Etch-A-Sketch Maze Generator

Final Report

Friday 13th, 2019
E155

Daniel Torres and Martha Gao

Abstract:

Mazes are fun to solve, but tedious to draw. This project aims to allow users to have the
experience of solving a maze without having to construct it yourself. This device consists of an
Etch-A-Sketch, stepper motors, an FPGA, and a microcontroller, all of which interface with each
other to generate a predetermined maze on the Etch-A-Sketch screen, allowing the user to
solve it manually at their own pace, preserving the physical interaction that makes mazes so
fun, while maintaining the temporary nature of a digital device. The instructions to create the
maze are stored in the microcontroller, which is also programmed with instruction decoders that
are able to break down instructions into commands that identify which motor to move, in which
direction, and for how long. These instructions are then sent to the FPGA, which then sends the
correct command to the correct motor. The motors are attached directly to the Etch-A-Sketch
knobs, and so when the motors turn, the knobs turn as well at a 1:1 ratio. Through this system,
the Etch-A-Sketch can be controlled to produce a programmed drawing based on motor
movements.

Introduction:

In an increasingly digital world, there is a certain nostalgia about playing with analog
devices. The Etch-A-Sketch was an almost universal toy, known for its simplicity and precision,
and has endured through the decades to be just as recognizable now as it was when it was first
released back in the 1960s.

Puzzle games are popular with people of all ages. A maze is one of the most classic
examples of a puzzle game, and it has been implemented in many mediums (gardens, paper,
etc.). The point of a maze is to solve it, but it has to be somehow constructed in the first place.
This project aims to remove that barrier to engaging in this puzzle, by allowing users to navigate
their way through a pre-generated maze on the Etch-A-Sketch screen.

av 4 'JIv
*1 a0i11%:0) o coil 186D
Vi /L
, fulll Pt
motor
J1
\outron.ings:1) dicechion :
av av
ik |
A1 (e R{eet!
butten mMicroconteoller .o 'y o_cor))
Assemboly, 7 7
FP6e
- _'l' J1 MoToR

moter
coneoller

Figure 1.Block diagram of overall system

This project utilizes the precision that an Etch-A-Sketch provides, and interfaces the
control knobs with a pair of stepper motors that are able to make very exact rotational
movements. The degree and speed of rotation of these motors is dictated by instructions from
the microcontroller, where they are stored.

The microcontroller is programmed with the maze instructions and instruction decoders.
The instructions are translated from maze instructions to motor instructions and then sent to the
FPGA, which is used to control both motors in both directions, one step at a time. Three mazes
of varying difficulty are programmed into the device, and the desired maze is selected by a
button with a corresponding LED on the breadboard: easy (green), medium (yellow), and hard

1NN =

o]

I
-

Figure 2.Selected mazes -- easy (left), medium (center), hard (right)

New Hardware:
A. Stepper Motors

Stepper motors were chosen for this project, due to their ability to perform precise
movements in the angular position. A stepper motor is essentially a brushless DC motor that
divides a full rotation into n equal steps. This way, the motor shaft can be programmed to only
turn a certain number of steps, rather than the whole rotation. The motor does this in response
to a train of input pulses.

A stepper motor is controlled by multiple toothed electromagnets surrounding a central
piece of iron. The piece of iron is gear shaped in that it has teeth that align with the teeth of the
electromagnets. When one electromagnet is given power, it pulls the teeth of the iron center into
alignment with its own teeth. This causes the central teeth to me offset from the teeth of the next
electromagnet. Thus, as the electromagnets receive power sequentially, the central piece is
rotated in incremental steps. The electromagnets are grouped into complementary groups
called phases, and each phase of electromagnets are powered together. The direction of
rotation of the motor is controlled by the order in which these phases receive power.

Non-torque
producing flux

— Stator

Rotor—

Figure 3. Stepper motor internal function
The most common motors are two phase stepper motors. The two basic winding
arrangements of two-phase stepper motors are: uni-polar and bi-polar. Uni-polar stepper motors
are generally easier to implement, as they have a center tap common wire. Using the common
wire, the magnetic field (and therefore the direction of rotation) can be reversed easily without
having to switch the direction of the current, and thus the driving circuit is made very simple.
A

Power Supply
(Common Wire)

Coil 1

Power Supply Coil 3

(Common Wire)

Unipolar Stepper Motor

Figure 4.Uni-polar stepper motor

This project utilizes the Elegoo 28BYJ48 uni-polar stepper motor, which is one of the
most popular hobbyist motors due to its ease of implementation and sufficient torque for most
small projects. The package that was purchased also came with a ULN2003 driver board, which
contains 7 NPN transistors which control the amount of current into the motor. These stepper
motors have a step angle of 5.625°, and an internal gearbox reduction ratio of 1/64. The rated
voltage is 5V, but responses from the manufacturer state the accepted voltage as up to 12V.

What was discovered through testing is that when run at 5V, the motors sometimes are
not able to generate enough torque to actually start moving the knobs of the Etch-A-Sketch.
This is because not enough current is flowing through the motors, and so to remedy this, the
voltage was increased slightly to 7V to provide more current. This proved effective, as the
motors do not stall anymore. Initially, an input voltage of 12V was attempted, but that resulted in
the side effect of the motors themselves heated up much too quickly, and did not appear safe to
run for long periods of time. 7V was found to be the lowest we could set the voltage, and sitill
have the motors move the dials consistently for long periods of time.

For this project, two stepper motors and two ULN2003 driver boards are being used
interfacing with the FPGA.

B. Etch-A-Sketch

The nostalgically fond Etch-A-Sketch was used in this project. Attached to the front of
this toy was a screen and two knobs. The inside of the toy is filled with aluminum powder, which
stays in place magnetically. Twisting the knob activates pulleys that move a stylus across the
screen to displace the powder, allowing it to fall to the base of the toy. In doing so, the
appearance of a dark line is left. By attaching the knobs to two stepper motors, the motors are
able to control the movement of the stylus and and thus a programmed image is able to be
drawn on the Etch-A-Sketch’s screen. To erase the drawing, the whole assembly must be
turned upside down and shaken, allowing the aluminum filament to fall back onto the screen,
filling in the lines.

Maze-ing

—

Figure 5. Etch-A-Sketch in final casing

Schematics:

V, o’ wv
S Lo \\-/mﬂ 1© Moter (o)
MM Mok Y | assica > 0 oo
s s et
a.coiltad P Y s L o
ocol ()PSO kA =
% 1~y an ey
Vw’sv 1 v'-n " g - —
T s 3 ovry + Comi
953 motor o o = o
5% Sicdn C%c\one \VE s e
8
€O EPUCECECS o o
Moo~ 011
[Gcorltar p46 Lo Umﬂ N
beoil] p4S 2 s o s
boaxi (1 PUY 3 v o
boooil (3 PUD u [§ m: .
L ws 3 om{
¢ e S o de
PAI4 __ CIK _Pw e ke
JPAIS owrecTion. oW | Micrecontller Gio L1 AT ok
ATSAMUSYS 4
PAIA_MOTOR.PIN
veew
BUTToN). 1J
-) spsr_‘ :”1 ’c Ol)*l.l
50N i I
BUTTowa. N PA20 sp“_—i = >= =
B 5
SUTTon.IN_ PARDS - ind "
psT | - >o o
45050 LN—
: 4 otd]
RBUTTow. N PAL a ’3 I
sPsT LN—
?g‘so.ﬂ- FF—, _]_o.-psg !g! !! %L
5 >
DUTToNS.IN__ PAXY : = | owo TWA e i
sPsT =
¥““‘°n ULN2Q03A

Figure 6. (Left) High level schematic of breadboard (Right) ULN2003 Driver Board circuit

Microcontroller Design:

The microcontroller is the main brain of the module. It has the mazes stored as arrays of
instructions. It is then able to decode the instruction set and communicate these instructions to
the FPGA. It has three main ways of drawing mazes. First the drawStraightMaze() function
decodes the instructions and calls the drawStraightLine() function, which is then able to draw
perfectly horizontal or vertical lines. The second maze type is a drawRoundMaze(), which calls
drawCircle() which in tern calls drawAngledLine(). The third type of drawing function is the
drawPath(), which takes in an array of coordinate points and draws a series of Bezier curves

that draw a curve based on changing the weighted average between a series of four points.

