The Ukucorn

A Ukulele Teacher with
Chord Recognition & Interactive LEDs

Lauren Hu & Sarah Wang
E155 - Fall 2017

Abstract

We created an interactive fretboard to facilitate learning the ukulele. Five rows of

LEDs under each string were embedded in the fretboard to display a target chord,

only changing after the correct chord has been played. The analog signal from a

piezo sensor placed on the ukulele body is passed to the FPGA through a low pass

filter and analog-to-digital converter (ADC). An FFT (fast fourier transform)

! implemented in hardware on the FPGA identifies the magnitude of frequencies
using the ADC output. Software on the Raspberry Pi uses this frequency analysis

to identify the chord played and compare it to the target. Upon successful

execution of the target chord, the LEDs on the fretboard

change to display the next target chord in a hard-coded song.

Introduction

Learning a new instrument can be intimidating, expensive, and time-consuming with a human teacher.
However, self-taught musicians also struggle to learn proper techniques and give up after too many
unsuccessful attempts to read sheet music and play at the same time. We sought to replace frustration with a
fun, digital training tool that sits right on the neck of a ukulele.

Because every chord on a ukulele can be played on the first five frets, we embedded LEDs in the first five
rows of the fretboard. These LEDs display a certain chord until the user plays it correctly by strumming all four
strings. Upon successful execution of the chord, the rows of LEDs quickly flash from fret one to fret five signaling
this success to the user, immediately before displaying the next chord in the song. Once the song is completed,
the LEDs show the user a “victory” sequence for a few seconds.

The notes played correspond to the frequency of each string, which can be found by sensing the
vibrations on the body of the ukulele via contact microphone. The contact microphone is composed of a piezo
element and a signal conditioning circuit. The analog signal from the piezo element is sent through a 4th order
low-pass filter before being converted to a digital signal through the analog to digital converter (ADC). The FPGA
uses a SPI protocol to get the ADC data and perform a fast fourier transform (FFT) in hardware. This 1024-point
FFT is then sent via SPI to the Raspberry Pi for analysis and LED control. The Pi uses the FFT data to find the
frequencies with the highest magnitude and compares these notes to the correct notes being displayed on the
fretboard. If the chords match, the song proceeds to display the next chord. If they don’t, then the LEDs keep
displaying the chord. This high-level datapath is summarized in the block diagram below in Figure 1. The
following sections describe and illustrate each module in detail.

Digital
output

Voltage

Contact

Microphone

Magnitudes and frequency bins

y

Notes to Array of

play chords
Fretboard Raspberry Pi Song to play

LEDs

Feedback
QQC', (Did you play the right notes?)

Figure 1: High-level system block diagram. The Ukucorn’s datapath from vibration data to chord recognition
and feedback LEDs.

Hardware

Several new pieces of hardware were used in designing the Ukucorn including a ukulele, a piezo element, ICs for
filtering, and many thin LEDs.

Ukulele A DIY ukulele kit was needed to easily modify the neck and fretboard to embed the LEDs.

Piezo Sensor A piezo sensor was securely taped to the body of the ukulele near the strings to sense
vibrations. The usual output seen from this piezo sensor had amplitudes on the order of a
few hundred millivolts as measured by strumming various chords.

LTC6240 Considering the sensitivity of audio signals, the LTC6240 op-amp was chosen for use in the
low-pass filter given its low noise characteristics. [1]

LilyPad LEDs These thin LEDs were chosen so they could be embedded with minimal sanding of the
fretboard and neck. Additionally, each LED was mounted on its own thin PCB with a 151 Q
resistor in series. When connected from 3.3 V to ground, each LED only pulls 3 mA of
current, well below the maximum current draw for Raspberry Pi GPIO pins.

Ukulele Fabrication

Ukulele fabrication presented several mechanical challenges regarding the fretboard LEDs. Playing a ukulele
requires the user to firmly press down on various strings in the same places the LEDs should be visible. To
minimize interference from the modifications on the user, only very small holes were drilled to allow light to
come through. This ultimately allowed the ukulele to function as a normal, playable instrument, and eliminated
the possibility of splintering the user. A countersink was used under each of the drilled holes so the LEDs could
be as flush as possible with the back of the fretboard. The LEDs were wired up in rows and columns, and hot
glued in place.

The neck was modified to fit the rest of the LED array protruding from the fretboard and all its wires. A
cylindrical sander was used to hollow out the neck until the LED “sandwich” became flush as shown below in
figure 2. A5/16” hole was also drilled at the neck base to feed the nine wires out the back.

Figure 2: LED “sandwich.” The glue holding the LED array in place can be seen between the modified fretboard
and neck.

The rest of the ukulele was assembled using the parts in the kit, wood glue, and superglue. The tuning pegs were
screwed in, and the neck and bridge were glued to the body. After waiting an hour for the glue to dry, The neck
and fretboard were glued and clamped together for another two hours. The four strings were attached and
tuned, resulting in a fully functional ukulele.

Figure 3: Full Ukulele Assembly. The small holes shown on the fifth fret have little to no impact on the user,
while the first four frets show these holes allow adequate light to shine through, even in daylight and brightly lit
rooms.

Contact Microphone

We created a contact microphone from a raw piezoelectric element. A quick probe of the signal (produced by
attaching the sensor to the ukulele and plucking a few strings) revealed the following issues:
1. The peak-to-peak voltage for a fairly hard strum reaches only up to 500 mV, i.e., the signal needs to be
amplified especially with the limited precision of the 10-bit ADC.
2. Voltages oscillate between positive and negative relative to center, i.e., a DC offset is required if
operating between 0 and +3.3 V.
3. The signal exhibits many high frequency components, which could impact our FFT analysis if they are
not removed.
We then developed the following specifications for our signal conditioning circuit, which includes a fourth-order
low-pass filter:
1. Single supply from0to+3.3V
2. Cut-off frequency of around 1 kHz
3. Biasedat+l.6V
4, Amplification such that a hard strum produces a peak-to-peak amplitude of 1V
The schematic for our signal conditioning circuit is illustrated in Appendix A. First, we apply +1.5V offset to the
signal. A fourth-order Butterworth filter with a cut-off frequency of approximately 1.06 kHz removes the high
frequency components. Finally, we recenter the signal at +1.6 V and apply a gain of 2.5 via an instrumentation
amplifier. The pre- and post-conditioned signal are shown in Figure 5.

