play:

#include ​"​Songs/4channel/onTopOfTheWorld.c​"
#define NUM_TRACKS 4

const​ ​int​*​ tracks​[​NUM_TRACKS​]​ ​=​ ​{​ ​&(​score1​[​0​]),​ ​&(​score2​[​0​]),​ ​&(​score3​[​0​]),​ ​&(​score4​[​0​])​ ​};

#define CHIP_SELECT_PIN PIO_PA8 ​// connected to Pin 55 on FPGA
// SPCK: PA14 -> P113

// MOSI: PA13 -> P112

// MISO: PA12 -> P111

// NPCS0 (not used): PA11 -> P110

#define PAUSE_PIN PIO_PA10

#define PLAY_PIN PIO_PA9

#define LED0 PIO_PA0

#define LED1 PIO_PA1

#define LED2 PIO_PA2

#define LED3 PIO_PA29

#define LED4 PIO_PA30

#define LED5 PIO_PA5

#define LED6 PIO_PA6

#define LED7 PIO_PA7

#define VOLUME_CH ADC_CH0 ​// volume selected with ADC CH 0 (PIN PA17)

#define CH_ID TC_CH0_ID

#define CLK_ID TC_CLK5_ID

#define CLK_SPEED TC_CLK5_SPEED

unsigned​ ​int​ idx​[​NUM_TRACKS​]​;
uint16_t currentTuneWord​[​NUM_TRACKS​]​;
uint8_t currentVolume ​=​ ​0b11111111​;
int​ remainingDur​[​NUM_TRACKS​]​;​ ​// time in ms until next note change per track
int​ currentDur ​=​ ​0​; // minimum time in ms until next note change

char​ bytes​[​NUM_TRACKS​*​3​]​; // byte data to send to FPGA over SPI

char​ paused ​=​ ​1​; // indicates whether the song is currently paused

uint16_t getTuneWord​(​int​ pitch​)​;
int​ getMinDur​(​void​)​;
void​ updateTrackArray​(​int​ track​)​;
void​ initTrackArrays​(​void​)​;
void​ restartSongTracks​(​void​)​;
char​ isAllRests​(​void​)​;
char​ isStillPlaying​(​void​)​;
void​ progressNotes​(​int​ timePassed​)​;
void​ updateVolume​(​void​)​;
void​ updateBytes​(​int​ track​)​;
void​ updateAllBytes​(​void​)​;
void​ updateAllBytesForPaused​(​void​)​;
void​ sendNotes​(​void​)​;

int​ ​main​(​void​)​ ​{
 // Initialize:

 samInit​()​;
 pioInit​()​;
 adcInit​(​ADC_MR_LOWRES_BITS_10​)​;
 adcChannelInit​(​VOLUME_CH​,​ ADC_CGR_GAIN_X1​,​ ADC_COR_OFFSET_OFF​)​;
 spiInit​(​MCK_FREQ​/​244000​,​ ​0​,​ ​1​)​;
 // ^ "clock divide" = master clock frequency / desired baud rate

 // the phase for the SPI clock is 0 and the polarity is 0

 tcDelayInit​()​;
 pioPinMode​(​CHIP_SELECT_PIN​,​ PIO_OUTPUT​)​;
 pioPinMode​(​PAUSE_PIN​,​ PIO_INPUT​)​;
 pioPinResistor​(​PAUSE_PIN​,​ PIO_PULL_DOWN​)​;
 pioPinMode​(​PLAY_PIN​,​ PIO_INPUT​)​;
 pioPinResistor​(​PLAY_PIN​,​ PIO_PULL_DOWN​)​;

 pioPinMode​(​LED0​,​ PIO_OUTPUT​)​;
 pioPinMode​(​LED1​,​ PIO_OUTPUT​)​;
 pioPinMode​(​LED2​,​ PIO_OUTPUT​)​;
 pioPinMode​(​LED3​,​ PIO_OUTPUT​)​;
 pioPinMode​(​LED4​,​ PIO_OUTPUT​)​;
 pioPinMode​(​LED5​,​ PIO_OUTPUT​)​;
 pioPinMode​(​LED6​,​ PIO_OUTPUT​)​;
 pioPinMode​(​LED7​,​ PIO_OUTPUT​)​;