The microcontroller begins with its main() function. This function simply initializes the
clock, PIO, timer counter and pins. From here it enters an infinite loop while it waits for one of
the button input pins to go high, indicating that a button has been pressed. Depending on the
button being pressed, a different maze is drawn. Depending on the type of maze being drawn, a
different maze-drawing function can be called. Three maze-drawing functions were written
drawStraightMaze(), drawRoundMaze(), and drawPath(), with the instructions of each being
encoded in a different way.

The drawStraightMaze() function takes in an array of strings, each containing two
characters. This function runs on a while loop that runs for as long as the array length. During
each loop, the string associated with the current step is decoded using three helper functions
that return the duration of the step, which motor is being used, and if the motor will be turning
clockwise or counterclockwise. This way the array of steps can remain legible with the code
doing the brunt of the decoding. A length of 1 correlates to 650 (LINEAR_COEFF constant) calls
to the moveFPGA() function, which correlates to about a 60° knob turn or a distance or about a
centimeter. The penultimate step of this function calibrates the motor when the direction
switches. Essentially, if the last direction moved is different from the current direction a distance
of 350 (REVERSE_OFFSET constant) in the new direction is issued. This function call doesn’t
actually move the cursor, but moves the motor enough that the next moveFPGA() function call
will move the cursor. This makes sure that the maze stays on top of itself when drawing the
whole function. From here the drawStraightLine() function is called passing in the motor,
direction and distance values.

The drawStraightLine() function uses a while loop to repeatedly input the current
instruction into the moveFPGA() function. It calls this function a duration number of times. For
reference, it takes about 1000 function calls for the motor to move 90°.

The moveFPGA() function digitally writes the direction and motor pins into the
appropriate states. Then it puts the clk pin high. On the rising edge of this pin the FPGA’s FSM
changes states. Then we call an 800 microsecond delay to give the motor time to move. Finally
the clk pin goes low.

Drawing the Straight Maze was all that was promised from our project proposal. The
following functions are an extended feature set of the project, and were done for fun.

The drawRoundMaze() function takes in an array of strings, each containing 6
characters. Each string provides the instruction containing the type of instruction, and the
parameters of the instruction. There are two types of instructions; both use a global variable
angle that keeps track of the current angle of the cursor relative to the center point of the maze.
0° means straight left, 90° straight up and so on. For radially in or out movements, this value is
used to determine which lineAngle to give the drawAngledLine() function. The length of this
value is taken from the instruction set. Circular movements call the drawCircle() function,
passing in the radius, finalAngle, and instruction. The drawCircle() function uses a while loop to
draw a series of angled lines that together look like a circle to us. Each angled line is a degree
change of 1. That is, that if the circle is being drawn clockwise, and the current angle is at 60°, it
will use the radius determine the position at an angle of 61°. Then it determines the length and
angle of the line needed to move into this position. It then passes this lineAngle and distance
into the drawAngledLine() function. By continuously calculating this drawAngledLine() function

and updating the global angle, a circle can be drawn. The drawCircle() function halts when the
finalAngle is equal to the global angle.

The drawAngledLine() function is the simplest function to explain, but also the longest
function of the entire codebase. Given a lineAngle and distance, a line is drawn on the
etch-a-sketch that matches the lineAngle and distance. Using some simple trig, It takes into
account reverse direction calibration, cases where the line is fully horizontal or vertical, and
ambiguous sines. The hardest part of this function is moving the two motors seemingly
simultaneously to draw the appropriate angle. Say the function wants to move at an arbitrary
angle. Using sin and cosine, we can calculate that for every x horizontal motor calls we want to
make y vertical motor calls. From here a globalAngleCount variable is used that just counts
upwards. Every time globalAngleCount reaches a multiple of y the motor is moved horizontally.
Each time globalAngleCount reaches a multiple of x the motor is moved vertically. Notice how
horizontal movements are based on the vertical component, and the vertical movements are
based on the horizontal component. The variable globalAngleCount is global and is rarely reset,
so that the count doesn’t change as the desired angle changes. This property helps the drawn
curves look smooth. In this way, this function is able to move the two motors at variable rates.

The drawPath() function uses a while loop to draw a series of Bezier Curves. Bezier
Curves are essentially 4 coordinate points, where a curve is calculated based on a weighted
average of the 4 points. The curve starts at point 0, and ends at point 3. When leaving point 0, it
is traveling in the direction of point 1. When arriving at point 3, it is traveling from the direction of
point 2. The function works by calculating the current and next x,y coordinate positions, and
then calculating the angle and distance of a line that connects these two points. It then calls the
drawAngledLine() function inputting this calculated angle and distance. Directions for the
batman symbol are stored in the C code. Admittedly, due to time constraints this function was
never properly implemented and is yet to be debugged. Had this function been properly finished
the microcontroller would have been able to draw any path.

FPGA Design:

The FPGA has a simple but crucial role of keeping track of which position the stepper
motor is in. If the stepper motor shaft and the FSM become desynchronized, then the motor will
buzz but not spin. In order for the mazes being drawn to look good, the lines need to line back
up with themselves. Thus it's critical that the lengths travelled by the etch-a-sketch’s cursor
remain constant. In this way, the task given to the FPGA is extremely important.

b_cail(2)
~.,',i? &;5' p\\‘.;.é b_Coll %)
> Q s
::co'.ﬂo]
<ol (%)
cIK motoe O FSM
motec
direction
~ i)
'5;? "—ag 55‘6\\\
= @©)
motoe 1 £sM
Figure 7. FPGA block diagram (left) FSM for motor logic (right)

The FPGA receives 3 bits of information from the microcontroller: clk, motor, and
direction. The motor signal is 0 for the horizontal motor, and 1 for the vertical motor. Within the
Motor FSM, it works like an enable. Thus the bit is inverted when inputted into the FSM module
for motor 0. The direction bit indicates which direction the FSM should move. A direction of 0
indicates the the motor should spin clockwise, while a value of 1 indicates counterclockwise. On
the rising edge of the clk, the direction and motor values determine in which direction the motor
FSM should turn. The clk goes high each time the microcontroller's moveFPGA function is
called. This allows the FSM to always be in sync with the microcontrollers commands.

