3D Etch-a-Sketch - Final Report

Alex Smith

Sean Hoerger

Abstract

One of the most common DIY projects done with LEDs is the creation of an
three-dimensional LED matrix. Typically these projects use the matrix for the purpose of
displaying various animations, however we were more interested in allowing a user to interact
with the matrix in some way. To that end, we wanted to create a three-dimensional LED Matrix
which a user could use as an Etch-a-Sketch. To do this we use the Cyclone IV FPGA to turn on
LEDs in the matrix via a time multiplexing scheme, and the ATSAM4S4B Microcontroller to
read user inputs from two joysticks and a reset button. The FPGA and microcontroller are then
connected via an SPI link where the Microcontroller reads user inputs, updates the desired LEDs
to be turned on by updating a char array, and then sends the signal to the FPGA which updates
the matrix appropriately.

Introduction

This goal of this project was to create a three-dimensional LED matrix which functioned
as a three-dimensional Etch-a-Sketch. We thought the project would be a fun use of LEDs and
would allow for a wide variety of possible designs to be created on the LED matrix we created.
Additionally, a functioning LED Matrix which is controlled by a separate unit (in this case the
microcontroller) and is able to have any LED turn on at any time has many applications for
various games and activities other than an Etch-a-Sketch. A snake game, a game to avoid falling
obstacles by controlling a ‘player’ LED, or any number of others are implementable through the
same scheme as the Etch-a-Sketch through some non-trivial but not exceptionally difficult
changes in the software on the microcontroller.

The project as a whole consists of a Cyclone IV FPGA which is responsible for sending
the signals to the LED matrix turning on the appropriate LEDs based on a 343 bit one hot
encoded signal stored in RAM. To turn on these LEDs with the limited number of output pins
available to the FPGA the LEDs are lit using a time multiplexing scheme. To do this the FPGA
sends the same signal seven-bit signal to seven flops and then inverts each signal after the flop,
and only activates one flop at a time, continually cycling through these flops and also through
seven pins which power the layers of the LED matrix (more on this in the section on matrix
design and FPGA design). The other major component of the system is the ATSAM4S4B
microcontroller which is responsible for reading user inputs from the two joysticks and reset
pushbutton, and then for determining which new LED should be turned on. That is then encoded
in a char array and sent to the FPGA over an SPI link (the microcontroller being the master and
the FPGA the slave). In this way the system is able to take a user input and change the LEDs
which are lit on the LED matrix, allowing for the desired functionality. A block diagram of the
system can be seen below.

FRGA o -

lawer f \ e
uee RO f @ o Dk (cadhade)
1 2 | M) - -
(EDsinrows (5610 VR S H L] %w0, Leos0C
3
t
7 @ octo\ Flop O s
col. (clb) sdek (SPIO ; kS ;
= - ! ° o : . LED McXny
e o o -] ‘é' o :
[() ®
v 5
9 | M%| A A
i — Rowd b, LEDs UL-Y43
%p\ octo\ ‘ﬂopt
Moster
GND
3av 3
Arnolog Pirs f A Aaﬁs*'.c\f_s
Migroconteolles
S Resek Rudnbutton

Figure 1: System Block Diagram

New Hardware

This project entailed two new pieces of hardware. The simpler hardware is the two
joysticks which allow the user to input any of six possible directions (forward, backward, left,
right, up, down). The joysticks function by producing an analog signal proportional to the
location of the joystick with respect to a two axis system. The joystick is also able to be pressed,
acting as a switch although we did not utilize this functionality as the joystick buttons are low
quality and often fail. To determine the direction of the joystick it is necessary to read the two
analog output pins corresponding to the x and y axis, the signal ranges from the supply voltage to
ground at the extreme of each axis and sits at half the supply voltage when at rest in the center of
the pad. In this way the position of the joystick can be determined by reading the voltage of each

axis at any given time.

The second new piece of hardware was the 7x7x7 LED Matrix. One of the largest
challenges of our project was simply building our LED Matrix. Our design is a 7x7x7 LED
matrix. Essentially, the matrix consists of seven layers, powered individually. Each layer is a 7x7
grid of LEDs, each sharing a common cathode. To connect the layers, forty-nine vertical wires
provide common anodes to the vertical columns of LEDs. Thus, to turn on an LED, the desired
layer is powered, and the desired column is pushed low. The remaining columns are pushed high.
Thus, current only flows through the desired LED, creating light. An image of this can be seen
below, seven of the vertical wires are highlighted in blue and three layers are highlighted in red.

Figure 2: Constructed LED Matrix

Building the LED matrix proved to be quite a challenge; soldering 343 LEDs together is
no quick task. To expedite the assembly process, we built two molds out of wood. The first mold
holds an LED while we bend its anode and cathode wires into the correct shape. The anode was
bent into a loop to fit around the vertical wire. The second mold held forty-nine LEDs in the
correct spacing for a layer. We then soldered seven LEDs in a row to a row wire, and repeated

six more times. Once we had all the rows, we could then add two end wires to complete the
layer.

Once we had completed all seven layers, we could begin connecting the layers. We
started by soldering the forty-nine vertical wires to the bottom layer. Then, the idea was slide
each layer over the top, using the loops on each LED. However, the loops were exactly the size
of the wire, thus there was no room for error. Adding to the difficulty, all forty-nine LEDs had to
be lined up at once. Ultimately, we elected not to use the loops as originally designed, and we
had to piece each vertical column together.

After the cube had been fully assembled, we soldered it to the protoboard (which also
turned out to be quite tricky to line up all the holes). We then added the additional wires to power
each layer and column and the header pins to make the wiring easier. Underneath the protoboard,
wires were added to connect the layer select pins to the layer select wire and to connect the
column select pins to the column wires.

Schematics
The schematics are organized into modules for ease of understanding as seen in the
following pages.