 // Get ready to play song:

 tcDelay​(​1​)​;​ ​// allow for stuff to start up
 restartSongTracks​()​;

 // Play song:

 while​ ​(​1​)​ ​{
 if​(!​isStillPlaying​())​ ​{​ ​// stop playing at end of song
 paused ​=​ ​1​;
 for​(​int​ i ​=​ ​0​;​ i ​<​ TONES_END​;​ i​++)​ ​{
 currentTuneWord​[​i​]​ ​=​ ​0​;
 remainingDur​[​i​]​ ​=​ ​-​1​;
 updateBytes​(​i​)​;
 }

 sendNotes​()​;
 restartSongTracks​()​;
 }

 updateVolume​()​;​ ​// display current volume on LEDs even if paused
 if​(!​paused​)​ ​{
 tcDelay​(​currentDur​)​;
 progressNotes​(​currentDur​)​;
 sendNotes​()​;
 }

 if​(​paused ​&&​ pioDigitalRead​(​PLAY_PIN​))​ ​// resume playing
 paused ​=​ ​0​;
 else​ ​if​(!​paused ​&&​ pioDigitalRead​(​PAUSE_PIN​))​ ​{​ ​// pause
 updateAllBytesForPaused​()​;
 sendNotes​()​;
 paused ​=​ ​1​;
 }

 }

}

uint16_t getTuneWord​(​int​ pitch​)​ ​{
 // note: tuneWord of 1 corresponds to 2.384 Hz = ((40MHz)/2^8)/2^16

 uint16_t tuneWord ​=​ pitch ​/​ ​2.38418579​;
 return​ tuneWord​;
}

int​ getMinDur​(​void​)​ ​{
 int​ minDur ​=​ tracks​[​0​][​2​*​idx​[​0​]+​1​]​;
 for​(​int​ i ​=​ ​1​;​ i ​<​ NUM_TRACKS​;​ i​++)​ ​{
 ​if​((​minDur ​==​ ​-​1​)​ ​||​ ​((​remainingDur​[​i​]​ ​!=​ ​-​1​)​ ​&&​ ​(​remainingDur​[​i​]​ ​<​ minDur​)))​{
 minDur ​=​ remainingDur​[​i​]​;
 }

 }

 return​ minDur​;
}

void​ updateTrackArray​(​int​ track​)​ ​{
 remainingDur​[​track​]​ ​=​ tracks​[​track​][​2​*​idx​[​track​]+​1​]​;
 currentTuneWord​[​track​]​ ​=​ getTuneWord​(​tracks​[​track​][​2​*​idx​[​track​]])​;
}

void​ initTrackArrays​(​void​)​ ​{
 for​(​int​ i ​=​ ​0​;​ i ​<​ NUM_TRACKS​;​ i​++)​ ​{
 idx​[​i​]​ ​=​ ​0​;
 updateTrackArray​(​i​)​;
 }

 currentDur ​=​ getMinDur​()​;
}

void​ restartSongTracks​(​void​)​ ​{
 initTrackArrays​()​;
 while​(​isAllRests​())​ ​{
 progressNotes​(​getMinDur​())​;​ ​// skip rests at start
 }

}

char​ isAllRests​(​void​)​ ​{
 for​(​int​ i ​=​ ​0​;​ i ​<​ NUM_TRACKS​;​ i​++)​ ​{
 if​(​currentTuneWord​[​i​]​ ​!=​ ​0​)​ ​{
 return​ ​0​;
 }