0.0s 2.000%/

Channels

2 | C 10.0:1
10.0:1
1' ‘ i Measurements

‘ n Freq(1)
™ ! A N : No edges

| ! [4] ‘. | Freq(2)

’ Y | \ Pk-Pk(1)
| | e41my

- | Pk-PK(2)
1 261mV

T \gger Menu
Trigger Type 2 Source
Edge 1

Figure 5: Sample Waveform. Oscilloscope capture of the contact microphone output when the A string of the
ukulele is plucked. The green trace shows that before any filtering, the output exhibits a fair amount of high
frequency noise and small peak-to-peak amplitude. After filtering, most of the high frequency noise has been
removed and a gain has been applied.

FPGA

System Overview

The primary functions of the FPGA are to:
1. Sample data from the ADC via SPI
2. Load datainto memory when data exceeds a certain threshold
3. Perform FFT on 1024-point data
4. Communicate the results of FFT to the Raspberry Pi via SPI
These functions are performed in separate states as described below.

listen Wait for the piReady signal from Raspberry Pi to before entering idle. (Default state.)

idle Sample data from the ADC. Continuously check if the data exceeds the digital quivalent of 1.6 V.
load Obtain 1024 samples from the ADC and store into memory in bit-reversed order

fft Calculate the complex coefficients of the FFT transform of the data

compute Calculate the complex magnitude at each frequency bin once FFT is complete

send Send the magnitude and frequency bin information to the Raspberry Pi

The block diagram provided in Appendix B describes the modules, memory blocks, and state transitions of the
FPGA. The SystemVerilog code of for the main module is provided in Appendix C3.

Fast Fourier Transform

The FPGA implements a pipelined FFT architecture as described in “The Fast Fourier Transform in Hardware: A
Tutorial Based on an FPGA Implementation” by George Slade [2].

We chose our FFT parameters based on a frequency range of interest is from 261.63 Hz (C4) to 553.37 Hz
(C5). By the Nyquist Theorem, our minimum sampling frequency would be 2 x 553.37 Hz = 1066.74 Hz, but for
good measure we used 4884 Hz, approximately four times our largest frequency of interest and also easily
implemented by dividing the FPGA’s 40 MHz clock. To differentiate between notes, we required a frequency
resolution of less than 8 Hz because the smallest frequency interval between notes (C4 to C#4) is 16 Hz. These
constraints required that our number of samples N =4884 Hz / 4 Hz = 1221, or N = 1024 (closest power of 2).

We first simulated the FFT in ModelSim with the 32-point data set provided in Slade’s paper. Figure 6
features a snapshot of our simulation results and shows indications of a properly orchestrated process. Once
simulation results were deemed satisfactory, we tested the FFT on a real system with 1024-point data. Figure 7
illustrates the FFT results from plucking the ukulele string individually as well as strumming all four strings
together. The SystemVerilog code for this process is provided in Appendix C1.

[&a- Msgs
= festbench/dut/ck 1]
=P ftestbenchjdutfreset 0 |
%3 ftestbenchjdutjdata LI T . L I 100z I 000 002 foor |
& ftestbench/dut/state 3 3 |Write enables alternate | 53
&) @ ftestbench/dut/nextstate 3 3 |betwedn Bankl and Bank2| 1
P ftestbench/dut/Star FFT i3 | (| S~ —
R é /"Etaﬂzﬂ':“w’“‘/”‘f 0 J S - / ‘Data is read from and written to ‘ N
: ;::m::m:"d:%:i::dsaazt g J' ‘memmy in consecutive block cytles‘ —
& ftestbench 0 @‘/ (j Pl
& ftesthench/dut/Bank itz |0 I T — ! !
&) 9 ftestbenchfdut/ReadA_Addr o 17 0 \ﬁ%ﬁlz_ﬂﬂj_#l_ﬁ To& o7 O I] 1oa Tob T od G ER 's. A oo [Joo
5 ftestbenchjdut/Reads_addr 10 i T T CEI I EE) N 5 T)RE] b = b Tic yid—{of each Butterfly index loop to prevent |73
£ < testbench/dut/Write_Addr 17 7 0 L 2] 4 & o7 I] 102 Tob o ination at the next level [oo [Joz
&) @ ftestbench/dut/WriteB_Addr if if | Jin i1 Jiz iz f= Ji5 116 Jiz Ji8 JiC] iz Jih Jid 1 JIE I T 01 o3
()9 ftestbench/duf/agui [[Counters keep track of the current || T T T T | b bl
29 festoerciclizns) | oyel and Butterfly index |13 [E E__f7 Bl & BB | — R ¥ O R I—
1) ftestbench/d | Iz 2 = 1]
1+ ftestbench/dut/agu/TwAddr [£ I 111 2 Il Ja J5 I3 bid B bl Ja b Ic i Je bl 0
+) % ftestbenchjdut/agu/TwAddrSync |e e il T 73 B = 5 b3 17 B 15 B b b3] 13 F 10
& ftesthench/dut/agu/FFTVirite 0 =1 [
&)< ftestbench/dub/ar Data read from memory is split into Wil 000 Jp7fd| _ Jpo0D | Jo7fd Jp000 Jpjfd oo Jp7fd | J000D Jo7fd jpopo Jp7f| o000 | Jpsot J07cb]jooon
() W ftestbenchidul/ai real & imag components for the J057 0000 JFe6S | J0000 Jmea {pODD Jpddb| Joooo | vy /o0bf__jooon
[ftestbench/duf/Br B it : ¥iid 000 Jo7fd_ Jpooo | Jo7fd joooo Jp7fd jpooo Jp7fd | Jpooo Jo7fd Joooo p7fF| joooo | Jpsol | T 837 Fiid 71
=) ftestbench/dul/Bi o= aton 25 000 bf%! 000 557 000 Jpi57 JpoDd Jf=69 | Jo000 Jfass jo0D0 Jr40b| o000 | jdzd7 Jpeef 12509 | |0bf4
£~ ftestbench/duffAp T Output of the Butterfly operation is 532 000 Jo7rd| Jpooo | Jo7ke jpoon JpJic jpoon Jostd | jpoon Jo7fc Joooo oz jooon | Jp7ch Jofz8| Jozfe | Jortc
+) 4 ftestbenchjdul/Ap_i . 511 0001254 000 |_Jpef2 600 Ghe 000 see 000 In445 @ Iﬂzsul l_'.l:bf 5id0_ 2628 | Jobr3
5 festerchydalrp r |teN Written to memory R R o foos ool gooo | ewr | ooes Jwod | Jea
| ftestbench/duf/Bp i dgsd d7d7 156d | J0000 JFrat Ji000__Jrdes__ Jpooo | Jfbe Ieﬁaa @ Iaeaf Jafae| _d7ds | Jreod
b I T e e e T e T T T R T e N N N
a Now | 800ps 570ps 580 ps 590 ps 600 ps 610ps 620ps 630ps 640ps 650ps 66|
#8) Cursor 1 | 572ps [572ps]

Figure 6: Timing diagram highlighting the key components to the pipelined FFT process.