Mechanical Design:

First, a housing for the Etch-A-Sketch was constructed, so that the Etch-A-Sketch would
be immobile during the motor operations. It was designed to fit the Etch-A-Sketch very snugly,
such that the Etch-A-Sketch was able to be inserted and removed with ease, but without any
extra wiggle room to ensure the most accuracy for the drawing process. The structure was
created out of wood machined according to measured specifications, and put together using
screws.

Next, an assembly to attach the motors to the knobs was created. There were many
design iterations for this component, as it is the most essential for accurately translating
programmed code onto the Etch-A-Sketch screen. It is imperative to the quality of the final result
that the motors are not able to shift during the drawing process by any degree of freedom, and

that the motors are perfectly vertically parallel to the knobs. The first design utilized a 1:1 gear
set, one for each knob -- one part was press fit onto the Etch-A-Sketch knob, and the other was
press fit onto the motor shaft. These parts were 3D printed, and were perfectly able to be
securely press fit onto their respective parts without any slippage. Upon testing the gears, it
became clear that this was not a viable option. When the teeth were pressed together such that
no slip occurred, the torque needed to rotate the knob was too high for the motors and so they
didn’t turn, but when that pressure was slightly released, the gears were unable to catch each
other securely and there was a lot of slipping. The next iteration utilized the fact that the gear
structures were already very securely press fit onto their respective parts, and the gears were
directly taped to each other such that the motors were now positioned directly above the
Etch-A-Sketch knobs. This design produced a much better output, but was still not ideal
because it relied on the motors being held immobile using our hands, which introduced human
error, and that the tape was perfectly secure, which it was not. It also restricted the original
intended design of allowing the user to manually solve the produced maze, since the motors
were directly attached to the Etch-A-Sketch. The final design utilized the same idea of directly
attaching the motors to the knobs as the tape, except the connection was made using magnets
adhered to the respective gear structure of the knobs and the motors. The magnets chosen
were strong enough to pull the center of the motors into alignment with the center of the knob,
while also allowing them to be easily removed for manual play. The magnets were also strong
enough that they did not slide against each other when one was rotated, which was essential as
only one would be rotated by the motor, and the other (attached to the knob) would be rotated
by the friction and magnetic attraction between them. One concern was that the magnets would
interfere with the internal workings of the motor, as they rely on generated electromagnetic
fields, but that was thankfully not the case.

Figure 8.3D printed knob and motor casing attached with magnets
Once the method of attaching the motors was determined, then came designing the
method of attachment to the frame. This way, the system would be able to operate
independently without using our hands to hold the motors still. The first idea was to have the
motors attached to hinges that flipped the motors on and off the knobs, so that the motors could

10

be pulled off and snapped back on when needed. However, upon handling the magnets, this
mechanism was deemed a safety hazard, as it could be very painful if the motors were swung
onto a finger. As a result, a pivoting mechanism was constructed, that would have a structure
attached to the frame on a pivot point, and the motors would be able to slide on and off the
knobs. This design meant that some precision on centering the motors had to be sacrificed, and
the motors would have to be adjusted once attached, but it was a necessary tradeoff to maintain
safety.

Finally, the motor was attached to the pivoting structure using a sheet of acrylic that was
laser cut to press fit around the motor, and then screwed onto the structure.

e

vy n _5“\' Trm
1.2\ 3 % "*‘1\‘\, "
N Z]
0.674
le——
oS3
Figure 9. Motor dimensions sketch (left) CAD drawing for laser cut (center) Finished motor securing

structure with pivot point (right)

Results:

We are very pleased with the outcome of our device. The system is quite robust, and
successfully independently draws the three intended mazes reliably, and with a high level of
precision. The system was able to both draw the initial line, as well as trace back over existing
lines to return to a common spot on the maze almost perfectly, and certainly without interfering
with the overall playability of the maze. User response was also very positive, in both the
satisfaction gained from watching the Etch-A-Sketch stylus trace perfectly straight lines and
return along the same exact path, and from the pleasure gained from being able to physically
manipulate the knobs of the Etch-A-Sketch and complete the maze. At the core of this project,
we aimed to create a system that brought joy to people and was fun to operate, so this was the
most important metric of success for us.

Nevertheless, there is still much room for improvements if time and budget allowed. We
had programmed in two stretch goal bonus mazes -- one was a circular maze, and the other
was a much larger, much more complicated maze. The circular maze was successful once,
when the motor casing was first attached to the frame but still held secure by our hands.
However, we were not able to replicate this once the structure was firmly attached. We believe
that this is due to the motors not being perfectly perpendicular, as well as the fact that the
motors were becoming less reliable as they continued to be used, and were not able to produce
the high level of precision needed to draw a circular shape. With more precise machining of
parts, we believe that we could construct a secure structure for the motors that also ensure that

11

they are perfectly centered over the knob, and perfectly perpendicular to the knob, given more
time.

The larger, more complicated maze required that the distance traveled for each space
had to be scaled down, and was programmed with ~500 instructions. This maze always started
off successfully, but only ever made it about a third of the way through the instructions before
the motors started failing to rotate reliably. We believe that if we had more expensive and robust
stepper motors, this maze could be completed.

Figure 10. Circular maze (left) Partially completed scaled maze (right)
Overall, the system was very successful, and met all of our project specifications. Once
we started attempting stretch goals, we saw all the improvements that could be made to the
system that we would like to implement if given more time.

Figure 11. Completed structure!

References:

12

1. “ELEGOO 5 Sets 28BYJ-48 ULN2003 5V Stepper Motor + ULN2003 Driver Board for Arduino.” Amazon.
2. “Stepper Motor.” Wikipedia, Wikimedia Foundation, 13 Dec. 2019, en.wikipedia.org/wiki/Stepper_motor.

3. “Stepper Motor Interfacing with 8051 Microcontroller (AT89S52).” CircuitDigest, 26 July 2015,

circuitdigest.com/microcontroller-projects/stepper-motor-interfacing-with-8051.
4. “Unipolar Stepper Motor vs Bipolar Stepper Motors.” Simply Smarter Circuitry Blog, 31 Mar. 2016,

www.circuitspecialists.com/blog/unipolar-stepper-motor-vs-bipolar-stepper-motors/.

Bill of Materials:

Part
Etch-A-Sketch

5x Stepper Motors &
5x Drivers

6x 1.26” Disc Magnets
with Double-Sided
Adhesive

8” Jumper wires

MicroPs board (uMudd
and FPGA)

Wood beams, Plywood,
Wood stain

Various screws

%" Clear Acrylic

5x LEDs
5x 330Q Resistors

Source

Amazon

ELEGOO

DIYMAG

ELEGOO

E155

Machine Shop

Engineering

Stockroom

Machine Shop

Engineering
Stockroom

Vendor Part #
20083951-6041762

28BYJ48 stepper motor
ULN2003A driver

HLMAGO03

EL-CP-004

N/A

N/A

N/A

N/A

N/A

Price
$16.99

$13.99

$8.99

$6.98

$0.00

$0.00

$0.00

$0.00

$0.00

APPENDICES:
Etch-A-Sketch measurements:

q N
o
4 e
.
i [RESEPY
Motor measurements:
AN
121\
N v
I‘_’l .
O-ISin o. 61‘
— Maliat
“ousa 0.3