 }

 return​ ​1​;
}

char​ isStillPlaying​(​void​)​ ​{
 return​ ​(​currentDur ​!=​ ​-​1​)​;
}

void​ updateBytes​(​int​ track​)​ ​{
 uint8_t tune_word_byte_1 ​=​ currentTuneWord​[​track​]​ ​>>​ ​8​;
 uint8_t tune_word_byte_2 ​=​ currentTuneWord​[​track​]​;
 uint8_t volume_byte ​=​ ​(​currentTuneWord​[​track​]​ ​==​ ​0​)
 ?​ ​0b00000000​ ​:​ currentVolume​;​ ​// pitch 0 is rest

 bytes​[​3​*​track​]​ ​=​ tune_word_byte_1​;
 bytes​[​3​*​track​+​1​]​ ​=​ tune_word_byte_2​;
 bytes​[​3​*​track​+​2​]​ ​=​ volume_byte​;
}

void​ updateAllBytes​(​void​)​ ​{
 for​(​int​ i ​=​ ​0​;​ i ​<​ NUM_TRACKS​;​ i​++)
 updateBytes​(​i​)​;
}

void​ updateAllBytesForPaused​(​void​)​ ​{
 for​(​int​ i ​=​ ​0​;​ i ​<​ NUM_TRACKS​*​3​;​ i​++)
 bytes​[​i​]​ ​=​ ​0b00000000​;
}

void​ progressNotes​(​int​ timePassed​)​ ​{
 // update tracks after timePassed (in ms)

 for​(​int​ i ​=​ ​0​;​ i ​<​ NUM_TRACKS​;​ i​++)​ ​{
 if​(​remainingDur​[​i​]​ ​==​ ​-​1​)​ ​{
 currentTuneWord​[​i​]​ ​=​ ​0​;
 remainingDur​[​i​]​ ​=​ ​-​1​;
 updateBytes​(​i​)​;
 continue​;
 }

 remainingDur​[​i​]​ ​=​ remainingDur​[​i​]​ ​-​ timePassed​;
 if​(​remainingDur​[​i​]​ ​<=​ ​0​)​ ​{​ ​// continue to next note
 int​ lastRemainingDur ​=​ remainingDur​[​i​]​;
 idx​[​i​]​ ​=​ idx​[​i​]​ ​+​ ​1​;
 if​(​tracks​[​i​][​2​*​idx​[​i​]]​ ​==​ ​-​1​)​ ​{​ ​// at the end of this track
 currentTuneWord​[​i​]​ ​=​ ​0​;
 remainingDur​[​i​]​ ​=​ ​-​1​;
 }​ ​else​ ​{
 updateTrackArray​(​i​)​;
 remainingDur​[​i​]​ ​=​ remainingDur​[​i​]​ ​+​ lastRemainingDur​;
 // ^ if we've gone too far, subtract from next

 }

 updateBytes​(​i​)​;
 }

 }

 currentDur ​=​ getMinDur​()​;
}

void​ updateVolume​(​void​)​ ​{
 // measure voltage from pin and convert to value between 0 and 1

 float​ voltage ​=​ adcRead​(​VOLUME_CH​)​;
 double​ volumeScale ​=​ voltage ​/​ ​3.3​;
 volumeScale ​=​ ​(​volumeScale ​>​ ​1​)​ ​?​ ​1​ ​:​ volumeScale​;
 volumeScale ​=​ ​(​volumeScale ​<​ ​0​)​ ​?​ ​0​ ​:​ volumeScale​;

 uint8_t newVolume ​=​ ​(​int​)​ ​(​round​(​volumeScale ​*​ ​0b11111111​))​;
 if​(​newVolume ​!=​ currentVolume​)​ ​{
 currentVolume ​=​ newVolume​;
 updateAllBytes​()​;
 }