G4 (392 Hz) C4 (261.63 Hz)
1000 < ‘ : 800 ; : ;
X: 395.5 -
Y: 960.5 g
800 ¢ * 600 | ¥:7051
S 600 1 o
= =
EL) —%400
S 400¢ g 1
200 f
200 f
o 0
300 400 500 600 700 800 900 300 400 500 600 700 800 900
Frequency (Hz) Frequency (Hz)
E4 (329.63 Hz) A4 (440 Hz)
1500 : ‘ : : 600 — : ;
X:332.5
Y: 1498 X: 4404
500 F Y:573.3
o 1000 | o 400 3
© o
2 2
= £ 300
£ g
500 f 200 f
100 -
0 04
300 400 500 600 700 800 900 300 400 500 600 700 800 900
Frequency (Hz) Frequency (Hz)
— 96 Cho‘rd (Opgn Strl‘ngs)
c G
®
1000 | G
c e [
o 800f 1 [1
E A
£ 600
£ G A
< 400
Figure 7: FFT results of each ukulele string and all
200 = | strings together. For the individual strings, we were
}L h J’ pleased to see that the peak magnitudes for the
uicall e 1IN [NG X X o individual strings occurred at the expected
300 400 500 600 700 800 900 frequencies. For the C6 chord (all strings played
Frequency (Hz) together), we observe a distinctive grouping of large
magnitudes that match up with each string.
Interface with the ADC

Our desired sampling frequency is 4884 Hz, but data from the ADC is obtained over 16 clock cycles. Therefore,
the FPGA samples the ADC at frequency of 16 x 4884 Hz = 78144 Hz. The ADC and FPGA communicate over SPI,
with the ADC acting as the slave and the FPGA acting as the master.

The FPGA continuously samples the ADC and only stores samples when the data exceeds a threshold
that corresponds to about 1.6 V, upon which it enters the 1oad state. Prior to each sample, adcEn is pulsed high
for one clock cycle to enable data transfer. After each complete sample (16 clock cycles), the data is latched onto

7

a flip-flop and loaded into memory in bit reversed order. This repeats until 1024 samples have been obtained,
after which the FPGA exits the 1oad state and enters the £ £t state. Figure 9 provides a block diagram overview
of the primary signals and counters involved in this process. The SystemVerilog code for the SPI master module
is provided in Appendix C2.

= ?

adcClk sampleCounter ;::’ ';l::""l‘i:t 3:323'
16 x 4884 Hz = 78144 Hz (to1023) P samptng
proceed to FFT

adcEn

Pulse ~CS high for one clock cycle
to enable data transfer S P I

adcMis
Se:d A;C configuration bits the first M a ste r

6 clock cycles

sampleCount++

spiCount = 15?
adcMosi spiCounter (to 15) Load adcMosi into

Obtain ADC data in MSB format in memory
the next 10 clock cycles

Figure 9: Block diagram of SPI communication with the ADC and counters that keep track of the number
samples that have been stored into memory.

Interface with Raspberry Pi

Once the FPGA is finished processing the FFT, we reduce the information transfer to the Raspberry Pi by
computing the 16-bit complex magnitude at each frequency bin, which is then written to the memory block
spiRam. This is serves as the communication hub for the Raspberry Pi and the FPGA, which acts as the master
and slave, respectively. The SPI slave (on the FPGA) reads and sends the data at spiAddr starting from 0.
Because data is 16 bits long, each magnitude / frequency bin pair must be transferred over two SPI requests. To
coordinate this, spiCycle alternates between 0 and 1 between every SPI request. The SPI slave sends the last 8
bits if spiCycle is 0 and the first 8 bits if spiCycle is 1. After each pair of the SPI requests, spiAddr
increments so that the SPI slave can proceed to the next sample. This process is illustrated in Figure 10. The
SystemVerilog code for the SPI slave module is provided in Appendix C2.

sclk

i spiCount = 8?7
400 kHz, groups of 8 clock cycles spnCouBr;ter (to Pl spiCycle++
spiStop
RPi has received all the data and
tells the FPGA to enter the idle state

spiAddr++
piMosi S P I
FPGA does not do anything with

MOSI data

spiRead

FPGA notifies the RPi that it is ready
to send FFT results Data to at spiAddr
spiCycle = 0: Send last 8 bits
piMiso spiCycle = 1: Send first 8 bits
Send the half of the 16-bit data at

spiAddr

Figure 10: Block diagram of SPI communication with the Raspberry Pi and counters that keep track of the
number samples that have been sent.

Raspberry Pi

We implemented a couple of key algorithms on the Raspberry Pi (“Pi”), including chord recognition and LED
matrix control, both of which can be found in ukuDemo . c (Appendix D1). Additionally, a long list of chords and
songs were encoded as arrays. Every major, minor, and 7th chords are encoded in the header file uku.h, and
each of these chords is encoded as an array of four const ints. Songs were encoded as two dimensional
arrays by listing a series of chords (Appendix D2).

The only inputs to the Pi were from the SPI protocol with the FPGA. The outputs included four GPIO pins
for the strings, five GPIO pins for the frets, and outputs necessary for the SPI protocol.

User Interface

The user must access the Pi’s terminal to start a song on the Ukucorn. After running the executable . /ukuDemo,
the terminal prints a list of seven songs and asks the user to enter a song number in the command line. The
number entered sets the song’s size songSize and pointer to the song array songPtr. The main while loop
then runs until the song is complete, i.e., when the counter chordsSoFar reaches songSize.

LED Matrix Controller

The LED array is controlled using time multiplexing where frets and strings can be treated as rows and columns.
For any specific LED to turn on, its string must be pulled low while its fret is pulled high. This was implemented in
the function displayNote () which takes in a string GPIO and fret GPIO, and displays a single note before
clearing it one millisecond later. displayChord () time multiplexes the strings by running displayNote ()
for each of the four strings while iterating through the chord array for the fret input.

Interface with the FPGA

In the main loop, the Pi continuously polls the FPGA for the spiRead signal, which indicates that the FPGA is
ready to send FFT results. When spiRead is high, the Pienters while loop of spiSendReceive () requests.
The results of two successive spiSendReceive () requests form a 16-bit sample, which is stored to
fftArray. When 1024 samples have been received, the Pi exists this loop proceeds to the next set of
instructions in the main loop.