Measurements for 3D printed knob and motor casings:

ofLin

I‘) S

13

D:\MicroPs\Project\DrawMaze - Print Copy.c - Mierocont fol\er Code

P O WwWwOow-Jo Ul WN -

=

=
N

13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64

65
66

// code that draws maze on etch-e-sketch
// made by Martha Gao & Daniel Torres

// dtowersm@gmail.com

// mgao@g.hmc.edu

// Saturday November l6th 2019

#include "SAM4S4B.h"
#include <stdio.h>
#include <math.h>

[17777777777 777777777777 777
/1777 777777771777
J/——mm e Global Variables

LITTTT T 7070777777777 7777777777777 777777777777 777 7777777 77
L1777 7107777777

#define LOW 0 // Value to write a pin low (0 V)
#define HIGH 1 // Value to write a pin high (3.3 V)
#define PI 3.14159265

// PINS that communicate with the FPGA
#define MOTOR_PIN 12

#define DIRECTION PIN 13

#define CLK_PIN 14

// Pins the communicate with the push buttons
#define BUTTON1 IN 17
#define BUTTON2 IN 20
#define BUTTON3 IN 23
#define BUTTON4 IN 26
#define BUTTONS IN 29

// keeps track of how many more steps should be added for reversing direction
int INITIAL OFFSET = 650;

// keeps track of how many steps should be present to start moving the motor
int REVERSE OFFSET = 350;

// keeps track of how many steps should exist per unit of distance

int DISTANCE COEFF = 650;

// keeps track of how many more steps should be added for reversing direction
int RADIAL INITIAL OFFSET = 650;

// keeps track of how many steps should be present to start moving the motor
int RADIAL REVERSE OFFSET = 250;

// keeps track of how many steps should exist per unit of distance

int RADIAL DISTANCE COEFF = 650;

// keeps track of the size of a degree step for making circles
// make this smaller to make circle more polished
double DEGREE STEP = 1;

// global variable keeps track of the last direction the stepper motor traveled in
int last[2] = {2,2};

// global variable that keeps track of the angle for rotations

// goes from 0 to 359, with each change in one value being 5 degrees
// 0 is straight left

// 90 is straight up

// 180 is straight right

// 270 is straight down

double angle = 0;

N NN
L1777 77777777777

it e Rttt Maze Encondings

N NN
L1777 77777777777

// tests the directions are correct up down left right
char testmaze[4][2] =

Page 1

D:\MicroPs\Project\DrawMaze - Print Copy.c

67 {"ui", "D1", "L1", "R1"};
68
69
70

// tests the distances of the 1
char testmaze2[15][2]

ines, make sure 2 is twice as long as 1 etc

71 {"p1", "R1", "rni", "pi", "r2", "nL2", "D1", "R3", "L3", "D1", "R4", "L4","D1","R1", "L1"};
72
73 // tests changes in direction, to make sure the offset is correct
74 char testmaze3[10][2] =
75 { 1", "R1", "1, "R1", "L1", "R1", "L1", "R1", "L1", "R1"};
76
77 // tests changes in direction, to make sure the offset is correct
78 char testmazed4[11][2] =
79 { 1", "v1i", "oi", "vi", "oi", "rR1i", "bi", "R1", "D2", "U1", "R1"};
80
81 // saves directions of mazeO
82 char maze0[47]([2] = {
83 "R1",
84 "Rl", "Dl", "Ul", vllev, HD2", HR3", HU2", "Rl", vllev, HD2", HR3", HU2", vllev, "Ul", HL2", HU2",
85 "p2", "R2", "u2", "p4", "L1", "R1", "U1l", "R1", "UL",
86 "Rl", "Ul", vllev,
87 "g2", "L2", "p2", "u2", "rn2", "pD2", "L1", "U1", "D1", "R1", "U2", "L2", "D3", "R2", "D2", "U2", "L2",
88 "Ll"},‘
89
90 // saves the directions of mazel
91 char mazel[104]1[2] =
92 { HR2", vllev, HD2", HR4", "Ul", HL3", HR3", "Dl", HR2", "Ul", "Dl", "Rl",
93 'g2","L.3", "r1i", "pi", "oui", "r1i", "oi", "n3", "uv2", "R1", "ni", "D3", "U1", "R2",
94 "Ul", vllev, "Rl", HU2", HL3", "Dl", "Ul", HR2", "Ul", "Dl", "Rl", HD3", "Rl","Dl","Rl","D2",
95 "rR2", "uy2", "oi", "vi", "oi", "vi", "voi", "R1", "pi", "ri", "p2", "vi", "R1i", "us5", "L1", "D3",
96 HU3", "Rl",
97 "R1", "uUl", "L1", // END
98 vllev, "Rl", "Ul", HL3", "Dl", "Ul", HL2", "Dl", "Rl", "Dl", "Rl", HD2", "Rl", HU3", HD3", vllev,
99 vz v’llev, "Ul", vllev, "Ul", HL4", HD2", HR3", "Ul", HL2", HR2", "Dl", HL3", HD4", HR2", "Ul", vllev,
100 "g2", "p2", "R1", "D2", "u1i", "L2",
101 "L1l", //Begin
102 }s
103
104 char maze2[129]([2] = { "R1",
105 "R2", "Ul", "Rl", "Ul", "Ll", "Ul", "Ll", "Rl", "Dl", "Rl", "Dl", "Ll", "Dl", "L2", "Dl", "R5", "R5",
106 "gs5", "L.2", "pi", "R1i", "p3", "oi", "u2", "D2", "R1", "U3", "L3", "U1", "D1", "R1", "D2", "L1",
107 "Dl", "Rl", "Ll", "Ul", "Ll", "R2", "U2", "Rl", "UB", "Ll", "U2", "Dl", "LBH, "D2", "Ul", "L2",
108 'gi", "p1i", "oi", "p1i", "uyi", "R3", "uv2", "D1", "R3", "D1", "R1", "D2", "R2", "U3",
109 "Rl", "Ul", "Ll",
110 "Li", "R1i", "ugi", "L2", "p2", "r1i", "p2", "u2", "pi", "u2", "n2", "D1", "L1", "R1", "UL1l", "L3", "D2",
111 "Ul", HL2", "Dl", "Ul", HR2", "Ul", HL3", HD5", HR2", "Ul", "Rl", HD2", "Rl", "Ul", "Rl", HU2",
112 "rR1", "n1i", "pi", "r2", "pi", "vi", "vn2", "D3", "R1", "L1", "U2", "L1", "D4", "L1", "R2", "L1",
113 HU3", vllev, HU2", vllev, "Dl", HL2", HD2", "Rl", "Dl", "Ul", vllev, "Dl",
114 "L1M };
115
116
117 // saves directions for very long maze
118 char mazelong([495]([2] = {"R3", "D1", "U1", "L2", "D5", "R1", "U1", "D1", "L1", "D4", "R5", "Ul", "L4",
"Ul", "Rl", "Ll", "Dl", "R2", "UB", "Ll", "Dl", "Ll", "Rl", "Ul", "RB", "Ll", "Ul", "Ll", "Rl", "Ul",
119 "rR1", "n1i", "uyi", "oi", "pi", "vi", "v2", "D1", "R1", "D1", "U1", "L1", "U2", "D1", "R3", "D3", "L1",
"DB", "R2", "Dl", "R6", "U2", "Rl", "UB", "Ll", "Rl", "U2", "Ll", "R5",
120 "L2", "uy2", "R1in", "vu2", "oi", "u3", "b2", "L1", "D4", "L1", "R1", "U2", "L3", "D3", "U1l", "R1", "UL",
"Rl", "Ll", "Dl", "Ll", "UB", "Dl", "R4", "Ll", "U2", "Rl", "Dl", "Rl",
121 "p2", "Li", "p2", "L2", "ps", "Rr1i", "pi", "oi", "r4", "ni", "ugi", "R3", "pi", "rRi", "ni", "uvli", "L3",
"Dl", "L2", "Ul", "L2", "D2", "R6", "Ul", "Dl", "RB", "U4", "Ll", "D2", "Ul", "L5", "Dl",
122 "g3", "oi", "p2", "u2", "R1", "D2", "R5", "U1", "R1", "U4", "L1", "D1", "UL1", "R1", "U2", "L1", "R1",
123 "Rl", "Ul", "Ll",
124 "Li", "vu2", "bD2", "L1", "D5", "R1", "D1", "L1", "R1", "OU1", "L2", "D2", "L2", "U2", "L2", "R3", "D1",
"Ul", "Ll", "D2", "RB", "Ll", "U5", "Ll", "Rl", "Dl", "L2", "R2", "D2", "Rl", "UB", "Rl", "Ll", "Ul",
125 "[ngﬂ: "Rl", "Dl", "Ul", "Rl", "Ul", "Dl", "LBH, "U2", "R4", "L2", "Dl", "Ll", "Rl", "U4", "Dl", "Rl",
'gi", "R1i", "voi", "v2", "Ln3", "rR3", "D3", "L1", "D2", "L2", "U2", "R1", "D1", "U3", "R1", "L1", "D2"
126 "Ll", "Dl", "L2", "Dl", "L4", "Rl", "Ul", "D2", "Ul", "RB", "Dl", "L2", "Rl", "D2", "Ll", "Ul", "L2",
"p3", "v2", "pi", "vi", "pi", "r1i", "ugi", "r2", "pi", "r1i", "ug2", "R1i", "u3", "D1", "R2", "D3", "R1",
"D2", "R2",
127 "gi", "R2",
128 "U5", "Ll", "Dl", "Ll", "Rl", "Ul", "Rl", "U4", "Ll", "D2", "U2", "L5", "Dl", "Ul", "L2", "Dl", "Ul",