 pioDigitalWrite​(​LED0​,​ ​(​currentVolume​) &​ ​1​)​;
 pioDigitalWrite​(​LED1​,​ ​(​currentVolume ​>>​ ​1​)​ ​&​ ​1​)​;
 pioDigitalWrite​(​LED2​,​ ​(​currentVolume ​>>​ ​2​)​ ​&​ ​1​)​;
 pioDigitalWrite​(​LED3​,​ ​(​currentVolume ​>>​ ​3​)​ ​&​ ​1​)​;
 pioDigitalWrite​(​LED4​,​ ​(​currentVolume ​>>​ ​4​)​ ​&​ ​1​)​;
 pioDigitalWrite​(​LED5​,​ ​(​currentVolume ​>>​ ​5​)​ ​&​ ​1​)​;
 pioDigitalWrite​(​LED6​,​ ​(​currentVolume ​>>​ ​6​)​ ​&​ ​1​)​;
 pioDigitalWrite​(​LED7​,​ ​(​currentVolume ​>>​ ​7​)​ ​&​ ​1​)​;
}

void​ sendNotes​(​void​)​ ​{
 // assert chipSelect

 // for each track:

 // shift in frequency in two bytes

 // shift in volume in one byte

 // deassert chipSelect

 pioDigitalWrite​(​CHIP_SELECT_PIN​,​ ​1​)​;
 for​(​int​ i ​=​ ​0​;​ i ​<​ NUM_TRACKS​*​3​;​ i​++)​ ​{
 spiSendReceive​(​bytes​[​i​])​;
 }

 pioDigitalWrite​(​CHIP_SELECT_PIN​,​ ​0​)​;
}

Appendix C: SystemVerilog for FPGA

// finalProject.sv

// Erik Meike and Caleb Norfleet

// FPGA stuff for uPs final project

`define NUM_TRACKS 4 ​// number of tracks (and tone generators) used
`define PACKET_SIZE 24 ​// bits of data per track in each packet
typedef​ logic​[`PACKET_SIZE-1:0]​ packetType​;

module ​top​(​input​ logic clk​,​ reset​,
 ​input​ logic chipSelect​,​ sck​,​ sdi​,
 ​output​ logic​[`NUM_TRACKS-1:0]​ leftHigh​,​ leftEn​,​ rightHigh​,​ rightEn)​;

 packetType​[`NUM_TRACKS-1:0]​ notePackets​;

 spi s​(​clk​,​ reset​,​ chipSelect​,​ sck​,​ sdi​,​ notePackets​);

 noteCore nc​[`NUM_TRACKS-1:0]​(
 ​.​clk (​ clk ​), // single bit replicated across instance array

 ​.​reset (​ reset ​),
 ​.​notePacket ​(​ notePackets ​),​ ​// connected logic wider than port so split across
 instances

 ​.​leftHigh ​(​ leftHigh ​),
 ​.​leftEn (​ leftEn ​),
 ​.​rightHigh ​(​ rightHigh ​),
 ​.​rightEn (​ rightEn ​)
);

endmodule

module​ noteCore​(​input​ logic clk​,​ reset​,
 ​input​ packetType notePacket​,
 ​output​ logic leftHigh​,​ leftEn​,​ rightHigh​,​ rightEn)​;
 // tone generator for one track

 logic​[​15​:​0​]​ tuneWord​;​ ​// frequency of note signal
 logic​[​7​:​0​]​ volume​;​ ​// unsigned volume of output
 logic sign​;​ ​// note signal sign
 logic​[​7​:​0​]​ amplitude​;​ ​// note signal amplitude
 logic​[​7​:​0​]​ currentVol​;​ ​// volume only updated after every 2^8 clock cycles
 logic​[​7​:​0​]​ magnitude​;​ ​// amplitude of wave after multiplying with volume
 logic waveOut​;​ ​// output signal, PWM at 40MHz to get amplitude at 156.25 kHz
 logic wgEn​;​ ​// interrupt to request next amplitude from waveGen

 assign​ tuneWord ​=​ notePacket​[​23​:​8​]​;
 assign​ volume ​=​ notePacket​[​ ​7​:​0​]​;

