Single Axis Solar Tracking System

Final Project Report
December 12th, 2019
E155

Akshay Trikha and Kahiwa Hoe

Abstract:

As our sun travels in its trajectory throughout the day, the optimal angle to harness as much of its sunlight
also changes. However, most solar panels when set up are placed at a set angle and stay put for their
lifetimes. The variation in the sun’s position is significant enough to noticeably change the incident light
intensity, and thus power output of solar panels. Our system tracks the sun’s position with respect to a
solar panel by monitoring the power output of the panel and adjusting its position accordingly through
driving a stepper motor.

Introduction

It is our mission as engineers to create devices that will benefit our society, and in particular will combat
climate change. Actualizing our love for renewable energy and our shared environment, we aimed to
create a solar tracking system to harness as much of the sun’s radiant energy as possible. The variation in
light intensity noticed by a fixed solar panel throughout the day is significant enough to motivate us to
create a system that keeps a panel perpendicular to the sun. On top of maximizing power output of a solar
panel, we also wanted to minimize power consumption of the tracking system.

Our system consists of a microcontroller, solar panel, analog power sensor, and two motors and H
bridges. The microcontroller is used to read the power sensor and implements a routine control algorithm
to update the panel’s orientation. It then goes into sleep mode for a programmable amount of time, until

the next cycle.

Figure Data 1. Data Flow Diagram

current

voltage

AD1 ADO RED

BLUE

H Bridge 1

RED1’

BLUET

GREEN

L

TTH ETA_EN

BLACK
Microcontroller

H Bridge 2

GREENT’

H Bridge 3

RED2'

BLACKT’

Motor

BLUE2'

TPHLEN

J

H Bridge 4

GREEN1T’

BLACK2'

Motor

Solar
Panel

Vin+
Analog
Power

Sensor
Vin -

As shown in Figure 1. the power sensor measures the current power output of the solar panel

The microcontroller sends out signals enabling the desired H bridges, which drive the respective motors.
The power sensor reads the power output of the solar panel and sends that data to the microcontroller,

which makes the decision of which motor to step and by how much.

Trikha & Hoe, 2

New Hardware

Our key new pieces of hardware was a stepper motor, H-bridges to drive it, and operational amplifier for
power measurement. Stepper motors function by alternating the direction of a magnetic field, to which an
internal permanent magnet aligns. Two pairs of colored input wires: black with green and red with blue
are used to control the magnetic field by passing current in either direction. For each wire pair, the current
flows from the wire of a higher voltage towards the lower voltage. The 23HS22 stepper motor was rated
for a current draw of 2.8 A and voltage of 12V with a holding torque of 1.26 Nem. Given our relatively
light solar panel we found that it was satisfactory to drive it at 1.1A and 2.5V - which helped reduce our
systems power consumption. Specifications on voltage levels for a turning cycle were given by the
datasheet, and the number of cycles required to complete a full rotation was given as 200 steps, giving a
precision of 1.8° per step.

In order to facilitate the large current draw, three L293DNE H-bridges were stacked and used to redirect
power from a Model 6224 A power supply, capable of generating 3 A of current, to the stepper motors.
The H-bridge includes enable signals each corresponding to two input and output pairs. The integrated
circuit (IC) is given two input voltage sources: V., and V,, corresponding to the logic level source (5
V) and driver source (12 V), respectively. The motor signals are given input voltages ranging from 0 to
3.3 V for on and off settings, respectively, and the output is a corresponding on or off signal with
increased current. There are also two enable signals, each controlling a pair of inputs, that make the
output follow the input only when the enable is set high. The datasheet only rates the H-bridges for an
output of 600 mA, so three H-bridges were soldered onto each other to increase the overall capability to
1.8 A. The L93DNE H-bridges also have a diode system in place to protect the system against large
increases in voltage from inductive kicks when the motor is abruptly turned off.