\I i
GND
£

N

-

33y

lauer Select(¢], PSL
laner Select[5], PSI
layer Seleck (4], PSo
louerSelect[3], Pud
laupr Select (2], PAC
loupr Select [1], P4y
lowpr Scleck (o], M3
fleptl(e] P23
flop ULR(S], P11
flop L] Pl
flepCl®(s], P7

b |

flopCLlRl2], P3
flepCLR11], P2
flepCLR(], PI

FlepClle, PUT

CLYCLONE W FRGA'

[

resed PO
cow LEDs[o] P20
cow LEDs[1], P31

cow LEDs[2] P32

cow LEDs[2] P3D

MMU\&& Boos Mag L

cow LEDs[u] P3Y
row LEDs[s] 73R
cow LEDs[£] P31

load P35

sck ,PUR
sdi, P

vekernally

LED Matax

3
3- clk, P

} ?’ MOS |, PAR
3 SV, PAM

LAY PIN, PAIG

ATS HN\H%‘{'G:

r
[

RESET_PIN, PAIS
DOWN _UP_PIN, ADC _CHI, PAIT
RIGHT _ LEFT _PIN, AbC .43, PAO

FORLWARD _RACKOARD TN, ADC_ AT, PAYY

0 || #tep 1 | Slepled | lep 1 | 1ep L

?v.s'h B&ﬂm

imsec e T83] [iererte 113] [163] [merber 23] [imrter 1] [imertor123] [smecter (53] [imncetertt]] [martect]]

joustick (o)

joustick 1)

Figure 3: Overall System Schematic

LED Mekrix
| o.«j:.r&kc\' [t‘.]

laur Sclect (5]
louger Select 4]
lauer Seleck[3]
layer Seleck(2]

W

wm:#w:w
:7"-: : i;: T I

yerer {0\ 1@ -6@
nerer 11 10-6@
werter [2110 -6R
erter{3110-6Q
werter (U l10-6Q
worter[Sl1a-6@
'“UG&HLCJ‘G-GQ h:. 'lo.-gorSck.d'[_{] i
nerer [TN1Q-6GR EEaiH i 1

Wuerter g€llg—— ' ”

TNTTRRRTAT]

i

W

HHHH
.::it::::::ki::i:l:m:
i

i leer (0]

\%er [7. :6] 4————]

niiiil

| ayer (€)

Figure 4: LED Matrix Module

joystick (X} pashloudten

3 o
' —I__ FSPST Push Botlon S’
SV L =
r -
], 5 \
Aptun RD:L CS _g ,3.. RESET _PIN
4< 7
ADC_CH Ry o
T 3
SW a L
\w@@f E’q
Meermistoc | S\
L EN3906 | o Lep(o)
R=1ka ~\V/ R=\S00L
I.msorsch‘:\'[_o] NV ‘nverker {0__\ 1Q
L1
Pl N
© o
vep Lepli:an] o
o o
2ep LEp[uz]
‘Ixi\/J R=1500
AMA—— nverter (8} 1@
I/l ' -.‘
N

Figure 5: Joystick, Pushbutton and layer Modules

Microcontroller Design

For our design, the microcontroller was tasked with reading user inputs, managing the
board state (which LEDs are on and off), and sending the board state to the FPGA through SPIL.
The microcontroller keeps track of three important pieces of information: the board state, the
location of the cursor (the location of the user), and whether or not the reset button has been
pressed. The board state is a character array of size 49, one character for each row. The seven
least significant bits of each character correspond to the seven LEDs in a given row, a binary one
indicating a lit LED and a binary zero indicating an off LED. The cursor information is stored as

three integers representing the x, y, and z coordinates of the user. The reset trigger is saved as a

boolean integer.

Users provide input through two joysticks. These joysticks provide an analog signal to

the microcontroller that correspond to the position of the joystick. The microcontroller, reads the

input using its analog peripheral. Depending on the reading, the location of the cursor is

appropriately incremented or decremented in the along x, y, or z axis. There are software checks

to make sure the cursor does not leave the domain of the matrix; if the user hits the edge of the

matrix, the cursor cannot continue in that direction.

The etch-a-sketch utilized a few key functions to run properly:

getMeasurement () - reads user input and updates the cursor location, signals
if the reset button is pressed

turnOn (int x, int vy, int z) -turns onthe LED at the given x, y, and
z coordinates

turnOff (int x, int y, int z) -turns off the LED at the given x, y,
and z coordinates

spiSendBoard () - sends the board state over SPI

The microcontroller is also tasked with controlling animations. Using the turnOn and

turnOf f methods in conjunction with a variety of loops, delays, hard coding strategies,

creating fun animations is relatively simple. We created three animations to go along with our

etch-a-sketch.

FPGA Design

Rainforest - random LEDs at the top of the display turn on one-by-one. Upon an
LED turning on, the rest of the LEDs in the column turn on in descending order.
Once a critical number (21) of columns have been lit, the animation alternates
between a new column being lit and already lit column being turned off. Columns
are turned off in the same fashion as they are turned on, starting at the top and
descending to the bottom.

Space Mountain - seven random LEDs on the right face of the matrics display are
turned on at once. They streak quickly across the matrix in a line from right to
left, and this process is repeated with different, random LEDs in each cycle. The
final effect is similar to looking at moving lights out of a subway window or
taking a ride on Disney’s Space Mountain roller coaster.

Wave Peak - consists of an oscillating cone. The appearance is similar to that of a
speaker playing a low bass note.

The FPGA design mainly involved setting up a system which is able to time multiplex

through the forty-nine rows of seven LEDs, in addition to storing a 343 bit signal which encodes

the LEDs that should be on in the matrix in RAM so that the microcontroller can only send a SPI

communication packet when a joystick input is received rather than sending the signal at the

desired multiplexing speed. A block diagram of the FPGA modules can be seen below.