 waveGen wg​(​clk​,​ reset​,​ wgEn​,​ tuneWord​,​ sign​,​ amplitude​);

 always_ff @​(​posedge clk​)​ ​begin
 if​ (reset) currentVol ​<=​ ​8'b0​;
 else​ ​if​(wgEn) currentVol ​<=​ volume​;
 end

 logic​[​15​:​0​]​ mult​;
 assign​ mult ​=​ ​(​{​8'b0​,​ amplitude​}​ * ​{​8'b0​,​ currentVol​}​)​;
 assign​ magnitude ​=​ ​(​mult​[7]​ ​&​ ​~&​mult​[​15​:​8​])​ ​?​ ​(​mult​[​15​:​8​]​ ​+​ ​8'b1​)​ ​:​ ​(​mult​[​15​:​8​])​;
 // ^ note: rounding with saturation

 pwmGen pg​(​clk​,​ reset​,​ magnitude​,​ wgEn​,​ waveOut​);

 output​Gen og​(​clk​,​ reset​,​ waveOut​,​ sign​,​ leftHigh​,​ leftEn​,​ rightHigh​,​ rightEn​)​;

endmodule

module​ waveGen​(​input​ logic clk​,​ reset​,​ wgEn​,
 input​ logic​[​15​:​0​]​ tuneWord​,
 output​ logic sign​,
 output​ logic​[​7​:​0​]​ amplitude)​;
 // generates sinusoid based on tuneWord

 // only changes frequency at end of wave (every other zero crossing)

 logic​[​15​:​0​]​ phaseAcc​; // phase accumulator

 logic​[​7​:​0​]​ LUTsine​[(​2​**​10​-​1​):​0​];​ ​// look up table
 logic​[​15​:​0​]​ currentTuneWord​;

 logic nextSign​;
 logic​[​9​:​0​]​ nextPhase​;
 assign​ nextSign ​=​ phaseAcc​[15]​;​ ​// neg in second half
 assign​ nextPhase ​=​ ​(​phaseAcc​[14]​)​ ​?​ ​(​10'b0​ ​-​ phaseAcc​[​13​:​4​])​ ​:​ ​(​phaseAcc​[​13​:​4​])​;
 // ^ note that phase is adjusted since we're using a 1/4 phase LUT

 always_ff @​(​posedge clk​)​ ​begin
 if​(reset) ​begin
 phaseAcc <=​ ​16'b0​;
 currentTuneWord ​<=​ ​16'b0​;
 amplitude <=​ ​8'b0​;
 sign <=​ ​1'b0​;
 end

 else​ ​if​(wgEn) ​begin
 if​((tuneWord !​=​ currentTuneWord) ​&​ ((​~​sign ​&​ nextSign) ​|

 ​(currentTuneWord ​==​ ​16'b0​))) ​begin
 currentTuneWord ​<=​ tuneWord​;
 phaseAcc <=​ ​16'b0​;
 amplitude <=​ ​8'b0​;
 sign <=​ ​1'b0​;
 end​ ​else​ ​begin
 phaseAcc ​<=​ phaseAcc ​+​ currentTuneWord​;
 amplitude ​<=​ LUTsine​[nextPhase]​;
 sign <=​ nextSign​;
 end

 end

 end

 initial ​begin
 $readmemb("LUTsine​.​txt"​,​ LUTsine)​;
 end

endmodule

module​ pwmGen​(​input​ logic clk​,​ reset​,
 ​input​ logic​[​7​:​0​]​ magnitude​,
 ​output​ logic wgEn​,
 ​output​ logic waveOut)​;
 // modulates carrier signal based on sine wave