An MCP6002 operational amplifier was used to amplify the voltage across a small resistor. The op-amp is
used in a non-inverting amplification circuit shown below:

Vbb

ViN O———+
MCP6001 —O Vour

= Vss

: AN ——

R4
Rz
R
Gain = 1+ R—l
VRer 2

Non-Inverting Amplifier

Figure 2. Non-inverting amplifier circuit taken from datasheet using MCP6001 op-amp

Note that the MCP6002 consists of two MCP6001 op-amps combined into a single IC. The input voltage
V| 1s related to the output V ;. by the following equation:

Trikha & Hoe, 3

Vour =010+ %)Vm (Eq. 1)
The value of the resistors R, and R, are 10 kQ and 1 kQ, respectively, thus amplifying the input signal by
a factor of 11. This gives the ADC greater precision in measuring the voltage across the small resistor. If
the theoretical value of V,;; exceeds V,, or goes below Vg, the voltage will rail out to the nearest
bounding voltage. The op-amp receives a V, of 3.3 V and V of 0 to limit the voltage range to that of
the microcontroller’s ADC.

The op-amp was a part of a larger power measurement circuit, which consists of a main resistive load,
voltage divider, smaller resistor, and the non-inverting amplifier. The main resistive load is 30 Q in order
to match the internal resistance of the solar panel, maximizing its power output. The voltage divider’s
output is proportional to the voltage across the solar panel reduced by a factor of 11. The smaller resistor
of 1 Q acts as a lowside measurement of the panel’s current, giving a voltage directly proportional to the
current through the resistor according to Ohm’s Law. The voltage on the highside of the small resistor
was passed through the non-inverting amplifier to output a voltage 11 times that of the resistor.

Schematics

12v

5V VIN

VvCC3.3

Altera Cyclone IV
EP4CE6E22C8N

Solar Panel

U00L4- AL

'+

P1-VOUTA P8-VDD
—2—{P2-VINA- P7-VOUTB

Op Amp
MCP6002

P3 - VINA+ P6 - VINB-
P4-VSS P5- VINB+

oI

:

PA17 - ADO

PA18 - AD1

_ P1-12EN P16-VCC_1
P2-1A P15-4A
Blue Black P3-1Y P14-4y
P4-GND P13-GND
zséﬁfspzez"g"g‘gjg 3 Stacked H bridges]
L293DNE PA26 - BLACK
Red Green P5-GND P12 - GND PA27 - BLUE
—Ipe-2v P11-3Y PA28 - GREEN ATSAMA4S4B
P7-2A P10-3A PA3 - RED
P8-VCC_2 P9-34EN PA4 - THETA_EN

Figure 3. Overall system schematics including pin assignments

Trikha & Hoe, 4

Microcontroller Design

The ATSAM4S4B microcontroller has been tasked with driving the motor input signals, measuring the
solar panel’s power output, and enacting a simple search algorithm to maximize power from the solar
panel. A The stepAnglePositive function utilized the general peripheral functions to drive the black
(PA26), blue (PA27), green (PA28), and red (PA3) wire logic pins in the clockwise sequence given by the
datasheet (the stepAngleNegative function performs this sequence in reverse). The functions were made
to receive an input angle and frequency for managing angular speed. The hold function is given a duration
and pulses the motor enable every second to maintain the current angular position of the panel.

The getPower function utilizes the analog-to-digital converter (ADC) peripherals onboard to sample the
voltage divider and non-inverting amplifier from the power measurement circuit. These values are then

scaled by the inverse of their respective gains and multiplied to get the current power output of the solar
panel. The getPowerAvg gives a 5-point average of the voltage reading sampled at a rate of 20 kHz.

The search algorithm stores the currentPower variable set to the value of getPowerAvg at a certain time
step. The search then begins incrementing clockwise by a 2° step and measures the power. This movement
continues until the average power begins to decrease. When the power decreases, the panel increments
counterclockwise according to the same search and holds the final position until the next search begins.
Each search will be separated by a transition into backup mode, decreasing the current consumption of the
ATSAM to 1 pA in order to improve the energy efficiency of the algorithm.

FPGA Design

The FPGA was intended to be responsible for keeping the timing of the system, waking up the
microcontroller at hourly intervals and sending over the time of day when the ATSAM requests the data
over SPI communication.