Page 2

D:\MicroPs\Project\DrawMaze - Print Copy.c

129

130

131

132
133

134

135

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
16l
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

"L4"’ "Dl", "R3"’ "Ll", "D2"’ "Rl"’ "Ul", "Dl",
"Rl"I "Ul"I

"Dl", "R2"’ "Dl", "L5"’ "U2"’ "L2"’ "Ul", "L5"’
"Ul"I HR2", "Ul"I HR2", "D2", HR2", "Dl"I "Ul"I
"L2"’ "U2"’ "L2"’ "D5"’ "R2"’ "Ul", "Dl", "L2"’
"Ul"I "Ll", "Ul"I HL2", "Rl"I "Ul"I "Ll", "Rl"I
"D2"’ "R4"’ "Ul", "R3"’ "Ll", "U2"’ "Rl"’ "Ul",
"DB", HL2", "Ul"I "Ll", "Rl"I "Dl"I "Rl"I

"D2"’ "L3"’ "Ul", "Ll", "Dl", "Ll", "Rl"’ "Ul",
"Rl"I "Dl"I "Ll", "D2", "Rl"I "Ll", "Dl"I "Ll",
"Rl"’ "Dl", "Rl"’ "D2"’ "Rl"’ "D2"’ "Ll", "Dl",
wran ,

"U2"’ "L3"’ "Ul", "Ll", "U3"’ "L3"’ "D2"’ "Ll",
HR2", "Dl"I "RB", "Ll", "Dl"I "Ll", "Rl"I "D2",
"L2"’ "Dl",

"Ll", "D2", HR4", "U2", "D2", HL4", "U4", "Ll",
"L2"’ "Ul", "L2"’ "U2"’ "Ll", "U3"’ "L2"’ "D3"’

//

// used for calibrating the in and out distance

CW for Clockwise

CC for counterclockwise
Radius

Final Angle ()

IN for traveling in

OU for traveling out
Distance to Travel

draws concentric circles

char circletestl[17][6] =

{

"CWel80", "Cwe000",
"IN10OO"™,

"Cw5180", "Cw5000",
"IN10OO"™,

"Cw4180", "Cw4000",
"IN10OO"™,

"Cw3180", "Cw3000",
"IN10OO"™,

"Cw2180", "Cw2000",
"IN10OO"™,

"CW1180", "CwW1000"};

// one of the mazes of the code
char circlemaze[64][6] =

{

"CCe1l80",

"IN10OO"™,

"Cw5210", "CC5050", "cCw5120",
"IN10OO"™,

"Cw4140"™, "cc4o070"™, "cw4090",
"IN10OO"™,

"Cw3200", "CcC3030",

"oulo000",

"CC4350", "Cw40e60"™, "CC4030",
"IN10OO"™,

"cc3330",

"oulo000",

"CC4310", "Cw4340",

"oulo000",

"Cw5040", "CC5250",

"IN10O",

"Cw4300", "CcC4250",

"oulo0",

"CC5220", "Cw5340",

"IN10OO"™,

"Cc4330",

"IN10OO"™,

"cc3z290",

"IN10OO"™,

"ccz2090", "cw21i20",

"IN10OO"™,

"ccio30",

"Rl"’ "D2"’

"D1", "Ul",
"R3", "Ul",
"D2", "R2",
"Dl", "Rl",
"R2", "D1",

"Rl"’ "Dl",
"RB", "Ll",
"Ul", "R3"’

"U2"’ "D2"’
HR2", "Ul"I

"Rl"I "D2",
ny },.

nygon ,

"L1",
"Dl",
"ul",
"Dl",
"ul",

"Dl"I
"Ll",

"R3"’
"DB",

HL2",

"ROM ,

"D3",
"Rl",
"R1",
"L2",
"L2",

HR2",
"D2"’

nygl" ,
wyomn ,

"Dl"I

"Dl",

"L1",
"U2",
"uln,
"Dl",
"y2",

w2 ,
"Rl ,

"Ll",
"Rl"I

"Rl"I

nygl" ,

"y2",
"L2",
"R3",
"R2",
"L2",

"Ll",
"Dl",

"Rl ,
nygl" ,

"Ll",

"Rl ,

"D3",
"Dl",
"D1",
"Ll",
"ul",

w2 ,
nygl" ,

"Dl",
"Dl"I

"Ul"I

"yL",
"yL",
"R1M,
"D1",
"p1",
"L1",

"Ll",
"Rl"I

"R3" ,

"L3",
"R1M,
"L1",
"R2",
"L1v,
"y2n,

"D2"’
"U2",

"U4",

Page 3

D:\MicroPs\Project\DrawMaze - Print Copy.c

191 "ouloo00",

192 "Cw2080", "CC2310", "Cw2030",
193 "IN10OOO",

194 "cc1140", "CwlizoQ",

195 "ouloo00",

196 "CW2290",

197 "ouloo00",

198 "cc3z10",

199 "ouloo00",

200 "Ccc4140", "Cw4z40", "cc4z1iQ",
201 "IN10OOO",

202 "CW3090",

203 "ouloo0",

204 "cw41i20",

205 "ouloo0",

206 "CwWw5180",

207 "ouloo0",

208 "CCe6010", };