 // wave gen runs at 156.25 kHz = 40MHz / 256 (aka 2^8)

 logic​[​7​:​0​]​ waveCounter​;
 always_ff @​(​posedge clk​)​ ​begin
 if​(reset) waveCounter ​<=​ ​8'b10000000​;
 else waveCounter ​<=​ waveCounter ​+​ ​8'b1​;
 end

 assign​ wgEn ​=​ ​(​waveCounter ​==​ ​8'b0​)​;

 always_ff @​(​posedge clk​)​ ​begin
 waveOut ​<=​ (​~​reset ​&​ (waveCounter ​<​ magnitude))​;
 // PWM carrier by magnitude

 end

endmodule

module​ outputGen​(​input​ logic clk​,​ reset​,
 ​input​ logic waveOut​,​ sign​,
 ​output​ logic leftHigh​,​ leftEn​,​ rightHigh​,​ rightEn​)​;
 // generates FET driver signals based on sign and output wave

 always_ff @​(​posedge clk​)​ ​begin
 if​(reset) ​begin
 leftHigh ​<=​ ​1'b0​;
 leftEn <=​ ​1'b0​;
 rightHigh ​<=​ ​1'b0​;
 rightEn ​<=​ ​1'b0​;
 end​ ​else​ ​begin
 leftEn ​<=​ ​1​;
 rightEn ​<=​ ​1​;
 leftHigh ​<=​ (sign)​&​waveOut​;​ ​// sign^waveOut
 rightHigh ​<=​ (​~​sign)​&​waveOut​;​ ​//~(sign^waveOut)
 end

 end

endmodule

module​ spi​(​input​ logic clk​,​ reset​,
 ​input​ logic chipSelect​,​ sck​,​ sdi​,
 ​output​ packetType​[`NUM_TRACKS-1:0]​ notePackets)​;
 // Accepts frequency and volume input over SPI from ATSAM

 // Internal freq and volume only updated after full packet received

 // Note: contains ~3.4 second watchdog timer (turns off music)

 // SPI interface protocol:

 // assert chipSelect

 // for each track (in order):

 // shift in frequency in two bytes (MSB first)

 // shift in volume in one byte

 // deassert chipSelect

 logic​[​31​:​0​]​ dataCount ​=​ ​32'b0​;​ ​// amt of data in SPI packet so far
 logic dataValid ​= ​ ​1'b0​;​ ​// indicates whether readData is good
 logic dataValidCopy ​= ​ ​1'b0​;​ ​// copied into clk domain
 logic​[​25​:​0​]​ watchdogCounter​;​ ​// 2^27/40MHz = ~3.36 seconds %25:0
 logic watchdogTriggered​;

 logic​[(​`PACKET_SIZE*`NUM_TRACKS​)-​1​:​0​]​ readData​;​ ​// data received over SPI
 logic​[(​`PACKET_SIZE*`NUM_TRACKS​)-​1​:​0​]​ readDataCopy​;​ ​// copied into clk domain
 logic​[(​`PACKET_SIZE*`NUM_TRACKS​)-​1​:​0​]​ lastReadData​;​ ​// memory for feeding watchdog

 always_ff @​(​posedge sck or negedge chipSelect​)​ ​begin
 if​(​~​chipSelect) ​begin

 dataCount <=​ ​32'b0​;
 end

 else​ ​begin
 readData ​<=​ ​{​readData​[​(`PACKET_SIZE*`NUM_TRACKS)​-​2​:​0​],​ sdi​};
 dataCount ​<=​ dataCount ​+​ ​32'b1​;
 ​if​((dataCount ​+​ ​32'b1​) ​==​ (`PACKET_SIZE*`NUM_TRACKS))
 dataValid ​<=​ ​1'b1​;
 ​else dataValid ​<=​ ​1'b0​;
 end

 end

 always_ff @​(​posedge clk​)​ ​begin
 if​(​~​chipSelect) ​begin​ ​// copy over from sck domain if cs is low
 readDataCopy ​<=​ readData​;
 dataValidCopy ​<=​ dataValid​;
 end

 if​(reset) ​begin
 notePackets <=​ ​{​`NUM_TRACKS*`PACKET_SIZE​{​1'b0​}};
 watchdogCounter ​<=​ ​26'b0​;
 watchdogTriggered ​<=​ ​1'b0​;
 end​ ​else​ ​begin
 ​if​(​&​watchdogCounter ​&​ (readDataCopy ​==​ lastReadData)) ​begin
 watchdogTriggered ​<=​ ​1'b1​;​ ​// stop playing if watchdog
 counter at max val