[Al's
reset
sck
sdi
load

\ SlawsCle floplk

+

b

J
i | | =
)

] System Contedller

LEDMedrin_sph ‘ ———F—————— loyerSelect
=t L

':F
343 |maxdq [—F—fow LEDs

\evelToPulse 36972 343
!

i f— decoder

Figure 6. Block Diagram of FPGA System
An outline of each module is included below:
SlowClk: this module takes the 40 MHz FPGA clock signal and turns it into a 6,666 Hz
clock signal.
LEDMatrix_spi: this module implements a simple SPI communication system as the
slave where it is only able to receive data from the master.
levelToPulse: this module implements a Level to Pulse converter for use in determining
when the SPI packet being read from the microcontroller is ready to be pushed into
RAM.
decoderMem: this module takes the 392 bit signal encoded in the microcontroller as a
char array with 49 elements and stores it in the RAM available to the FPGA.
decoder: this module takes in the 392 bit signal encoded in RAM and pulls out the bits
which correspond to the 343 LEDs in the matrix (by a one-hot encoding).
mux49: this module is a 49 input mux which parses the 343 bit bus encoding the LEDs
which should be turned on and selects the one to be pushed to the 7 flops at any given
time based on commands from the System Controller.
systemController: this module implements the multiplexing necessary to turn on all
LED:s. It does this by having each row in the layers correspond to a single state and by
sending out the appropriate flopCLR and layerSelect signal while also sending the
appropriate command to the mux to select the 7 bits to be pushed to the flops.

Results

We are quite proud of our final project. We were able to fully implement both the

etch-a-sketch and multiple animations in addition to building the full 7x7x7 LED Matrix and

controller with joysticks. Playing with the etch-a-sketch proves to be very fun and satisfying. The

animations are equally enjoyable and mesmerizing.

However, our project was not free of bugs nor learning opportunities. Building the LED

matrix proved to be a massive undertaking; with every completed step, we realized there was

more to do then we initially planned. Furthermore, we struggled with phantom lights turning on

10

in the bottom layer of LEDs and mysterious timing discrepancies with the communication
between the microcontroller and the FPGA. With infinite time these bugs could likely be
squashed however we are extremely satisfied with the result of the project as we were able to
create a functional Etch-a-Sketch and some interesting animations as well.

References

HMC Student Sarp Misoglu completed a similar project involving an LED matrix in
2017. We referenced Misoglu’s final project report for inspiration on solving various technical
challenges with regards to the matrix design and software.

We also referenced the YouTube video, “How to Make an LED Cube at Home” by the
channel Tapendra Mandal. It gave us some very useful tips for assembling our LED matrix. The
video can be found at this link: https://www.youtube.com/watch?v=2BIVUKW5hL0&t=238s

Data Sheets:
e 2N3906 PNP Transistor: http://pages.hmc.edu/harris/class/e155/2N3906.pdf

e 7404 Hex Inverter: http://www.ti.com/lit/ds/symlink/sn741s04.pdf
e SN74LS273N Octal Flop: http://www.ti.com/lit/ds/symlink/sn741s273.pdf

Bill of Materials
Item Price Link
343+ LEDs $15.96 https://www.amazon.com/stores/page/015D8455-927B-43B2-8
1ED-2514F8D2C0OF6?ingress=2&visitld=129eb292-229d-47e8
-a31b-ff578aa3d362&ref =bl dp_s web 18685144011
Galvanized $5.99 Available at Lowes
Steel Wire
Protoboard $11.96 https://www.amazon.com/gp/product/BO7TDH7HWEFT/ref=0x_s
Base c_act _title 1?smid=A1THAZDOWP300U&psc=1
Joysticks $9.99 https://www.amazon.com/gp/product/BO7SJY WW8&J/ref=0x_sc
_act_title 2?smid=A2760MNFACRLA8&psc=1
Octal Flops $0.85x 7=23$5.95 | https://www.jameco.com/Jameco/Products/ProdDS/47386.pdf
Total $49.85
Software & Verilog

Attached as follows is the software used to control the ATSAM4S4B and the verilog used
to imply logic on the Cyclone IV FPGA.

11

https://www.youtube.com/watch?v=2BlVUKW5hL0&t=238s
http://pages.hmc.edu/harris/class/e155/2N3906.pdf
http://www.ti.com/lit/ds/symlink/sn74ls04.pdf
http://www.ti.com/lit/ds/symlink/sn74ls273.pdf
https://www.amazon.com/stores/page/015D8455-927B-43B2-81ED-2514F8D2C0F6?ingress=2&visitId=129eb292-229d-47e8-a31b-ff578aa3d362&ref_=bl_dp_s_web_18685144011
https://www.amazon.com/stores/page/015D8455-927B-43B2-81ED-2514F8D2C0F6?ingress=2&visitId=129eb292-229d-47e8-a31b-ff578aa3d362&ref_=bl_dp_s_web_18685144011
https://www.amazon.com/stores/page/015D8455-927B-43B2-81ED-2514F8D2C0F6?ingress=2&visitId=129eb292-229d-47e8-a31b-ff578aa3d362&ref_=bl_dp_s_web_18685144011
https://www.amazon.com/gp/product/B07DH7HWFT/ref=ox_sc_act_title_1?smid=A1THAZDOWP300U&psc=1
https://www.amazon.com/gp/product/B07DH7HWFT/ref=ox_sc_act_title_1?smid=A1THAZDOWP300U&psc=1
https://www.amazon.com/gp/product/B07SJYWW8J/ref=ox_sc_act_title_2?smid=A2760MNFACRLA8&psc=1
https://www.amazon.com/gp/product/B07SJYWW8J/ref=ox_sc_act_title_2?smid=A2760MNFACRLA8&psc=1
https://www.jameco.com/Jameco/Products/ProdDS/47386.pdf

Software

// joystick.c by Sean Hoerger
// shoerger@hmc.edu

#include <stdint.h>
#include <time.h>
#include "SAM4S4B.h"
#include "SAM4S4B sys.h"
#include "SAM4S4B pio.h"
#include "SAM4S4B spi.h"