209 // a series of coordinate points that generate bezier curves

210 // that draw the batman symbol
211 double batManSymbol[74] =

212 { 0,0, 0,0.5, 1,1.75, 2,1.75,

213 1, 1.25, 2, 0.5, 3, 0.75,

214 3.13, 0.88, 3.25, 1.25, 3.25, 1.5,

215 3.25, 1.25, 3.25, 1, 3.5, 1,

216 3.75, 1, 3.75, 1.25, 3.75, 1.5,

217 3.75, 1.25, 3.88, 0.88, 4, 0.75,

218 5, 0.5, 6, 1.25, 5, 1.75,

219 6, 1.75, 7, 0.5, 7, 0,

220 6, 0.25, 5.25, 0.25, 5.25, -0.5,

221 4.25, 0, 3.63, -1, 3.5, -1.25,

222 3.37, -1, 2.75, 0, 1.75, -0.5,

223 1.75, 0.25, 0.5, 0.25, 0, 0O};

224

225 [17717777777 777777777777 77/777777777777777777777
/1777 777777771777

226 e Motor Moving Function
——— //

227 [17777777777 777777777777 777
/1777 777777771777

228

229 // initializes the Pins

230 int pinInit() {

231 // initilialize pins that talk to FPGA

232 pioPinMode (MOTOR PIN, PIO OUTPUT) ;

233 pioPinMOde(DIRECTIONiPIN, PIO OUTPUT) ;

234 pioPinMode (CLK_PIN, PIO OUTPUT) ;

235

236 // initialize pins used to check for button presses

237 pioPinMOde(BUTTONlilN, PIO INPUT);

238 pioPinMOde(BUTTONZ_IN, PIO INPUT);

239 pioPinMOde(BUTTON37IN, PIO INPUT);

240 pioPinMOde(BUTTON4_IN, PIO INPUT);

241 pioPinMOde(BUTTON57IN, PIO_ INPUT);

242 return 1;

243 }

244

245 // this move function delivers the instructions

246 // to the FPGA. The FPGA's FSM's control the individual motors in this case
247 // motor tells the FPGA which motor to move

248 // direction tells the motor which direction to move in
249 // 0 means clockwise, 1 means counterclockwise

250 int moveFPGA (int motor, int direction) {

251 // write the pins

252 pioDigitalWrite (MOTOR PIN, motor);

253 pioDigitalWrite (DIRECTION PIN, direction);

254 // the FPGA's FSM changes states on the rising edge of the clk pin
255 pioDigitalWrite (CLK PIN, HIGH);

256 // wait for the motor to move;

257 tcDelayMicroseconds (800) ;

258 pioDigitalWrite (CLK PIN, LOW);

259 return 1;

Page 4

D:\MicroPs\Project\DrawMaze - Print Copy.c

260
261
262
263

264

265

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

}

N NN
L1777 77177777777

N NN
L1777 77777777777

// helper function used to calibrate the distance of the verticle and horizontal components
// of the draw angled line function
// distance is the intended travel distance
double angledComponentDistanceCalibration (double distance) {
double output = RADIAL INITIAL OFFSET; // base value to make the motor start moving
output += (distance-1) * RADIAL DISTANCE COEFF; // add amount per step
return output;
}
// helper function that draws a line in the cardinal directions
int drawStraightLine (int motor, int direction, double duration) {
int 4 = 0;
while (d < duration) {
// move the motor
moveFPGA (motor,direction) ;
// update the last direction the motor traveled in

last[motor] = direction;
// gives time to let the motor move
++d;

}

return 1;

// global Angle Count is just a counter, it is a global variable used

// to determine how often each motor should move relative to one another
// by making the variable global the count is saved between function calls
// which makes the function more consistent for smaller circles

unsigned int globalAngleCount = 0;

// helper function draws lines in non-cardinal directions

// used both to draw small steps of the circle and for the radial lines of the radius
// argueably the most important function of in this file

int drawAngledLine (double distance, double lineAngle) {

// keeps track of the the direction of each motor
// 0 is clockwise
// 1 is counter clockwise

int motorDirection([2] = {0,0};
if ((lineAngle <= 90) || (lineAngle >= 270))
motorDirection[0] = 1;

if (lineAngle >= 180)

motorDirection[1] 1;

// reverse direction calibration!

if (last[0] != motorDirection[0]) //horizontal
drawStraightLine (0, motorDirection[0], RADIAL REVERSE OFFSET) ;
if (last[l] != motorDirection[l]) // verticle

drawStraightLine (1, motorDirection[1], RADIAL REVERSE OFFSET) ;

// cases in which the line is horizontal or verticle

if (lineAngle == 90) {

drawStraightLine (1, 0, angledComponentDistanceCalibration(distance));
} else if (lineAngle == 180) {

drawStraightLine (0, 0, angledComponentDistanceCalibration(distance));
} else if (lineAngle == 270) {

drawStraightLine (1, 1, angledComponentDistanceCalibration(distance));
} else if (lineAngle == 0) {

drawStraightLine (0, 1, angledComponentDistanceCalibration(distance));
} else {

// modify triangleLineAngle to be between 0 and 90 to avoid ambiguous sine
double trianglelLineAngle = lineAngle;
if (trianglelineAngle > 90 && trianglelLineAngle <= 180)

trianglelLineAngle = 180 - triangleLineAngle;

Page 5

D:\MicroPs\Project\DrawMaze - Print Copy.c

329 else if (trianglelLineAngle > 180 && trianglelLineAngle <= 270)

330 trianglelineAngle = trianglelLineAngle - 180;

331 else if (trianglelLineAngle > 270)

332 trianglelLineAngle = 360 - trianglelLineAngle;

333

334 // get horizontal and verticle components of the triangle

335 double horizontalSlope = cos (PI * triangleLineAngle / 180);

336 double verticleSlope = sin(PI * triangleLineAngle / 180);

337

338 // determine the distance needed to be traveled in the horizontal and veritcal directions

339 // takes into account the last direction each motor turned in

340 int horizontalDistance = angledComponentDistanceCalibration(distance * horizontalSlope);

341 int verticleDistance = angledComponentDistanceCalibration(distance * verticleSlope);

342

343 // used to determine how often in the global Angle count

344 // each motor should turn,

345 // horizontalCountRatio is based on verticleSlope

346 // verticleCountRation is based on hoizontalSlope

347 // they are based on the opposite component

348 int horizontalCountRatio = 1000 * verticleSlope;

349 int verticleCountRatio = 1000 * horizontalSlope;

350

351 // used to know how many steps the while loop should take,

352 // d goes up every time a motor is moved, once the total distance each motor needs to travelled

353 // 1s satisfied, the while loop will break

354 int d = 0;

355 int totalDistance = verticleDistance + horizontalDistance;

356

357 // while loop to move the motor

358 while(d <= totalDistance) {

359 // move horizontal motor

360 if (globalAngleCount$horizontalCountRatio == 0) {

3601 moveFPGA (0, motorDirection([0]);

362 ++d;

363 }

364 // move verticle motor

365 if (globalAngleCount%verticleCountRatio == 0) {

366 moveFPGA (1, motorDirection[1]);

367 ++d;

368 }

369 // global Angle Count is Jjust a counter, it is a global variable used

370 // to determine how often each motor should move relative to one another

371 // by making the variable global the count is saved between function calls

372 // which makes the function more consistent for smaller circles

373 ++globalAngleCount;