Chord Recognition
Our chord recognition algorithm assumes that each ukulele chord contains four notes. In theory, the frequencies
associated with the four largest magnitudes are the four notes that have been played.

At the beginning of the main loop, the Pi extracts the current chord to be played, i.e. the
chordsSoFarth array in of the song array, and encodes the notes in encurrentChord by assigning a number
from 0 to 15, with 0 being the lowest note (C4) and 15 begin the highest note (C5).

Once the fftArray has been populated, the Pi finds the maximum magnitudes in the range of
frequency bins associated with each note. To determine the four notes played, the indices of the four maximum
magnitudes are stored in maxChord. Because we encode the notes using integers between 0 and 15, by
knowing the index of the maximum values, we also know the note at which the maximum magnitudes occur.

A counter score is used to compare the measured chord (maxChord) to the target chord
(encurrentChord). If each note in maxChord matches with any note in encurrentChord, score will
increment. When it reaches 4, and the next chord will be displayed after running the indicator LED function
goodJob (). At this point, chordSoFar will also increment to refresh the LED display and show the next set of
notes. If chordSoFar equals songSize, the player has successfully played all the chords correctly. The Pi will
exit the while loop, and before exiting the program, victory () will run to show an exciting sequence of
flashing LEDs.

Results

The system performs as expected and meets all goals presented in our initial proposal. The Ukucorn will
occasionally fail to register the correct chord being played, but this is largely due to the ukulele being out of tune
or the Raspberry Pi freezing. When everything is running properly and the ukulele is in tune, failure to proceed in
the song is due to the user playing the displayed chord incorrectly. The Ukucorn is a strict teacher and will not
waver for a frustrated user. During Demo Day, we were able to entertain many students with this new learning
device. Overall, we are very proud of our product.

We encountered challenges with both the Raspberry Pi and FPGA. In addition to the challenge of

implementing FFT on the FPGA, we learned that it was difficult to coordinate the SPI and FFT modules and
nearly impossible to debug the whole system if each of the modules were not tested individually before
integration.
We were also surprised to experience major problems debugging C code on the Pi. While we wanted to be more
concise with our code by using switch case statements, we encountered vague errors and eventually resorted
to using verbose if statements. Additionally, we found that several of our arrays were too large to store as
const ints and were forced to use pointers. Figuring out how to initialize and dereference pointers,
especially double pointers, presented major difficulties. However, we were able to demonstrate a working
product at the end and treat all of these challenges as valuable learning experiences.

References

[1] Linear Technology, LTC6240 Single 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amp,
http://cds.linear.com/docs/en/datasheet/624012fe.pdf
[2] G. William Slade, The Fast Fourier Transform in Hardware: A Tutorial Based on FPGA Implementation, 2013.

Parts List

Part Vendor + P/N Qty Unit Cost Subtotal Link

Linear Technology,

Low-Noise op-amp 2 LTC6240 datasheet
LTC6240
. " Texas Instruments,
Instrumentation amplifier 1 AD623AN datasheet
AD623AN
Analog-to-digital converter MCP3002 1 MCP3002 datasheet
DIY Ukulele Kit Amazon 1 $39.99 $39.99 Amazon listing
Small Enclosed Pi https: .adafruit. duct/17
ma. nclosed Piezo Adafruit 5 $0.95 $1.90 ps://www.adafruit.com/product/
w/Wires 40
https: . kfun. duct
LEDs (packs of 5) Sparkfun 6 $2.95 $17.70 e e el
14010
https: . kfun. duct
LED (rainbow pack) Sparkfun 1 $3.50 $3.50 A b UL S,
13903
Shipping - UPS Ground Adafruit 1 $9.15 $9.15
Shipping - UPS Ground Sparkfun 1 $7.59 $7.59

Total $93.77

10

http://cds.linear.com/docs/en/datasheet/624012fe.pdf
http://cds.linear.com/docs/en/datasheet/624012fe.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/AD623.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/21294E.pdf
https://www.amazon.com/Zimo-Ukulele-Make-Your-Hawaii/dp/B01D74TYA2/ref=sr_1_3?s=musical-instruments&ie=UTF8&qid=1512620262&sr=1-3&keywords=diy+ukulele
https://www.amazon.com/Donner-Soprano-Ukulele-Mahogany-21/dp/B01LYBZ4MJ/ref=pd_ybh_a_1?_encoding=UTF8&psc=1&refRID=STH3R00KS8C5RXJDRBE8
https://www.adafruit.com/product/1740
https://www.adafruit.com/product/1740
https://www.sparkfun.com/products/14010
https://www.sparkfun.com/products/14010
https://www.sparkfun.com/products/13903
https://www.sparkfun.com/products/13903

IC

¢ Full Schemati

Appendix A

I S I 2 B z T
Buep yeles :Ag umeig 6°TT'PA VA3ASY3
T/1 :3834s _ +0-21-£102 :31eQ
0T :A3Y Buem yeles uloomyn ayL
nH uaJne SILIL
i
UA—<]0AS
Hrrd—__Ps &1 120142 Q ans —
mml 0z01dD S 9201dD mm 11 poens %\. »x }\, » }\.
£8d [—<_]doP® oE 910149 610149 & p1o4 ~ > - >
pe|QND ETOLdO [-£¢ £y o o F F o F
98—] sope ve{z101d0 901dD cey s[>
58 |—<¢J1s0mope T bl a8 i vl%w vl%w. vl%u.. .@m %n
> zo1d (130) ano
9f
p8d —__N0PE 5180149 (030) (412S) 110149
Apeoyd| v|mm 520149 (9N39) (OSIW) 601D cduns[»\.. wﬁs »\. wﬂ }\.
29d |—< 08 oz {ane (ISOW) 0TOLdO | &7 ; » » n e
g7 | ¥Z0IdD (SNID) EAE|G T i1 5) e (W el W |
994 —¢Jostnd doygrds[>——+£201d9 (#N3D) Mmzmuw ZZOIdD %%Mﬁ“ 15ums_>
—ane ZN3D) £201dD ! i
59d—_Jrsomnd proyids[——F1-{8T0140 (Tn39) (0N3D) L1014 |5 gBmas .%w .%w. .mww.@m mmw.
510149 aNd ¢
i —_Jfpeourd 0i#romo (1os) 702 [5—Ji8ums
ane 108) E0IdD £
aed|—< |dorsids ions + (vas) zowo | ¢
0AS 0AS a EAE [JEAS
bEd |m_unm~:nm Fi Fi Wﬁ MJ B
T idTaanw _ L= & B =
€ Id AUH38dSYY
0As[—5{SSA 43uAQ0A|y
%02
[EERTY RWT NG
soope_—5-1noa jEE s1amIA_—1noA NIA
S 0132081-20 L0
EAE EAE