// dimensions of the cube
#define ROW SIZE 7
#define BOARD SIZE 49

// SAM pins

#define LOAD PIN PIO PAl6

#define RESET PIN PIO PALS

#define DOWN UP PIN ADC CH1

#define RIGHT LEFT PIN ADC CH3
#define FORWARD BACKWARD PIN ADC CH2
#define MODE PIN PIO PALO

// stores board state
// each row stored as the least
// significant 7 bits of a char
char board[BOARD SIZE];

// the coordinates of the cursor
int xPos;
int yPos;
int zPos;

// reset trigger
int reset;

// gets user input

// - 0 if no input
// - 1 if directional input
// - 2 if reset
int getMeasurement () {
// test for reset
if (pioDigitalRead (RESET PIN) == PIO_HIGH) {

return 2; // reset trigger

// get directional input from user
if (adcRead (RIGHT LEFT PIN) > 2.7) // move right

--xPos;

else if (adcRead (RIGHT LEFT PIN) < .3) // move left
++xPos;

else if (adcRead (FORWARD BACKWARD PIN) < .3) // move back
--yPos;

else if (adcRead (FORWARD BACKWARD PIN) > 2.7) // move forward

12

++yPos;
else if (adcRead (DOWN UP PIN) > 2.7) // move up
--zPos;
else if (adcRead (DOWN UP PIN) < .3) // move down
++zPos;
else return 0; // return 0 if no user input

// check boundary cases

if (xPos < 0) xPos = 0;
if (xPos > 6) xPos = 6;
if (yPos < 0) yPos = 0;
if (yPos > 6) yPos = 6;
if (zPos < 0) zPos = 0;
if (zPos > 5) zPos = 5; // keep bottom layer from being accessed

return 1; // return 1 if directional input

}

// turns of all LEDs on the board
void clearBoard () {
// set all chars in board state to 0000 0000, turning off all
lights
for(int i = 0; i < BOARD SIZE; ++i) {
board[i] = 0x00;

}

// turns on all LEDs on the board
void fillBoard() {
// set all chars in board state to 0111 1111, turning on all lights
for(int i = 0; i < BOARD SIZE; ++i) {
board[i1] = O0x7F;

}
// turns on the LED at the specified location

void turnOn (int x, int y, int z) {
// account for board shift

++z;

if(z == BOARD SIZE) z = 0;
// turn on the specified bit
board[7*y + z] |= 1 << x;

// turns off the LED at the specified location
void turnOff (int x, int y, int z) {
// acount for the board shift

++z;
if(z == BOARD SIZE) z = 0;
// turn off the specified bit
board[7*y + z] &= ~(1 << x);

13

// sends the board state over spi
void spiSendBoard() {
pioDigitalWrite (LOAD PIN, 1);
// send each character over spi
for (int 1 = 0; i < BOARD SIZE; ++1i) {
spiSendReceive (board[i]) ;

}
pioDigitalWrite (LOAD PIN, 0);

int main (void) {

// set up SAM

samInit () ;

pioInit () ;

tcDelayInit();

adcInit (ADC MR LOWRES BITS 10);

adcChannelInit (FORWARD BACKWARD PIN,ADC CGR GAIN X2,ADC COR OFFSET ON) ;
// the x direction of joystick 1 --> forward/back

adcChannelInit (RIGHT LEFT PIN,ADC CGR GAIN X2,ADC_COR OFFSET ON); // the
y direction of joystick 1 --> right/left

adcChannelInit (DOWN UP PIN,ADC CGR GAIN X2,ADC _COR OFFSET ON); // the x
direction of joystick 2 —--> up/down

spiInit (MCK_FREQ/244000, 0, 1);

// set up pins
piOPinMOde(LOAD_PIN, PIO OUTPUT) ;

int input;

// main etch-a-sketch loop
while (1) {
// clear the board and reset the cursor to the starting position
clearBoard() ;
spiSendBoard() ;
tcDelayMillis (100);
xPos = 3;
yPos = 3;
zPos = 3;
turnOn (xPos, yPos, zPos);
spiSendBoard() ;
tcDelayMillis (100) ;
reset = 0;

while (!reset) {
input = getMeasurement () ;
// get measurement
if (input == 2) {
// reset
reset = 1;
}
else {
// update board state to reflect user input

14

turnOn (xPos, yPos,
spiSendBoard() ;
tcDelayMillis (200) ;

Animations:

// animations.c by Sean Hoerger
// shoerger@hmc.edu

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "SAM4S4B.h"
#include "SAM4S4B sys.h"
#include "SAM4S4B pio.h"
#include "SAM4S4B spi.h"

#define ROW SIZE 7

#define BOARD SIZE 49
#define LOAD PIN PIO PAl6
#define RESET PIN PIO PALS
char board[BOARD SIZE];

// turns of all LEDs on the board

void clearBoard() {
for(int i = 0; i < BOARD SIZE; ++i) {
board[i] = 0x00;

// turns on all LEDs on the board
void fillBoard() {
for(int i = 0; i < BOARD SIZE; ++i) {
board[i] = O0x7F;

zPos) ;

// turns on the LED at the specified location

void turnOn(int x, int y, int z) {

++z;
if(z == BOARD_SIZE) z = 0;
board([7*y + z] |= 1 << x;

15

// turns off the LED at the specified location
void turnOff (int x, int y, int z) {
++z;
if(z == BOARD SIZE) z = 0;

board[7*y + z] &= ~(1 << x);
}

// sends the board state over spi
void spiSendBoard() {
pioDigitalWrite (LOAD PIN, 1);
for (int 1 = 0; 1 < BOARD SIZE; ++1) {
spiSendReceive (board[i]) ;
}
pioDigitalWrite (LOAD PIN, O);
}

int main (void) {

// set up SAM

samInit () ;

pioInit () ;

tcDelayInit();

spiInit (MCK_FREQ/244000, 0, 1);