374 }

375 }

376 // update last direction each motor moved

377 last[0] = motorDirection[O0];

378 last[1l] = motorDirection[1l];

379 return 1; // returns one for debugging puposes

380 }

381

382 L1177 707 7707777777777 7777777777 777777077
/11117177777 7777

383 F e e Straight Maze Maker
——— //

384 L1177 7 7077777777777 7777777777777 7077
/11117177777 7777

385

386

387 // helper function that decodes the direction from
388 // the list of instructions
389 // 0 is clockwise

390 // 1 is counterclockwise

391 int decodeDirection(char in[2]) {
392 if (in[0] == 'L') {

393 return 1;

394 }

395 if (in[0] == 'D') {

396 return 1;

397 }

Page 6

D:\MicroPs\Project\DrawMaze - Print Copy.c

398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

443

444

445
446
447
448
449
450

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465

return 0;

}

// helper function that decodes which motor should
// be used based on the list of instructions
int decodeMotor (char in[2]) {
if (in[0] == 'U') {
return 1;
}
if (in[0] == 'D") {
return 1;
}
return 0;

}

// helper function that decodes the duration from
// the list of instructions
int decodeDuration(char in[2], int motor, int direction) {
int output = INITIAL OFFSET; // base value to make the motor start moving
int x = in[1]-'0'; // the -'0' is to convert from char to int
--x; // so that the distance coefficient only effects duration>1
output += (x * DISTANCE COEFF); // add amount per step
return output;

}

int drawStraightMaze (char maze[][2], int arraylength) {
int 1 = 0;
while (i < arraylength) {
// get values from list

int motor = decodeMotor (maze[i]);
int direction = decodeDirection (mazel[i]);
int duration = decodeDuration(maze[i], motor, direction);

// goes in opposite direction if needed
if (last[motor] != direction) {
drawStraightLine (motor, direction, REVERSE OFFSET) ;
}
// draw instructions straight line
drawStraightLine (motor, direction, duration);
++i;
}
return 1;

}

LITTTT T 7777777777777 7777777777777 7 7777777777 7777 7777777777 77777777777777777777777777777777777
L1777 177777777

LITTTT T 7777777777777 7777777777777 777777777777 7777 7777777777 77777777777777777777777777777777777
L1777 7107777777

// helper function returns the final angle of the circle instruction
int decodeFinalAngle(char in[6]) {

return (in[3] - '0')*100 + (in[4] - '0")*10 + (in[5] - '0'"); // the -'0' is for converting from a
char into an int

}

// helper function that returns the radius of the circle instruction
double decodeRadius (char inf[6]) {
return in[2] - '0'; // the -'0' is for converting from a char into an int

}

// helper function that returns the distance of the radial line instruction
double decodeRadialDistance (char in[6]) {
return in[2] - '0'; // the -'0' is for converting from a char into an int

}

// 0 for clockwise
// 1 for counterclockwise
// 2 for in

Page 7

D:\MicroPs\Project\DrawMaze - Print Copy.c

466
467
468
469
470
471
472
473
474
475
476
4717
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537

// 3 for out
int decodeCirclelInstruction(char in[6]) {

}

if (
if (
if (
if (
else

in[1] == 'W') return 0;
in[l] == 'C') return 1;
in[1] == 'N') return 2;
in[1l] == 'O') return 3;

return 4; // this should never happen

// helper function sets the angle of the global variable
// called to change angle after motor is moved

// 0 for clockwise

// 1 for counterclockwise
int setAngle (int rotationDirection) {

}

if |
an
if |
an

// wrap around for the angles,

// 0
if (
an
if (
an
retu

rotationDirection == 0)
gle = angle + DEGREE STE
rotationDirection == 1)

gle = angle - DEGREE STE

and 360

angle >= 360)

gle = angle - 360;
angle < 0)

gle = angle + 360;
rn 1;

P;

P;

makes sure it stays between

// helper function that draws a circle based on the circle instructions

int drawCircle(int instruction,

}

!/
//
!/
//
!/
//

double radius, int finalAngle) {

// function works by making straight lines in DEGREE_STEP's
// function continues to go until the final angle is reached

whil

e (angle != finalAngle)

{

// use trig to determine the angle of line drawn

//
do
//
if

}
1i

clockwise

uble lineAngle = angle + DEGREE_STEP/2 + 90;

counter clockwise angle
(instruction == 1) {

lineAngle = angle + (180-DEGREE_STEP)/2 + 180;

neAngle = fmod(lineAngle

,360);

// use trig to determine the distance of the line drawn

// beta is the bigger angle of an isoleses triangle

// d = 2*r*cos (beta)
// beta = (180 - DEGREE_ST
do

!/

drawAngledLine (lineDistance,
// update the global variable angle after it's moved a degree

setAngle (instruction) ;
}
return 1;
draws the maze based on array

first type of instructruction

second type of instruction is

EP) /2

uble lineDistance = 2 * radius * cos ((180 - DEGREE STEP)

draw said line

[0:1] CW for Clockwise,
[2] Radius
[3:5] Final Angle

lineAngle);

of instructions for circle maze
is a circle drawing

CC for counterclockwise

a radial line drawing

// [0:1] IN for traveling in, OU for traveling out

// [2] Distance to Travel

// [3:5] No relavant information stored

int drawRoundMaze (char maze[][6], int arraylength) {
globalAngleCount = 0;
int i = 0; // keeps track of instruction number
while (i < arraylength - 1) {

in
do
in

if

t instruction = decodeCirclelInstruction (mazel[i])
uble radius = decodeRadius (mazel[i]);

t finalAngle = decodeFinalAngle (mazel[i]);

// if instruction is a rotation

(instruction < 2) {
drawCircle (instruction,

radius,

finalAngle) ;

* PI /

360) ;

Page 8

D:\MicroPs\Project\DrawMaze - Print Copy.c

538 }

539 // 1f instruction is a radial movement

540 if (instruction > 1) {

541 double radialDistance = decodeRadialDistance (maze[i]);

542 double radialAngle = angle;

543 // if radially in, we want to switch direction

544 if (instruction == 2) {

545 // add 180 as we want the angle to be in the opposite direction as angle

546 radialAngle = fmod((radialAngle + 180), 360);

547 }

548 drawAngledLine (radialDistance, radialAngle);

549 }

550 // move to next instruction

551 ++1;

552 }

553 return 1;

554 }

555

556 [1170707 7777777777777 77
/117777777777 777

557 [Bezier curve Drawing Functions
——— //

558 [/170707 7777777777777 77
/117771777777 777

559

560 // helper function, takes in two positions and finds the angle between them

561 double angleFromPosition (double x1, double x2, double yl, double y2) {

562 double delta x = x2-x1;

563 double delta y = y2-yl;

564

565 // direction each component of the vector

566 int direction x = 1;

567 int direction y = 1;

568 if (delta x < 0)

569 direction x = 0;

570 if (delta y < 0)

571 direction y = 0;

572

573 // calculate triangle angle

574 double B angle;

575 if (delta x != 0) {

576 B angle = 180*atan(fabs(delta y)/fabs(delta x))/PI;

577 } else {

578 B angle = 90;

579 }

580 // translate into global angle of line

581 if (direction x & direction y)

582 B angle = 180 - B angle;

583 if (!direction x & !direction y)

584 B angle = 360 - B angle;

585 if (direction x & !direction y)

586 B angle += 180;

587

588 return angle;

589 }

590

591 // helper function, takes in two positions and finds the distance bewteen them

592 double distanceFromPosition (double x1, double x2, double yl, double y2) {

593 double delta x = x2-x1;

594 double delta y = y2-yl;

595 // pythagoras

596 return sqrt(delta x*delta x + delta y*delta y);

597 }

598

599 // giving four points, draws a curved line that starts at point 0 and ends at point 3. When leaving
point O,

600 // it travels in the direction of point 1. When arriving at point 3, it is traveling from the direction
of point 2.