Results

The project demonstrated a working single-axis tracking system, but the final product was less
energy-efficient than intended. The solar panel was able to follow a UV light generator, however the
algorithm resulted in an overshoot of the ideal angle because it detects a single decrease in power and
then stops. Although a backup program was created and tested, the mechanical design was unable to
maintain the angle upon backup initiation, so the design consumes much more power due to the constant
stepper motor input to hold the motor in position.

The most difficult parts of the design were sampling a power measurement and constructing the

mechanical apparatus. The power sampling was initially to be accomplished via an INA260 power sensor,
which would send its data over via I’C protocol, but we encountered multiple issues with this peripheral

Trikha & Hoe, 5

on the ATSAM. Despite following the ATSAM’s peripheral access diagram and checking the associated
registers via the Keil pVision debugger, we were unable to trace down the error in our initialization and
communication process. We spent 3 weeks working through this bug and eventually settled on the analog
power measurement circuit used in the final product in the interest of time and completing a working
demonstration.

The overall mechanical apparatus and motor connection can be seen below:

Figure 4. Solar panel with stand and motorized axis

Figure 5. Stepper motor on supporting platform connected to solar panel mount

Trikha & Hoe, 6

Attaching the stepper motor’s axis to a mountable axis proved the most difficult in the mechanical design
because of the metal lathe and CNC mill machining required to fit the pieces together. The mount design
also proved difficult because of the need to attach the piece without altering the existing panel form.

The FPGA was intended to manage the timing of the backup mode initialization, but we prioritized
erecting a working tracking system because of time constraints.

Overall, we’d still say that our project was a success and our proud of what we have accomplished given
our time constraint.

References

[1] Rosetti, L. (2012).The Designing, Building, and Testing of an Azimuthal-Altitude Dual-Axis Solar
Tracker. Undergraduate. Pomona College.

[2] Harris, Sarah L., and David Money Harris. “Chapter 9: I/O Systems.” Digital Design and Computer
Architecture, Elsevier/Morgan Kaufmann, 2016.

[3] 23HS22-2804S Full Datasheet Nema Stepper Motor
https://www.oyostepper.com/images/upload/File/23HS22-2804S.pdf

[4] MCP6001/1R/1U/2/4 Datasheet http://ww1.microchip.com/downloads/en/DeviceDoc/20001733K.pdf

[5] L293x Quadruple Half-H Drivers Datasheet http:/www.ti.com/lit/ds/symlink/1293.pdf

Parts List
Part Source Vendor Part # Price
12V Solar Panel Available in
Physics dept.
2.8A 1.26Nm Stepper Motor Nema 23HS22-2804S $21.99
MCP6002 Operational Amplifier Ximimark [MCP6002 $4.98
L293DNE H Bridge L293DNE Available in
digital lab
Model 6224A Power Supply 6224A Available in
stockroom
Grand Total $48.96
Appendices

Trikha & Hoe, 7

https://www.oyostepper.com/images/upload/File/23HS22-2804S.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/20001733K.pdf
http://www.ti.com/lit/ds/symlink/l293.pdf

C:\Users\atrikha\Desktop\Solar-Tracker\Microcontroller\main.c

33

/*
Akshay Trikha & Kahiwa Hoe
atrikha@hmc.edu & khoe@hmc.edu
20th November, 2019

main file for solar tracker SAM4S4B code

*/

// includes

#include <stdio.h>

#include <stdint.h>

#finclude "SAM4S4B/SAM4S4B.h"

// pin definitions for theta/phi motors

#define RED PIO PALS
#define BLUE PIO_PA27
#define BLACK PIO PA26
#define GREEN PIO_PA28
#define THETA EN PIO PAL6

#define GREEN LED PIO PAlQ
#define RED LED PIO PAS

#define DELAY 300 // ms
// steps motor in positive direction at frequency Hz for duration seconds

// steps motor in positive direction through angle in degrees, with delay in ms between steps
void stepAnglePositive (float angle, uint32 t delay) {

uint8 t maxSteps = (uint8 t) (angle / 1.8);

uint8 t steps = 0;

while (steps < maxSteps) {
// enable motor signals on H-Bridge
pioDigitalWrite (THETA EN, 1);