 ​end​ ​else​ ​begin
 watchdogCounter ​<=​ watchdogCounter ​+​ ​26'b1​;
 ​end
 ​if​(dataValidCopy) ​begin​ ​// if the packet is valid, update tracks
 if​(watchdogTriggered) ​begin​ ​// if triggered, don't play
 notePackets ​<=​ ​{​`NUM_TRACKS*`PACKET_SIZE​{​1'b0​}};
 end​ ​else​ ​begin​ ​// otherwise update tracks with current note
 notePackets ​<=​ readDataCopy​;
 end

 lastReadData ​<=​ readDataCopy​;
 ​if​(​~​(readDataCopy ​==​ lastReadData)) ​begin
 // if we've received a new packet, feed watchdog

 watchdogCounter ​<=​ ​26'b0​;
 watchdogTriggered ​<=​ ​1'b0​;
 end

 end

 end

 end

endmodule

Appendix D: SystemVerilog Testbench

// testbench.sv

// Erik Meike and Caleb Norfleet

// Testbench for uPs final project

`define NUM_TRACKS 4 ​// number of tracks (and tone generators) used
`define PACKET_SIZE 24 ​// bits of data per track in each packet

module ​testbench ​();
 logic clk ​, ​ reset ​, ​ cs ​, ​ sck ​, ​ sdi ​;
 logic ​[`NUM_TRACKS-1:0] ​ A ​, ​ B ​, ​ C ​, ​ D ​;
 logic ​[(​`PACKET_SIZE*`NUM_TRACKS ​)- ​1 ​: ​0 ​] ​ packet ​;
 integer i ​;

// device under test

top dut ​(​clk ​, ​ reset ​, ​ cs ​, ​ sck ​, ​ sdi ​, ​ A ​, ​ B ​, ​ C ​, ​ D ​);

// test case

initial ​begin
 ​if​(`NUM_TRACKS ​== ​ ​1 ​)
 packet ​<= ​ ​24'h0114ff ​;
 ​else
 packet ​<= ​ ​96'h0114ff0217ff0114ff0217ff ​;
 reset ​<= ​ ​1'b1 ​; ​ # ​22 ​; ​ reset ​<= ​ ​1'b0 ​;

end

 // generate clock signal

Initial forever ​begin
 clk ​= ​ ​1'b0 ​; ​ # ​5 ​;
 clk ​= ​ ​1'b1 ​; ​ # ​5 ​;
 end

initial ​begin
 i ​= ​ ​0 ​; ​ sck ​= ​ ​0 ​;
 cs ​<= ​1'b1 ​; ​ # ​1 ​; ​ cs ​<= ​ ​1'b0 ​; ​ # ​23 ​; ​ cs ​<= ​ ​1'b1 ​;

end

// shift in test vectors over SPI

always​ @(​posedge clk ​) ​begin
 if​(​~ ​reset) ​begin
 if​ (i ​== ​ ​24 ​*`NUM_TRACKS) cs ​= ​ ​1'b0 ​;
 if​ (i ​< ​24 ​*`NUM_TRACKS) ​begin
 # ​1 ​; ​ sdi ​= ​ packet ​[​(​24 ​*`NUM_TRACKS) ​- ​1 ​- ​i ​];
 # ​1 ​; ​ sck ​= ​ ​1 ​; ​ # ​5 ​; ​ sck ​= ​ ​0 ​;
 end

 i ​= ​ i ​+ ​ ​1 ​;
 end

 ​end
endmodule

Appendix E: Schematics