0HD

NVEZ9aY

staTaAl_>

EAE

T

AN3W3T3 0Z3Id

1

11

iagram

: FPGA Block Di

Appendix B

-
9ABIS IdS pEEENTE |d fusqdsey

15014

[0:4]puaserep [0:1-NBo)|sppypeayids

[0:51]da ‘[o:58]7dg
[0:50]1dy [7dy

[o:sa]me

[0:sHmy NOY

10)2e4 3|ppIM] (€) WYY HOd-Z uonisues}

21e1S

[0:51])18 To:s 1)@
(05]y “[o:s 1w

Aowsap

[0:2-NBolJsppmL [0:1-NBoy]1ppy g mids
[0:1-NBOI PPy yarspids

[o:s1]abew ‘Jo:s1]wbew 3|npopn

sapmyiudely

11U UOIIRIBUIL) SSAIPPY iauoq |44 B

puagdan

UM IHURG ‘UIAMOAUEG
[0:1-NBo||1ppy 2111
[0:4-NBOI PPy walsm
[0:4€]uig ‘[ovefury

[0:1€Jnog
[0:1€linoy

Pajaspeayyueq
[0:1-NBoj}ippy gpeay
[0:1-NBoy}sppy ypeay

(punoy syead

samples
collected

(T queg) (0 queg)
wey 1od-¢ WYY Hod-2

320]g eleqd [0:L PPy RIRQpROT
lo:1€]uia

eleq peo P310213p puUnos 19156 N |dS EEI-

[0:6] e1eQ2pER

os1pape

12

Appendix C1: FPGA SystemVerilog - fft.sv

L1717 7777 77777777777 77777777777777777777777
// fft.sv //
111777777777 777777777777777777777777777777

// Enabled counter with sync reset
module counter en #(parameter N = 8)
(input logic clk, reset, en,
output logic [N-1:0] q);
always ff@ (posedge clk)
if (reset) q <= 0;
else 1if (en) g <= g + 9'bl;

endmodule

// Enabled counter with async reset (non-enabled)
module counter en async # (parameter N = 8)
(input logic clk, reset, en,
output logic [N-1:0] q);
always ff@ (posedge clk, posedge reset)
if (reset) q <= 0;
else 1if (en) g <= g + 1;

endmodule

// Counter with async reset (non-enabled)
module counter # (parameter N = 8)
(input logic clk, reset,
output logic [N-1:0] q);
always ff@ (posedge clk, posedge reset)
if (reset) q <= 0;
else g <= g + 1;
endmodule

/*

* Address Generation Unit

* Functions:

* 1) Generate addresses for reading and writing of data RAM
* 2) Retrieve twiddle factors

* 3) Generate write signals for the data RAM

* Keep track of:

* 1) Which butterfly we are executing

* 2) Which FFT level we are working on

*/

module agu
(parameter logN = 10)
(input logic clk,
input logic startFFT,
output logic fftDone,
output logic [logN-1:0] MemA Addr, MemB Addr,
output logic [logN-2:0] TwAddrSync,

13

output logic fftWrite,
output logic bankReadSelect) ;

logic [3:0] 1i; // Level of FFT counter

logic [logN-2:0]1 j; // Butterfly index counter

logic [logN-1:01 ja, jb; // For calculating addresses

logic [1:0] k; // Wait until A' and B' are written to memory

// SyncBronize startFFT and assert clearFFT
logic startFFT1;

logic clearFFT;

logic fftEnable;

always ff @ (posedge clk) begin
startFFT1 <= startFFT;
if ((1i == logN - 1) & &k) fftDone <= 1;
else fftDone <= 0; end

assign clearFFT = startFFT & ~startFFT1;
assign fftEnable = startFFT & startFFT1;

logic i reset, j reset, k reset;

logic i _en, j en, k en;

counter en #(4) fftCounter(clk, i reset, i en, i); // FFT Level counter

counter en #(logN-1) butterflyCounter(clk, j reset, j en, J);

index counter

// Butterfly

counter en #(2) delayCounter(clk, k reset, k en, k); // Delay counter to flush

pipeline

assign i reset = clearFFT | (i == logN);

assign j reset
assign k reset = clearFFT | &k; // Automatic reset

clearFFT | &k; // Reset when delay counter maxes out

assign i en = fftEnable & ((&k) & (i < logN)); // enable when j < N/2 - 1

assign j en = fftEnable & (~(&Jj)); // enable when k = 0
assign k en = fftEnable & (&j); // enable when j is maxed out

// Generate addresses for data and twiddles

assign ja = j << 1;

assign jb = ja + 1;

assign MemA Addr = (ja << i) | (ja >> (logN - 1i));
assign MemB Addr = (jb << i) | (jb >> (logN - 1i));

// Twiddle mask generator - a right sBift reAister

// that fills up with 1s as the level counter is incremented
logic [logN-2:0] ones = ~0;

logic [logN-2:0] zeros = O0;

logic [logN-2:0] TwAddr;

assign TwAddr = ({ones, zeros} >> i) & 7J;

always ff @ (posedge clk)
TwAddrSync <= TwAddr;

logic fftWriteLow;

assign bankReadSelect = i[0];
assign fftWriteLow = &k | (j == 0);
assign fftWrite = fftEnable & ~fftWritelLow;

endmodule // agu

/*
* Butterfly Unit
* 1) Complex multiply and add
* 2) Also contains look-up table of twiddle factors
*/
module bfu
(parameter logN = 10)
(input logic signed [15:0] Ar, Ai, // A
input logic signed [15:0] Br, Bi, // B
input logic [logN-2:0] TwAddr,
output logic signed [15:0] Ap r, Ap i, // A'
output logic signed [15:0] Bp r, Bp 1i); // B'

logic signed [15:0] Tw r, Tw i;

// Twiddle ROM

// parameter RomDepth = 1 << (logN - 1); // N/2

logic [15:0] TwRom r[0:511]; // lé6-bit entries, N total
logic [15:0] TwRom i[0:511];

initial Sreadmemh ("Twl024 r.txt",TwRom r);

initial S$readmemh ("Twl024 i.txt",TwRom i) ;

assign Tw r = TwRom_r[TwAddr];
assign Tw_i = TwRom_i[TwAddr];

logic signed [31:0] temp r, temp i;
logic signed [15:0] temp r p, temp i p; // pruned version of

// Complex multiplier
assign temp r = (Br * Tw r) - (Bi * Tw 1i);

assign temp i = (Br * Tw i) + (Bi * Tw r);

// Prune T1
assign temp r p = temp r[30:15];
assign temp i p = temp i[30:15];