// step O

pioDigitalWrite (BLACK, 1);
pioDigitalWrite (RED, 1);
pioDigitalWrite (GREEN, O0);
pioDigitalWrite (BLUE, O);
tcDelayMillis (delay) ;
pioDigitalWrite (BLACK, O0);
pioDigitalWrite (RED, O0);

// step 1

pioDigitalWrite (BLACK, O0);
pioDigitalWrite (RED, 1);
pioDigitalWrite (GREEN, 1);
pioDigitalWrite (BLUE, O0);
tcDelayMillis (delay) ;
pioDigitalWrite (RED, O0);
pioDigitalWrite (GREEN, O0);

// step 2

pioDigitalWrite (BLACK, O0);
pioDigitalWrite (RED, O0);
pioDigitalWrite (GREEN, 1);
pioDigitalWrite (BLUE, 1);
tcDelayMillis (delay) ;
pioDigitalWrite (GREEN, O0);
pioDigitalWrite (BLUE, O0);

// step 3

pioDigitalWrite (BLACK, 1);
pioDigitalWrite (RED, O0);
pioDigitalWrite (GREEN, O0);
pioDigitalWrite (BLUE, 1);
tcDelayMillis (delay) ;
pioDigitalWrite (BLACK, O0);
pioDigitalWrite (BLUE, O);

Page 1

C:\Users\atrikha\Desktop\Solar-Tracker\Microcontroller\main.c

73 steps += 4;

74 }

75 // disable motor signals on H-Bridge
76 pioDigitalWrite (THETA EN, 0);

77 }

78

79 // steps motor in negative direction at frequency Hz for duration seconds
80 void stepAngleNegative (float angle, uint32 t delay) {
81 uint8 t maxSteps = (uint8 t) (angle / 1.8);
82 uint8 t steps = 0;

83

84 while (steps < maxSteps) {

85 // enable motor signals on H-Bridge
86 pioDigitalWrite (THETA EN, 1);

87

88 // step 3

89 pioDigitalWrite (BLACK, 1);

90 pioDigitalWrite (RED, O0);

91 pioDigitalWrite (GREEN, O0);

92 pioDigitalWrite (BLUE, 1);

93 tcDelayMillis (delay) ;

94 pioDigitalWrite (BLACK, O);

95 pioDigitalWrite (BLUE, O);

96

97 // step 2

98 pioDigitalWrite (BLACK, O);

99 pioDigitalWrite (RED, O0);
100 pioDigitalWrite (GREEN, 1);
101 pioDigitalWrite (BLUE, 1);
102 tcDelayMillis (delay) ;
103 pioDigitalWrite (GREEN, O0);
104 pioDigitalWrite (BLUE, O);
105
106 // step 1
107 pioDigitalWrite (BLACK, O);
108 pioDigitalWrite (RED, 1);
109 pioDigitalWrite (GREEN, 1);
110 pioDigitalWrite (BLUE, O);
111 tcDelayMillis (delay);
112 pioDigitalWrite (RED, O0);
113 pioDigitalWrite (GREEN, O0);
114
115 // step O
116 pioDigitalWrite (BLACK, 1);
117 pioDigitalWrite (RED, 1);
118 pioDigitalWrite (GREEN, O0);
119 pioDigitalWrite (BLUE, O);
120 tcDelayMillis (delay) ;
121 pioDigitalWrite (BLACK, O0);
122 pioDigitalWrite (RED, O0);
123
124 steps += 4;
125 }
126 // disable motor signals on H-Bridge
127 pioDigitalWrite (THETA EN, 0);
128 }
129
130 // holds motor in position for given duration
131 void hold(uint32 t duration) {
132 uint8 t steps = 0;
133
134 // keep pulsing a step every second
135 while (steps < (duration / 1000)) {
136 pioDigitalWrite (THETA EN, 1);
137 // energize one motor terminal to keep it powered
138 pioDigitalWrite (BLACK, 1);
139 tcDelayMillis (1000) ;
140 pioDigitalWrite (THETA EN, 0);
141 steps++;
142 }
143 }
144