// set up pins
piOPinMOde(LOAD_PIN, PIO OUTPUT) ;

int counter = 0;

while (1) {
L1117 7700 777777777777 77777777777777
// RAINFOREST
L1117 7007777 7777707777777 777777777
// turns on and off random columns
for (int y = 0; y < ROW SIZE; ++y) {
int x = rand() % 7;
for (int z = 0; z < 6; ++z){
turnOn (x, vy, z);
spiSendBoard() ;
tcDelayMillis (100);
}
++counter;
}
if (counter > 21) {
while (1) {
for (int y = 0; y < ROW SIZE; ++y) {
int x = rand() % 7;
for (int z = 0; z < 6; ++z){
turnOn(x, vy, z);
spiSendBoard() ;
tcDelayMillis (100);

}
x = rand() % 7;

16

for (int z = 0; z < 6; ++z){
turnOff (x, vy, z);
spiSendBoard() ;
tcDelayMillis (100);

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

//
//
//
//
//
//
//
//
//
//
//
//
//

}
}

L1777 0707077777707 7777777777777777

// SPACE MOUNTAIN

L1777 7 7077777707 7777777777777777

// lights go zoom zoom!
int lights[ROW SIZE-1];

for (int 1 = 0; 1 < ROW SIZE - 1;

[}

int y = rand() % 7;
lights[i] = y;
}

spiSendBoard() ;
tcDelayMillis (100);

for (int x = 0; x < ROW _SIZE; ++x)
for (int z = 0; z < ROW_SIZE -1; ++z)

++1)

{

turnOn (x, lights[z], z);

}

spiSendBoard() ;

tcDelayMillis (35);
}

for (int x = 0; x < ROW _SIZE; ++x)
for (int z = 0; z < ROW_SIZE -1; ++z)

{

turnOff (x, lights([z], z);

}

spiSendBoard() ;

tcDelayMillis (35);
}

L1777 0 7077777707 7777777777777777

// Peak Wave

L1777 77077777707 7777777777777777

// central wave oscillation action

int delayTime = 38;

// step O

for (int x = 0; x < ROW_SIZE; ++Xx)
for (int y = 0; y < ROW_SIZE; ++y)

turnOn (x, v,
}
}
spiSendBoard() ;
tcDelayMillis (delayTime) ;

// step 1

3);

17

{

{

{

{

{

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

turnOn (3,
turnOff (3,
spiSendBoard() ;
tcDelayMillis (delayTime) ;

// step 1
turnOn (3,

turnOn (x,vy, 2)
turnOff (x,vy,3)

turnOff (3,
spiSendBoard() ;
tcDelayMillis (delayTime) ;

// step 2
turnOn (3,

(y == 4)))
turnOn (x,vy,1)
turnOff (x,vy,2)

(y == 5)))
turnOn (x,vy,2)
turnOff (x,vy,3)

turnOff (3,
spiSendBoard() ;
tcDelayMillis (delayTime) ;

// step 3
turnOn (3,
turnOff (3,
spiSendBoard() ;
tcDelayMillis (delayTime) ;

// step 4
turnOn (3,
turnOff (3,
spiSendBoard() ;
tcDelayMillis (delayTime) ;

//
//
//
//
//

// step 5
turnOn (3,

4)))

//
//
//
//
//
//
//
//
//
//
//
//
//
//

//
//
//
//
//
//
//
//
//
//
//
//
//
//

//
//
//
//
//
//
//
//

//
//
//
//
//
//
//
//
//

turnOn (x,vy, 2)
turnOff (x,v,1)

turnOff (3,
spiSendBoard() ;
tcDelayMillis (delayTime) ;

// step 6
turnOn (3,

turnOn (x, vy, 3)
turnOff (x,vy,2)

turnOff (3,
spiSendBoard() ;
tcDelayMillis (delayTime) ;

// step 7
turnOn (3,

I~

turnOn (x,vy, 4)
turnOff (x,vy,3)

turnOn (x, vy, 3)
turnOff (x,vy,2)

turnOff (3,
spiSendBoard() ;
tcDelayMillis (delayTime) ;

// step 8
for (int x = 2;

turnOn (x,vy,5);
turnoOff (x,v,4)

}
for (int x = 1;
for(int vy

(

turnOn (x,v,4);
turnOff (x,vy,3)

}
spiSendBoard() ;
tcDelayMillis (delayTime) ;

// step 8

turnOn (3, 3, 4);
turnOff (3, 3, 5);
spiSendBoard() ;
tcDelayMillis (delayTime) ;

// step 9
turnOn (3, 3, 3);
for (int x = 2; x < 5; x++) {
for(int y = 2; y < 5; ++y)
if(((x == 2) || (x ==

turnOn (x,v,4);
turnoOff (x,v,5)

}

turnOff (3, 3, 4);
spiSendBoard() ;
tcDelayMillis (delayTime) ;

// step 10
turnOn (3, 3, 2);
for (int x = 2; x < 5; x++) {
for(int y = 2; y < 5; ++y)
if(((x ==2) || (x=

turnOn (x,vy,3);
turnoOff (x,v,4)

20

’

’

’

’

)

//
//
//
//
//
//
//
//
//

//
//
//
//
//
//
//
//

//
//
//
//
//
//
//
//
//
//
//
//
//
//

//
//
//
//
//
//
//
//

//
//
//
//
//
//
//
//
//

turnOff (3,
spiSendBoard() ;
tcDelayMillis (delayTime) ;

// step 11
turnOn (3,

turnOn (x,vy, 2)
turnOff (x,vy,3)

turnOn (x, vy, 3)
turnoOff (x,v,4)

turnOff (3,
spiSendBoard() ;
tcDelayMillis (delayTime) ;