// Complex adder for A'
assign Ap r = Ar + temp r p;
assign Ap i = Ai + temp i p;

// Complex adder for B'

assign Bp r = Ar - temp r p;

assign Bp i = Al - temp i p;

endmodule // BFU

// Quartus II Verilog Template
// Single Port ROM

/*

* http://www.cs.columbia.edu/~sedwards/classes/2015/4840/memory.pdf

*/
module TwoPortRAM
(parameter width = 32,
parameter logN = 10)
(input logic clk,
input logic [logN-1:0]
input logic [width-1:0]

AddA, AddB, // address
Bin, // data in
// write enables

Ain,

input logic WriteA, WriteB,

output logic [width-1:0]

// parameter N = 1 << logN;

Aout,

// N

logic [width-1:0] Mem [1023:0];

always ff @ (posedge clk) begin

if (WriteA) begin

Mem [AddA] <= Ain;

Aout <= Ain;
else Aout <= Mem[AddA];

end

always ff @ (posedge clk) begin

if (WriteB) begin

Mem[AddB] <= Bin;

Bout <= Bin;
else Bout <= Mem[AddB];

endmodule // TwoPortRAM

/* DataBlock

end

Bout) ;

= 2”1logN

end

end

* 1) Contains two memory blocks (bank0 and bankl)
* 2) A0 Addr is used to load data into bank0
*/

module DataBlock
(parameter logN = 10)

(input logic clk, loadData,

input logic [logN-1:0]
writeB Addr,
input logic [31:0] Din,

output logic [31:0] Aout, Bout);

logic bankO AWrite;

bankOWriteEn,

loadbata Addr, readA Addr,

Ain,

Bin,

assign bank0 AWrite = loadData |

bankOWriteEn;

banklWriteEn, bankReadSelect,

readB Addr, writeA Addr,

16

logic [logN-1:0] AO Addr, Al Addr;
logic [logN-1:0] BO Addr, Bl Addr;

assign A0 Addr = loadData ? loadData Addr : (bankOWriteEn

readA Addr);
assign Al Addr = banklWriteEn ? writeA Addr
assign BO Addr = bankOWriteEn ? writeB Addr
assign Bl Addr = banklWriteEn ? writeB Addr

logic [31:0] AOout, Alout, BOout, Blout;
logic [31:0] AOin;

assign AO0in = loadData ? Din : Ain;

readA Addr;
readB Addr;
readB Addr;

TwoPortRAM # (32, logN) RamO(clk, A0 _Addr, BO_ Addr, AOin,

bankOWriteEn, AOout, BOout);

? writeA Addr

Bin, bank0 AWrite,

TwoPortRAM # (32, logN) Raml (clk, Al Addr, Bl Addr, Ain, Bin, banklWriteEn,

banklWriteEn, Alout, Blout);

assign Aout = bankReadSelect ? Alout : Alout;
assign Bout = bankReadSelect ? Blout : BOout;
endmodule // DataBlock

Appendix C2: FPGA SystemVerilog - spi.sv

[1/700777 7770777 77777777777777777777777777
// spi.sv //
[1/700777 777077777 777777777777777777777777

module spiMaster
(parameter div = 2)

(input logic clk, reset,
input logic adcEn,
output logic adcSelect, // Slave select
input logic miso, // From slave
output logic mosi, // To slave
// output logic sample done,
output logic [9:0] g, // Data sampled
output logic sClk, // sClk to assign
output logic [3:0] spiCounter);

// generate the slave clock

// parameter div = 2; // sample at

logic [div-1:0] sClkCounts;

counter #(div) sClkCounter (clk, reset, sClkCounts);
assign sClk = sClkCounts[div-1];

// A/D CS BAR
assign adcSelect = ~adcEn;

17

// counts from 0 to 15 during sample period

// adc config bits
logic [15:0] adc _config;

// configure bits for MCP3002

logic channel;

assign channel = 1'b0;

assign adc_config = {13'bxxxx xxxx xXxxx 1, channel, 2'bll};

// first four clock cycles are ADC config
always ff@ (posedge sClk, posedge reset)
if (reset) spiCounter <= 0;
else if (adcEn) begin
// 0 - 4th bit are adc configuration bits
mosi <= adc_config[spiCounter];
// shift register to load slave data
if ((spiCounter >= 5) && (spiCounter < 15))
g[l4-spiCounter] <= miso;
// increment the counter
spiCounter <= spiCounter + 1; end

endmodule

module spiSlave
(input logic sck, reset, // From master
input logic mosi, // From master
output logic miso, // To master
input logic [7:0] d, // Data to send
output logic [7:0] g,
output logic [2:0] cnt); // Data received

logic gdelayed;
// 3-bit counter tracks when full byte is transmitted
always ff @ (negedge sck, posedge reset)
if (reset) cnt = 0;
else cnt = cnt + 3'bl;

// Loadable shift register

// Loads d at the start, shifts mosi into bottom on each step
always ff @ (posedge sck)

g <= (cnt == 0) ? {d[6:0], mosi} : {g[6:0], mosi};

// Align miso to falling edge of sck
// Load d at the start
always ff @ (negedge sck)

gdelayed = qgl[7];

assign miso = (cnt == 0) ? d[7] : gdelayed;

endmodule

Appendix C3: FPGA SystemVerilog - ukucorn.sv
JI1170077 7777777777777 777777777 777777777
// ukucorn.sv //

L1177 7007777770707 777777777777777

module test
(input logic gClk, reset, // pin 111
input logic adcStart,
output logic adcEnLed,
output logic adcDoneled,
output logic loadEnLed,
output logic loadResetlLed,
output logic spiCycle,

// Pi signals

input logic piReady,

input logic spiStop,

input logic sclk, // 67
input logic piMosi, // 65
output logic piMiso, // 66
output logic spiRead,

// ADC signals

input logic adcMiso, // 85, read Dout
output logic adcClk, // 84

output logic adcSelect, // 87

output logic adcMosi, // 86, assign Din

// Debug signals
output logic [2:0] stateled);

parameter logN = 10; // N = number of samples
parameter divClk = 3; // Slow down the clock to 5 MHz
logic clk;

logic [divClk-1:0] clkCount;
counter #(divClk) clkCounter (gClk, reset, clkCount);
assign clk = clkCount[divClk-1];

[1770777777777777777777777777777777777
/7117177 STATES /71777
[1770777777777777777777777777777777777

// listen: wait for piReady signal

// idle: nothing to do...