Page 2

C:\Users\atrikha\Desktop\Solar-Tracker\Microcontroller\main.c

145 // enters SAM4S4B backup (essentially sleep) mode
146 void enterBackup() {

147 // pass SUPC system key to enable operation
148 SUPC->SUPC_CR.KEY = 0xA5;

149 SUPC—>SUPC_CR.VROFF = 1;

150

151 pioDigitalWrite (RED_LED, PIO HIGH);

152 pioDigitalWrite (GREEN LED, PIO LOW);

153 }

154

155

156 // delay function that works in backup mode by using RTC
157 void backupDelay () {

158 // resets clock to 00:00 AM

159 rtcUpdateTime (00000000, 0bOO0O0O000, 0bLOOOO0OO, O0bO);
160

161 // delay 1 second

162 while (RTC->RTC_TIMR.SEC < 0b0000001);
163

164 pioDigitalWrite (RED_LED, PIO LOW);
165 }

166

167

168

169 // exits SAM4S4B backup mode
170 void exitBackup() {

171

172 // pass SYSC system key to enable operation
173 SYSC WPMR->WPKEY = 0x525443;

174 // // disable SYSC write protection

175 SYSC WPMR->WPEN = 0;

176

177 // enable WKUPTO input

178 SUPC—>SUPC7WUIR.WKUPENO = 1;

179 // wake up core power supply

180 SUPC—>SUPC7WUIR.WKUPTO = 1;

181

182 pioDigitalWrite (GREEN LED, PIO HIGH);

183

184

185 }

186

187

188

189 // returns instantaneous power of solar panel

190 // not actual power output of panel because ADC input had to be scaled down
191 float getPower () {

192 float voltageData;

193 float currentData;

194

195 // read from ADC Channel 1

196 voltageData = adcRead (ADC_CHO) ;

197 // voltage divider maps down voltage for ADC
198 voltageData *= 11;

199

200 // read from ADC Channel 2

201 currentData = adcRead (ADC CH1);

202 // current op-amp has gain of 10

203 currentData /= 10;

204

205 // multiply voltage x current to get power
206 return voltageData * currentData;

207 }

208

209 // returns average of 5 power readings of solar panel
210 float getPowerAvg() {

211 float currentPowerO = getPower();

212 // short delay between readings

213 tcDelayMicroseconds (50) ;

214 float currentPowerl = getPower();

215 tcDelayMicroseconds (50) ;

216 float currentPower2 = getPower () ;

Page 3

C:\Users\atrikha\Desktop\Solar-Tracker\Microcontroller\main.c

217 tcDelayMicroseconds (50) ;

218 float currentPower3 = getPower () ;

219 tcDelayMicroseconds (50) ;

220 float currentPower4 = getPower();

221 return (currentPower(O + currentPowerl + currentPower2 + currentPower3
222 }

223

224

225 // initialize SAM4S4B
226 void init () |

227 // initialize microcontroller's PIO capabilities
228 samInit () ;

229 pioInit();

230 tcDelayInit () ;

231

232 // initialize ADC with 12 bit resolution
233 adcInit (ADC_MR LOWRES BITS 12);

234 adcChannelInit (ADC_CHO, ADC_CGR GAIN X1, ADC COR_OFFSET OFF);
235 adcChannelInit (ADC_CH1, ADC_CGR GAIN X1, ADC_COR_OFFSET OFF);
236

237 // set motor pins as outputs

238 pioPinMode (RED, PIO_ OUTPUT);

239 pioPinMode (BLUE, PIO OUTPUT) ;

240 pioPinMode (BLACK, PIO OUTPUT) ;

241 pioPinMode (GREEN, PIO OUTPUT) ;

242 pioPinMOde(THETAﬁEN, PIOioUTPUT);

243 }

244

245

246 int main (void) {

247 // initialize SAM4S4B microcontroller
248 init ()

249

250 // to keep track of bounds of frame

251 uint8 t step = 0;