// step 12
turnOn (3,

turnOn (x,vy,1)
turnOff (x,vy,2)

turnOn (x,vy,2)
turnOff (x,vy,3)

turnOff (3,
spiSendBoard() ;
tcDelayMillis (delayTime) ;

Verilog

// E155 Final Project

// LED Matrix Etch-a-Sketch

// Sean Hoerger, Alex Smith

// shoerger@g.hmc.edu, acsmith@g.hmc.edu

// testbench

module testbench();
logic clk, reset, sck, sdi, load, flopClk;
logic [6:0] layerSelect, rowLEDs, flopCLR;

LEDMatrix ledmtx(clk, reset, sck, sdi, load, flopClk, layerSelect,
rowLEDs, flopCLR);

initial
forever begin
clk = 1'b0; #2;
clk = 1'bl; #2;
end

initial begin
reset = 1'bl; #20;
reset = 1'b0;

end

endmodule

// top level module controlling the LED matrix and implementing SPI
communication with
// the microcontroller
module LEDMatrix (input logic clk, reset,
input logic sck,
input logic sdi,
input logic load,
output logic flopClk,
output logic [6:0] layerSelect, rowLEDs,
flopCLR) ;
// instantiate internal logic signals
logic [342:0] interlLEDdata, LEDdata;
logic slowClkSig, writeData, addr;
logic [391:0] spilEDdata, memLEDdata;
logic [5:0] rowSelect;

// connect the modules together

LEDMatrix spi spi(clk, sck, sdi, load, spilEDdata) ;
levelToPulse 12p (slowClkSig, reset, load, writeData);
slowClk sclk(clk, reset, slowClkSig);

22

regClk
systemController sc(slowClkSig,

addr) ;
mux49 muxer (LEDdata, rowSelect, rowLEDs);
decoderMEM decMEM (clk, writeData, addr, spilLEDdata,
memLEDdata) ;
decoder dec (memLEDdata, interLEDdata);
// send the slow clock signal to the flops
assign flopClk = slowClkSig;
endmodule

// module for SPI communication with microcontroller
module LEDMatrix spi (input logic clk,

input logic sck,
input logic sdi,
input logic load,
output logic [391:0] spilLEDdata);

logic [391:0] spiLEDdata captured;
// capture input when load is asserted
always ff@ (posedge sck)

if (load) spilEDdata captured = {spilEDdata captured[390:0],sdi};
always_ ff@ (posedge clk)

if (!load) spilEDdata = spilEDdata captured;
endmodule

// level to pulse converter to send write data signal

module levelToPulse (input logic clk, reset, load,

output logic write);

typedef enum logic [1:0] {s0O0, sl, s2} statetype;

statetype state, nextstate;

always ff@(posedge clk, posedge reset)
if (reset) state <= s0;
else state <= nextstate;

always comb
case (state)
sO: if(!load) nextstate = sl;
else nextstate = s0;
sl: if(!load) nextstate = s2;

else nextstate = s0;
s2: if(!load) nextstate = s2;

else nextstate = s0;
endcase

23

regclk (slowClkSig, reset, interLEDdata, LEDdata);
reset, rowSelect, layerSelect, flopCLR,

assign write = (state == sl);

endmodule

// the decoder module which stores the LED data in memory for access
module decoderMEM (input logic clk,
input logic we,
input logic a,
[391:0]
[391:0]

spilkEDdata,
newLEDdata) ;

input logic
output logic

[391:0]
initial
$readmemh ("C:/Users/acsmith/Desktop/Final SHAS/memfile.dat.txt",RAM);

// [note] move this into always ff to imply block RAM

logic RAM[1:0];

assign newLEDdata = RAM[al;

always ff@ (posedge clk)
if (we) RAM[a] <= spilEDdata;
endmodule

// the module which takes the 391 bit memory and pulls out the LED data
[391:0] memLEDdata,
output logic [342:0]

module decoder (input logic
LEDdata) ;

// pull out the necessary parts of memLEDdata

assign LEDdata[6'O] = memLEDdata[6:0];

assign LEDdata[13:7] = memLEDdata[14:8];
assign LEDdata[20:14] = memLEDdata[22:16];
assign LEDdata[27:21] = memLEDdata[30:24];
assign LEDdatal[3 28] = memLEDdata[38:32];
assign LEDdata[41:35] = memLEDdata[46:40];
assign LEDdata[48:42] = memLEDdata[54:48];
assign LEDdata[55:49] = memLEDdata[62:56];
assign LEDdata[62:56] = memLEDdata[70:64];
assign LEDdata[69 63] = memLEDdata[78:72];
assign LEDdata[76:70] = memLEDdata[86:80];
assign LEDdata[83 77] = memLEDdata[94:88];
assign LEDdata[90:84] = memLEDdata[l102:96];
assign LEDdata[97:91] = memLEDdata[110:1047];
assign LEDdata[lO4:98J = memLEDdata[118:112];
assign LEDdata[111:105] = memLEDdata[l26:120];
assign LEDdata[118:112] = memLEDdata[l134:128];
assign LEDdata[125:119] = memLEDdata[l142:136];
assign LEDdata[132:126] = memLEDdata[150:144];
assign LEDdata[139:133] = memLEDdata[l158:152];
assign LEDdata[146:140] = memLEDdata[l66:160];

24

assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
endmodule

LEDdatal
LEDdata(
LEDdatal
LEDdatal
LEDdatal
LEDdatal
LEDdatal
LEDdata [
LEDdatal
LEDdatal
LEDdatal
LEDdata [
LEDdatal
LEDdata[244
LEDdatal
LEDdata [
LEDdatal
LEDdatal
LEDdatal
LEDdata [
LEDdatal
LEDdatal
LEDdatal
LEDdata [
LEDdatal
LEDdatal
LEDdatal
LEDdata [

153:
160:
167:
174:
181:
188:
195:
202:
209:
216:
223:
230
237

1224
:231
1238
251:
258
265
272
279:
286:
293
300:
: 301
:308
:315
1322

1252
: 259

1287

307
314
321
328
335:

342:336

147
154
16l
168
175
182
189
196
203
210
217

245

266
273
280

294

329

S N U VO VA VA O T U N VA VA U U T VA S S W

= memLEDdata
= memLEDdata
= memLEDdata
= memLEDdata
= memLEDdata
= memLEDdata
= memLEDdata
= memLEDdata
= memLEDdata
= memLEDdata
= memLEDdata
= memLEDdata
= memLEDdata

= memLEDdata
= memLEDdata
= memLEDdata
= memLEDdata
= memLEDdata
= memLEDdata
= memLEDdata
= memLEDdata
= memLEDdata
= memLEDdata
= memLEDdata
= memLEDdata
= memLEDdata
= memLEDdata

[174:
[182:
[190
[198:
[206:
[214
[222
[230
[238
[246:
[254
[262
[270
= memLEDdata[278
[286:
[294
[302
[310
[318
[326:
[334:
[342
[350
[358
[366:
[374:
[382
[390

168]
176]
:184]
192]
200]
:208]
:216]
:224]
:232]
240]
:248]
:2560]
:264]
127275
2801
:288]
:296]
:304]
:312]
320]
328]
:336]
:344]
:352]
360]
368]
:376]
:384]

// the controller for the system instantiated as an FSM

module systemController (input logic clk, reset,
output
output
layerSelect, flopCLR,
output
// internal logic for FSM
logic [19:0] controlSig;
typedef enum logic [5:0] {sO, sl, s2, s3, s4, s5,
sll, sl1l2, s13, sl5, sle6, sl17, s18, sl19, s20, s21,
s27, s28, s29, s31, s32, s33, s34, s35, s36, s37,
s43, s44, s45, s47, s48, s49} statetype;
statetype state, nextstate;

// set up the FSM clock
always ff@ (posedge clk, posedge reset)

if (reset)
else

state <= s0;

state <= nextstate;

25

s22,
s38,

logic [5:0]
logic [6:0]
logic memAddr) ;

s6, s8, s9,
s24,

s40,

s7,
s23,
s39,

s25,
s4d1,

rowSelect,

s10,
s26,
s42,

// next state logic

always comb
case (
s0:
sl:
s2:
s3:
s4:
s5:
s6:
s7:
s8:
s9:
s10:
sll:
sl2:
sl3:
sl4:
sl5:
sl6:
sl7:
sl8:
sl19:
s20:
s21:
s22:
s23:
s24:
s25:
526:
s27:
s28:
s29:
s30:
s31:
s32:
s33:
s34:
s35:
s36:
s37:
s38:
s39:
s40:
s4l:
s42:
s43:

state)

nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate

sl;

s2;

s3;

s4;

s5;

s6;

sT;

s8;

s9;

sl1l0;
sll;
sl2;
sl3;
sl4;
sl5;
sl6;
sl7;
sl8;
sl9;
s20;
s21;
s22;
s23;
s24;
s25;
S26;
s27;
s28;
s29;
s30;
s31;
s32;
s33;
s34;
s35;
s36;
s37;
s38;
s39;
s40;
s41l;
s42;
s43;
s44;

26

s44: nextstate = s45;
s45: nextstate = s46;
s46: nextstate = s47;
s47: nextstate = s48;
s48: nextstate = s49;
s49: nextstate = sl;
default: nextstate = s0;
endcase

// output logic
always comb

case (state)

sO0: controlSig = 20'b00000000000000000000;
sl: controlSig = 20'b00000000000010000001;
s2: controlSig = 20'b00000100000010000010;
s3: controlSig = 20'b00001000000010000100;
s4: controlSig = 20'b00001100000010001000;
s5: controlSig = 20'b00010000000010010000;
s6: controlSig = 20'b00010100000010100000;
s7: controlSig = 20'b00011000000011000000;
s8: controlSig = 20'b00011100000100000001;
s9: controlSig = 20'b00100000000100000010;
s10: controlSig = 20'b00100100000100000100;
sll: controlSig = 20'b00101000000100001000;
s12: controlSig = 20'b00101100000100010000;
s13: controlSig = 20'b00110000000100100000;
sl4: controlSig = 20'b00110100000101000000;
s15: controlSig = 20'b00111000001000000001;
sl6: controlSig = 20'b00111100001000000010;
s17: controlSig = 20'b01000000001000000100;
s18: controlSig = 20'b01000100001000001000;
s19: controlSig = 20'b01001000001000010000;
s20: controlSig = 20'b01001100001000100000;
s21: controlSig = 20'b01010000001001000000;
s22: controlSig = 20'b01010100010000000001;
s23: controlSig = 20'b01011000010000000010;
s24: controlSig = 20'b01011100010000000100;
s25: controlSig = 20'b01100000010000001000;
s26: controlSig = 20'b01100100010000010000;
s27: controlSig = 20'b01101000010000100000;
s28: controlSig = 20'b01101100010001000000;
529: controlSig = 20'b01110000100000000001;
s30: controlSig = 20'b01110100100000000010;
s31: controlSig = 20'b01111000100000000100;
s32: controlSig = 20'b01111100100000001000;
s33: controlSig = 20'b10000000100000010000;
s34: controlSig = 20'b10000100100000100000;
s35: controlSig = 20'b10001000100001000000;

27

s36: controlSig = 20'b10001101000000000001;
s37: controlSig = 20'b10010001000000000010;
s38: controlSig = 20'b10010101000000000100;
s39: controlSig = 20'b10011001000000001000;
s40: controlSig = 20'b10011101000000010000;
s4l: controlSig = 20'b10100001000000100000;
s42: controlSig = 20'b10100101000001000000;
s43: controlSig = 20'b10101010000000000001;
sd44: controlSig = 20'b10101110000000000010;
s45: controlSig = 20'b10110010000000000100;
s46: controlSig = 20'b10110110000000001000;
s47: controlSig = 20'b10111010000000010000;
s48: controlSig = 20'b10111110000000100000;
s49: controlSig = 20'b11000010000001000000;
default: controlSig = 20'b00000000000000000000;
endcase

logic [6:0] prelayer;

assign {rowSelect, flopCLR, prelayer} = controlSig;