// load: sample from ADC and load data into ram0

// send: send data to Pi over SPI

logic [2:0] state, nextstate;

typedef enum logic [2:0] {listen, idle, load, fft, compute, send} statetype;
assign stateled = state;

19

// Next state register
always ff @Q(posedge clk, posedge reset)
begin
if (reset) state <= listen;
else state <= nextstate;
end

[1770777777777777777777777777777777777
/71777 SAMPLE & LOAD DATA /711717

L1777 770077777 707777777777777777777777

// parameter threshold = 0;

logic adcEn; // adcSelect,
logic adcDone;

logic adcEnl; //, adcDonel;
logic [9:0] adcDhata;

logic [3:0] adcCount;

logic adcEnLow;

always ff @ (posedge adcClk)
adcEnl <= adcDone;

assign adcEn = ((state == idle) | (state == load)) & ~adcEnl;
assign adcDone = &adcCount;
parameter divAdcClk = 6; // log2(5 MHz / (4096 * 16)) ~ 9

spiMaster #(divAdcClk) master2adc(clk, reset, adcEn, adcSelect, adcMiso,
adcMosi, adcbhata, adcClk, adcCount);

assign adcEnLed = adcEn;
assign adcDoneled = adcDone;

logic [9:0] memData;

logic [logN-1:0] loadCount;

logic loadReset, loadEn;

assign loadResetlLed = loadReset;

assign loadReset = (state != load);

assign loadEn = (state == load) & adcEnl;

assign loadEnLed = loadEn;

counter en #(logN) loadCounter (adcClk, loadReset, loadEn, loadCount); // Load
data address counter

always ff @(negedge adcDone) begin
memData <= adcData; end

logic loadDone; // signal to exit load state
logic loadLast; // delayed loadEn for the last sample
assign loadDone = loadlLast & ~loadEn; // level to pulse converter for loadDone

always ff @ (posedge clk) begin
if (&loadCount & loadEn) loadLast <= 1;
else loadLast <= 0; end

1111777777 7777777777777777777777777777
/11717 BIT-REVERSED ADDRESS /11717
[0 71717777 77777777777777777777777177

logic [logN-1:0] loadData Addr;

genvar 1i;

generate

for (i = 0; 1 < logN; 1 =1 + 1)
begin: bitReverse

assign loadData Addr([i] = loadCount[logN-1-i];

end
endgenerate

logic signed [15:0] misoLong;
always @ (posedge clk)

if (loadCount < 256) misoLong <= 16'h03ff; // 1

else misoLong <= 16'hfc01l; // -1

[0 777777777777 77777777777777777
/17777 FFT /11777
[I1T70077 77777777 777777777777777777777
logic startFFT;

assign startFFT = (state == fft);

// AGU

logic fftWrite, fftDone;

logic fftReadSelect;

logic bankReadSelect;

logic [logN-2:0] TwAddr;

logic [logN-1:0] readA Addr, readB Addr;

logic [logN-1:0] fftReadA Addr, fftReadB Addr;
logic [logN-1:0] fftWriteA Addr, fftWriteB Addr;

agu # (logN) aguO(clk, startFFT, fftDone,
fftReadA Addr, fftReadB Addr, TwAddr,
fftWrite, fftReadSelect);

always ff @(posedge clk) begin
fftWriteA Addr <= fftReadA Addr;
fftWriteB Addr <= fftReadB Addr;
end

// Data block
logic bankOWriteEn;
logic banklWriteEn;

assign bankOWriteEn = fftReadSelect & fftWrite; // Read from 1,

write to

21

assign banklWriteEn = ~fftReadSelect & fftWrite; // Read from 0, write to 1

logic [15:0] =zerolé6 16'b0;
logic [5:0] zero6 = 6'b0;
logic [31:0] Din, Ain, Aout;
logic [31:0] Bin, Bout;

logic [logN-1:0] magA Addr; // Read

logic [logN-1:0] magB Addr;

assign bankReadSelect = startFFT ? fftReadSelect : 1'bl;
assign readA Addr = startFFT ? fftReadA Addr : magA Addr;
assign readB Addr = startFFT ? fftReadB Addr : magB Addr;

DataBlock #(logN) datablock(clk, loadEn,
bankOWriteEn, banklWriteEn, bankReadSelect,
loadData Addr, readA Addr, readB Addr,
fftWriteA Addr, fftWriteB Addr,

Din, Ain, Bin, Aout, Bout);

// Butterfly Unit
logic signed [15: Ar, Ai;
Br, Bi;

Ap_r, Ap_i;

logic signed

o O O O

[15
logic signed [15:
[15

logic signed Bp r, Bp_1i;

assign Ar Aout[31:161];
Aout[15:0];
Bout[31:16];

assign Bi = Bout[15:0];

assign Ai

assign Br

assign Din = {zero6, memData, zerol6};
assign Ain = {Ap_r, BAp i}; // A'r
assign Bin = {Bp r, Bp i};

bfu #(logN) bful(Ar, Ai, Br, Bi, TwAddr, Ap r, Ap i, Bp r, Bp 1i);

// Find frequencies
logic computeMag, computeMagl; //, computeMag2; // sketchy way to delay

spiRamWrite

logic spiRamWrite;

logic computeDone;

logic [logN-1:0] spiWriteA Addr, spiWriteB Addr;

logic [logN-1:0] spiReadA Addr;

logic [logN-1:0] spiA_Addr;

assign computeMag = (state == compute);

assign spiRamWrite = ~computeDone & computeMag & computeMagl;

always ff @ (posedge clk) begin
computeMagl <= computeMag;
// computeMag?2 <= computeMagl;

if (&spiWriteB Addr) computeDone <= 1;
else computeDone <= 0; end

logic clearSpiRam;
assign clearSpiRam = (nextstate == compute) & ~(state == compute);

always ff @ (posedge clk, posedge clearSpiRam)
if (clearSpiRam) begin
magA Addr <= 0;
magB Addr <= 1; end
else if (computeMag) begin
magA Addr <= magA Addr + 2;
magB Addr <= magB Addr + 2; end

// Compute magnitude

logic signed [31:0] magALong, magBLong;
logic signed [15:0] magA, magB;

logic [15:0] magAout, magBout;

always ff@(posedge clk) begin
spiWriteA Addr <= magA Addr;
spiWriteB Addr <= magB Addr; end

assign magALong = Ar*Ar + Ai*Ai;
assign magBLong = Br*Br + Bi*Bi;
assign magA = magALong[30:15];
assign magB = magBLong[30:15];

assign spiA Addr = computeMag ? spiWriteA Addr : spiReadA Addr;