252

253 // to keep track of power

254 float currentPower = 0;

255 float leftPower = 0;

256 float rightPower = 0;

257

258 // motor needs to align magnetic fields
259 pioDigitalWrite (BLACK, O0);

260 pioDigitalWrite (RED, O0);

261 pioDigitalWrite (GREEN, O0);

262 pioDigitalWrite (BLUE, O);

263

264 // keep looping

265 while (1) {

266 // get current power output of panel
267

268 currentPower = getPowerAvg();

269 hold (1000) ;

270

271

272 while (1) {

273 // step right and check power output
274 if (step <= 40) {

275 stepAnglePositive (2, 1000);

276 step++;

277 rightPower = getPowerAvg() ;

278

279 if (rightPower < currentPower) {
280 break;

281 } else {

282 currentPower = rightPower;

283 }

284 }

285 }

286

287 while (1) {

288 // step left and check power output

+ currentPowerid)

/ 5;

Page 4

C:\Users\atrikha\Desktop\Solar-Tracker\Microcontroller\main.c

289 if (step >= 0) {
290 stepAngleNegative (2,
1000

291 step--;

292 leftPower = getPowerAvg() ;
293

294 if (leftPower < currentPower) ({
295 break;

296 } else {

297 currentPower = leftPower;
298 }

299 }

300 }

301 }

302

303 return 0;

304 }

305

306

Page 5

C:\Users\atrikha\Desktop\Solar-Tracker\MicrocontrollenSAM4S4B\SAM4S4B_supc.h

71

/* SAM4S4B pmc.h

P T

peripheral

atrikha@hmc.edu
20th November, 2019

#ifndef SAM4S4B SUPC H
#define SAM4S4B SUPC H

#include <stdint.h>

Contains base address locations, register structs, definitions, and functions for the SUPC
(Supply Controller)

of the SAM4S4B microcontroller. */

N NN

// SUPC Base Address Definitions

N NIV

#define SUPC_

BASE (0x400E1410)

// SUPC Base Address

[0 77770777777 707707777777777777777777777777777777
// SUPC Registers
[0 77770777777 70777 7777777777 777777777777777777777777777777777707777777777777777777777777777777

// Bit field struct for the SUPC CR register
typedef struct {

volatile
volatile
volatile
volatile
volatile

uint32 t
uint32_t VROFF
uint32 t XTALSEL
uint32 t
uint32 t KEY

} SUPC CR bits;

QN B PN

O Ne Ne N
~.

~.

// Bit field struct for the SUPC_SMMR register
typedef struct {

volatile
volatile
volatile
volatile
volatile
volatile
volatile

uint32 t SMTH
uint32 t
uint32 t SMSMPL
uint32 t
uint32 t SMRSTEN
uint32 t SMIEN
uint32 t

} SUPC_SMMR bits;

el S NS S VRN

00 Ne Ne Ne Ne Ne N

// Bit field struct for the SUPC MR register
typedef struct {

volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile

uint32 t

uint32 t BODRSTEN
uint32 t BODDIS
uint32 t ONREG
uint32 t

uint32 t OSCBYPASS :

uint32 t
uint32 t KEY

} SUPC_MR bits;

o N
~e

[RO I G B
e Ne e e ove e s

// Bit field struct for the SUPC WUMR register
typedef struct {

volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile

uint32 t

uint32 t SMEN
uint32_t RTTEN
uint32_t RTCEN
uint32 t

uint32 t LPDBCENO
uint32 t LPDBCEN1
uint32 t LPDBCCLR
uint32 t

uint32 t WKUPDBC
uint32 t

uint32_t LPDBC
uint32 t

} SUPC WUMR bits;

O R R S R N e = = N = N =

(LW Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne N

Page 1

C:\Users\atrikha\Desktop\Solar-Tracker\MicrocontrollenSAM4S4B\SAM4S4B_supc.h

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

// Bit field struct for the SUPC WUIR register

typedef struct {

volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile

uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

} SUPC WUIR bits;