// invert the bits so the desired transistor drives a single layer
invertBits invBit (prelayer, layerSelect) ;

assign memAddr = 1'b0; // always use the same memory location

endmodule
// a module to invert all the bits of a particular signal

module invertBits (input logic [6:0] select,
output logic [6:0] newSelect);

assign newSelect[0] = !select[0];
assign newSelect[1l] = !select[1l];
assign newSelect[2] = !select[2];
assign newSelect[3] = !select[3];
assign newSelect[4] = !select[4];
assign newSelect[5] = !select[5];
assign newSelect[6] = !select[6];

endmodule

// a regular speed clock storing and passing the LED array signal
module regClk(input logic clk, reset,

input logic [342:0] d,

output logic [342:0] q);

always ff@(posedge clk, posedge reset)
if (reset) g <= 343'b0;
else q <= d;

endmodule

// a slowClock module producing a slow clock for multiplexing

28

module slowClk (input logic clk, reset,
output logic slowClk);

// the following code is via a previous microps project Author: Sarp
Misoglu Date: 11/20/2017

logic display clk;

logic[31:0] counter;

always ff @(posedge clk, posedge reset)

begin
if (reset)
begin
counter = 0;
display clk = 0;
end
else if(counter == 6 000) // good for minimal

flickering/maximal brightness with all lights on
//else if (counter == 20 000 000) // good for watching each
cycle turn on LEDs

begin
counter = 0;
display clk = ~display clk;
end
else
begin
counter = counter + 1;
end

end

assign slowClk = display clk;
endmodule

// 49 input MUX used to select the desired 7 bits corresponding to one row of
LEDs
module mux49 (input logic [342:0] LEDdata,
input logic [5:0] rowSelect,
output logic [6:0] rowLEDs);
// to begin we parse the LEDdata into 49 x 7 bit parcels

logic [6:0] 10r6, 10r5, 10r4, 10r3, 10r2, 10rl, 10rO;

assign {10r6, 10r5, 10r4, 10r3, 10r2, 10rl, 10r0O} = LEDdata[48:0];
logic [6:0] 11r6, 11r5, 11r4, 11r3, 1l1lr2, 11rl, 11r0;

assign {llre6, 11lr5, 11r4, 11r3, 11r2, 1l1lrl, 11r0} = LEDdatal[97:49];
logic [6:0] 12r6, 12r5, 12r4, 12r3, 12r2, 12rl, 12r0;

assign {12r6, 12r5, 12r4, 12r3, 12r2, 12rl1l, 12r0} = LEDdata[l146:98];
logic [6:0] 13r6, 13r5, 13r4, 13r3, 13r2, 13rl, 13r0;

assign {13r6, 13r5, 13r4, 13r3, 13r2, 13rl, 13r0} = LEDdata[l195:147];
logic [6:0] 1l4r6, 14r5, 14r4, 14r3, 14r2, 14rl, 14r0;

29

assign {14r6, 14r5, 1l4r4, 14r3, 1l4r2, 14rl, 14r0} = LEDdata[244:196];
logic [6:0] 15r6, 15r5, 15r4, 15r3, 15r2, 15rl1, 15r0;
assign {15r6, 15r5, 15r4, 15r3, 15r2, 15rl1l, 15r0} = LEDdata[293:245];
logic [6:0] 1l6r6, 1l6r5, 1l6r4, lor3, ler2, lorl, 16r0;
assign {1l6r6, 16r5, 1l6r4, lor3, 1lér2, lorl, 16r0} = LEDdata[342:294];

// a case statement which determines which parcel to select
always comb
case (rowSelect)
0: rowLEDs = 10r0;

1: rowLEDs = 10rl;

2: rowLEDs = 10r2;

3: rowLEDs = 10r3;

4: rowLEDs = 10r4;

5: rowLEDs = 10r5;

6: rowLEDs = 10ro6;

7: rowLEDs = 11r0;

8: rowLEDs = 1lrl;

9: rowlLEDs = 11r2;

10: rowLEDs = 11r3;
11: rowLEDs = 11r4;
12: rowLEDs = 11rb5;
13: rowLEDs = 11ré6;
14: rowLEDs = 12r0;
15: rowLEDs = 12rl;
16: rowLEDs = 12r2;
17: rowLEDs = 12r3;
18: rowLEDs = 12r4;
19: rowLEDs = 12r5;
20: rowLEDs = 12r6;
21: rowLEDs = 13r0;
22: rowLEDs = 13rl;
23: rowLEDs = 13r2;
24: rowLEDs = 13r3;
25: rowLEDs = 13r4;
26: rowLEDs = 13r5;
27: rowLEDs = 13r6;
28: rowLEDs = 14r0;
29: rowLEDs = 1l4rl;
30: rowLEDs = 14r2;
31: rowLEDs = 14r3;
32: rowLEDs = 14r4;
33: rowLEDs = 14r5;
34: rowLEDs = 14r6;
35: rowLEDs = 15r0;
36: rowLEDs = 15rl;
37: rowLEDs = 15r2;
38: rowLEDs = 15r3;

30

39: rowlLEDs = 15r4;
40: rowLEDs = 15r5;
41: rowLEDs = 15r6;
42: rowLEDs = 16r0;
43: rowlLEDs = lorl;
44: rowLEDs = 16r2;
45: rowLEDs = 16r3;
46: rowLEDs = lor4;
47: rowLEDs = 16r5;
48: rowLEDs = 16r6;
default: rowLEDs = 7'b1111111; // default to all LEDs on to

make this case obvious

endcase
endmodule

31