601 // this function allows the assembly to draw any curved

602 int drawBezierCurve (double x0, double y0, double x1, double yl, double x2, double y2, double x3, double
y3) |

603 for(int t = 0; t < 10; ++t) {

Page 9

D:\MicroPs\Project\DrawMaze - Print Copy.c

604 // taken from formula used to calculate a cubic bezier curve

605 // it's essentially a weighted average of the 3 points based on t. As we varry t, we go through the
curve

606 double B x = x0*pow ((1-(t/10)), 3) + 3*xl*pow ((t/10)*(1-(t/10)),2) +
3*x2* (1-(t/10)) *pow ((t/10),2) + x3*pow((t/10),3);

607 double B y = y0*pow ((1-(t/10)), 3) + 3*yl*pow ((t/10)*(1-(t/10)),2) +
3*y2% (1-(t/10)) *pow ((£/10),2) + y3*pow((t/10),3);

608

609 // figure out what the next position in the curve is

610 int n = t + 1;

611 double B x next = x0*pow((l-(n/10)), 3) + 3*xl*pow((n/10)*(1-(n/10)),2) +
3*x2* (1-(n/10)) *pow((n/10),2) + x3*pow((n/10),3);

612 double B y next = yO0*pow((l-(n/10)), 3) + 3*yl*pow((n/10)*(1-(n/10)),2) +
3*y2* (1-(n/10)) *pow((n/10),2) + y3*pow((n/10),3);

613

614 // use this information to determine

615 double lineAngle = angleFromPosition(B x, B x next, B y, B y next);

616 double distance = distanceFromPosition(B x, B x next, B y, B y next);

617

618 drawAngledLine (distance, lineAngle);

619 }

620 return 1;

621 }

622

623 // Draws a Series of Bezier Curves

624 int drawPath (double path[], int arrayLength) ({

625 // so every Bezier Curve needs a starting and ending point. But for a continuous path, the ending
point of one Bezier Curve,

626 // 1s the starting point of the next Bezier Curve. Each point is two elements of path[]. Thus for
every instruction, the i

627 // needs to be incremented by 6, (aka for 3 points)

628 for(int i = 0; i < arraylLength-1; i = 1 + 6) {

629 drawBezierCurve (path[i], pathl[i+1l], path[i+2], path[i+3], path[i+4], path[i+5], path[i+6],
path[i+7]);

630 }

631 return 1;

632 }

633

634 [/177707 7777777777777 777777777777777077
/1177717 77777777

635 e Main Functions
——— //

636 [11770707 7777777777777 77
/117777777777 777

637

638 // Main Function Runs loop to check for input

639 int main(void) {

640 // initialize clock

641 samInit () ;

642 // initialize pins

643 pioInit();

644 // initialize clock

645 tcDelayInit () ;

646 // initialize pins that are used

647 pinInit();

648

649 // while loop that checks for button presses

650 while (1) {

651 // Draws Easy Maze

652 if (pioDigitalRead(BUTTONlilN)== PIO HIGH) {

653 drawStraightMaze (mazeO, 47);

654 }

655 // Draws Medium Maze

656 if (pioDigitalRead(BUTTONZﬁIN)== PIO HIGH) {

657 drawStraightMaze (mazel, 103);

658 }

659 // Draws Hard Maze

660 if (piODigitalRead(BUTTON37IN)== PIO HIGH) {

661 drawStraightMaze (maze2, 129);

662 }

663 // Draws Circle Maze

664 if (pioDigitalRead(BUTTON47IN) == PIO HIGH) {

Page 10

D:\MicroPs\Project\DrawMaze - Print Copy.c

665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681

drawRoundMaze (circletestl, 65);

}

// Draws Long Maze

if (pioDigitalRead (BUTTON5 IN) == PIO HIGH)
// shrinks the size of the maze drawing
INITIAL OFFSET = 500;
DISTANCE COEFF = 500;

drawStraightMaze (mazeLong, 495);
// return offsets to orriginal values

INITIAL OFFSET = 650;
DISTANCE COEFF = 650;

{

Page 11

Date: December 13,2019 = F P(:IA COde motor_control.sv
LI1111177777777077777717777777/7707777/7/7/7777/7/7/

1
2 // Motor Control Function for dual stepper motors

3 // HMC E155 Dec 7th 2018

4 // dtowersm@gmail.com

5 // written by Daniel Torres and Martha Gao

g [11717777777777777777777/77777777/7/77/77/7777///7/77/
8
9

module motor_control (input Tlogic motor, direction, clk,
output logic [0:3] a_coil, // controls Teft motor
10 output logic [0:3] b_coil); // controls right motor

13 // 0 for left motor, 1 for right motor

14 motor_fsm left_motor (clk, ~motor, direction, a_coil);
15 motor_fsm right_motor (clk, motor, direction, b_coil);
16 endmodule

19 // clk turns on the motor allowing it to go to next state
20 // direction tells the states which direction to go in

21 // 0 means clockwise, 1 means counter clockwise

22 module motor_fsm(input Tlogic clk, motor, direction,

23 output logic [0:3] coil);

24 // define states of FSM

25 typedef enum logic[2:0]{sO, s1, s2, S3, sS4, S5, S6, S7} statetypes;
%9 statetypes state, nextstate;

28 // only one motor 1is moved at a time,

29 // so the enable is crucial

30 always_ff@(posedge clk)

g% if (motor) state <= nextstate;

33 // next state logic

34 // direction being 1 makes the motor move

35 // in the counter clockwise direction

36 always_comb

37 case(state)

38 S0: if(direction) nextstate <= S7;

39 else nextstate <= S1;

40 S1l: if(direction) nextstate <= SO;

41 else nextstate <= S2;

42 Ss2: if(direction) nextstate <= S1;

43 else nextstate <= S3;

44 S3: if(direction) nextstate <= S2;

45 else nextstate <= S4;

46 S4: if(direction) nextstate <= S3;

47 else nextstate <= S5;

48 S5: if(direction) nextstate <= S4;

49 else nextstate <= S6;

50 S6: if(direction) nextstate <= S5;

51 else nextstate <= S7;

52 Ss7: if(direction) nextstate <= S6;

53 else nextstate <= SO;

54 default: nextstate <= SO;

55 endcase

56 // assign logic

57 // turn on the correct coils depending on the state

58 assign coil[0] = (state == S5) || (state == S6) || (state == S7);
59 assign coil[l] = (state == S3) || (state == S4) || (state == S5);
60 assign coil[2] = (state == S1) || (state == S2) || (state == S3);
61 assign coil[3] = (state == S7) || (state == S0) || (state == S1);

62 endmodule

Page 1 of 1

Project: motor_control

Revision: motor_control