WKUPENO
WKUPEN1
WKUPEN2
WKUPEN3
WKUPEN4
WKUPENS
WKUPENG6
WKUPEN7
WKUPENS
WKUPENO
WKUPEN10
WKUPEN11
WKUPEN12
WKUPEN13
WKUPEN14
WKUPEN15
WKUPTO
WKUPT1
WKUPT2
WKUPT3
WKUPT4
WKUPTS5
WKUPT6
WKUPT7
WKUPTS8
WKUPT9
WKUPT10
WKUPT11
WKUPT12
WKUPT13
WKUPT14
WKUPT15

Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne N N N N

o N

Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne N N N N

PR PR RPRPRRRRRRRRRRRRPRPRRRERRRRRERERRRR R
N

~.

// Bit field struct for the SUPC_SR
typedef struct {

volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile

uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

} SUPC_ SR bits;

~.

WKUPS
SMWS
BODRSTS
SMRSTS
SMS
SMOS
OSCSEL

Ne Ne Ne Ne Ne Ne N,

~.

LPDBCSO
LPDBCS1

~e N

~.

WKUPISO
WKUPIS1
WKUPIS2
WKUPIS3
WKUPIS4
WKUPISS
WKUPIS6
WKUPIS7
WKUPISS8
WKUPISO
WKUPIS10
WKUPIS11
WKUPIS12
WKUPIS13
WKUPIS14
WKUPIS15

o N

Ne Ne Ne Ne Ne Ne Ne N Ne Ne Ne Ne N

PR R RRPRPRRRRRRRPRRRRRRRRORRRRRRE R
N

~.

register

// Peripheral struct for a PMC peripheral
typedef struct {
volatile SUPC CR bits SUPC_CR;
volatile SUPC_SMMR bits SUPC_SMMR; //

//

(Supc Offset:
(Supc Offset:

0x0000)
0x0004)

Supply Controller Control Register
Supply Controller Supply Monitor

Page 2

C:\Users\atrikha\Desktop\Solar-Tracker\MicrocontrollenSAM4S4B\SAM4S4B_supc.h

145
146

147

148
149
150
151
152
153
154
155
156

Mode Register
volatile SUPC MR bits SUPC_MR;

volatile SUPC_WUMR bits SUPC WUMR;
Register

volatile SUPC_WUIR bits SUPC WUIR;
Register

volatile SUPC SR bits SUPC_SR;

volatile uint32 t Reservedl;
} Supc;

// Pointer to a Supc-sized chunk of memory
#define SUPC ((Supc *) SUPC_BASE)

fendif

//
//

//

//

at

(Supc Offset:
(Supc Offset:

(Supc Offset:

(Supc Offset:

0x0008)
0x000C)

0x0010)

0x0014)

the SUPC peripheral

Supply Controller
Supply Controller

Supply Controller

Supply Controller

Mode Register
Wake-up Mode

Wake-up Inputs

Status Register

Page 3

C:\Users\atrikha\Desktop\Solar-Tracker\MicrocontrolleN\SAM4S4B\SAM4S4B_sysc_wpmr.h

/* SAM4S4B pmc.h

atrikha@hmc.edu
20th November, 2019

Contains base address locations, register structs, definitions, and functions for the SYSC WPMR
peripheral (System Controller Write Protection Mode Register) of the SAM4S4B microcontroller. */

P T

#ifndef SAM4S4B SYSC WPMR H
#define SAM4S4B_SYSC WPMR_H

#include <stdint.h>

L1777 777777777777 777777777777 777
// SYSC Base Address Definition

L1777 707777777777 777777777777 777
#define SYSC WPMR BASE (0x400E14E4) // SYSC Base Address

// Bit field struct for the SYSC WPMR
typedef struct {

volatile uint32 t WPEN : 1
volatile uint32 t : 7;
volatile uint32 t WPKEY 2 24;

} Sysc wpmr;

// Pointer to a Sysc-sized chunk of memory at the SYSC peripheral
#define SYSC_WPMR ((Sysc_wpmr *) SYSC WPMR BASE)

fendif

Page 1