[ITTIT7 0077777777777
////// SPI RAM //////
[T 717177 7777777777777
logic spiRamClk;

logic clearSpi;

logic spiSend, spiSendl;

assign spiRead = spiSend;

assign spiSend = (state == send);

assign spiRamClk = spiRead ? sclk : clk; // need to switch to sclk when reading
assign clearSpi = spiSend & ~spiSendl;

TwoPortRAM # (16, logN) spiRam(spiRamClk, spiA Addr, spiWriteB Addr,
magA, magB, spiRamWrite, spiRamWrite, magAout, magBout) ;

L7177 7077777770077 77777777777777777777777

////// FPGA (slave) <-> Pi (Master) //////
1117777770777 7777077777777777777777777777777

logic [2:0] cnt;
logic [7:0] dataSend, dataReceive;

23

always ff @ (posedge sclk)
spiSendl <= spiSend;

assign dataSend =

spiCycle ? magRout[15:8]

magAout [7:0];

always ff @(negedge sclk, posedge clearSpi)

if (clearSpi) begin
spiReadA Addr <= 0;
spiCycle <= 1; //
end
else if (&cnt)
spiCycle <= spiCycle + 1;

if

begin

(spiCycle)

spiSlave slave2pi (sclk, clearSpi,

11177777777 777777777777777777777777777
/17177 NEXT STATE LOGIC /17177
111777777777 77777777777777777777777777

piMosi,

// alternates between 0 and 1

spiReadA Addr <= spiReadA Addr + 1; end

piMiso, dataSend, dataReceive,

cnt) ;

logic [9:0] trigger = 10'b1000001000;
always comb
case (state)
idle: if (memData > trigger) nextstate = load; // something detected!
else nextstate = idle;
load: if (loadDone) nextstate = fft; // N samples reached
// 1f (loadDone) nextstate = echo;
else nextstate = load;
fft: if (fftDone) nextstate = compute;
else nextstate = fft;
compute: if (computeDone) nextstate = send;
else nextstate = compute;

// clearSpi: nextstate =

send; // run for one clock cycle

send: if (spiStop) nextstate = listen;
else nextstate = send;
listen if (piReady) nextstate = idle;
else nextstate = listen;
default: nextstate = listen;
endcase

endmodule

24

Appendix D1: Raspberry Pi C - ukudemo.c

[1/7077
// ukuDemo. c //
[1/1077

#include "EasyPIO.h"
#include "uku.h"

// clear all LEDs
void clearChord(void) {
digitalWrite(stringl,1

digitalWrite(string2,1);

)

) i
digitalWrite(string3,1);

)

(
(
(
digitalWrite (string4,1);
digitalWrite (fretl,0);
digitalWrite (fret2,0

(

(

(

) ;

digitalWrite (fret3,0);

digitalWrite (fret4,0);
)

digitalWrite (fret5,0

’

int displayNote (int stringn, int fretn) {
clearChord() ;
digitalWrite(stringn,0);
if (fretn == fret0) {

delayMillis(1); // time multiplexed display

}

else {
digitalWrite (fretn,1);
delayMillis (1) ;

}

return 0; // automatically turns off

void displayChord(const int chord]
displayNote (stringl, chord|[
displayNote (string2, chord|[
displayNote (string3, chord|[
displayNote (string4, chordl[

void displayTimedChord(const int chord[4], int millis)
time in milliseconds
int 1i;
for (i=0; i<millis; i++) {
displayNote (stringl, chord|[
displayNote (string2, chordl[
displayNote (string3, chordl[
displayNote (string4, chord][

}
clearChord() ;

1) { // intended usage in while loop

{ // display chord for some

25

void goodJdob () {
displayTimedChord (goodl, 6)
displayTimedChord (good2, 6)
displayTimedChord (good3, 6);
displayTimedChord (good4, 6)
displayTimedChord (good5, 6)
}
void victory () {
int strings[4] = {stringl, string2, string3, stringd};
int frets[5] = {fretl, fret2, fret3, fretd, fretbh};
int i = 0;
int J, k;
while (i < 30) {
for (3=0;9<4;j++) {
for (k=0;k<5;k++) {
displayNote (strings[j], frets[k]);
delayMillis (10);

i++;

}

111777777777 77777777777777777777777777777777777
// Initialization //
17177777777 777777777777777777777777777777777777

void setupSpi () {
int freq = 200000; // set sclk
int settings = 0; // phase & polarity = 0
short adc config = 0b0110100000000000;

spilnit (freq, settings);
printf ("Setting up SPI...\n");

void setupGpio () {
pioInit();

pinMOde(SPIiREAD, INPUT) ;
pinMode (SPI_STOP, OUTPUT) ;
pinMode (PIiREADY, OUTPUT)

’

pinMode (stringl, OUTPUT

)i
pinMode (string2, OUTPUT) ;
)
)

’

(
(
pinMode (string3, OUTPUT
pinMode (string4, OUTPUT
(
(
(
(

’

pinMode (fretl, OUTPUT);

pinMode (fret2, OUTPUT)

pinMode (fret3, OUTPUT) ;
)

pinMode (fret4, OUTPUT

’

’

26

pinMode (fret5, OUTPUT) ;
digitalWrite (PI _READY, 1);
digitalWrite (SPI_STOP, 0);

delayMillis (1); // for good measure

printf ("Setting up GPIOs... \n");

void spiReady () {

digitalWrite (PI_READY, 1);
digitalWrite (SPI_STOP, 0);

// delayMillis (100);

printf ("SPI ready to receive data... \n");

LILLTTT TP 0007770077777 7777777777777

!/

Main //

LTI TT 7777000777770 7777777077 7777777777777

int main (void)

{

const char * (*notePtr)[16] = ¬es; // to print notes to terminal
setupGpio () ;

setupSpi () ;

clearChord() ;

int songNumber;
int songSize; // number of chords in the song
int** songPtr; // pointer to chord array in header files

friend in me\n");
somewhere over ohe rainbow\n");

mele kalikimaka\n");

("1
("2
("3
printf("4. i'm yours\n");
("5. the show\n");
("6. banana pancakes (short)\n");
("7. mine (tswift)\n");
printf ("Enter a song number from the list above: ");
scanf ("%d", &songNumber) ;

//printf ("You entered: %d\n", songNumber) ;

if (songNumber == 1) {
songSize = 31;
songPtr = &friendInMe;
printf ("now playing: friend in me\n");

} else if (songNumber == 2) {
songSize = 62;
songPtr = &somewhere;

printf ("now playing: somewhere over the rainbow\n");

27

} else if (songNumber == 3) {

songSize = 31;

songPtr = &meleKalikimaka;

printf ("now playing: mele kalikimakal\n");
} else if (songNumber == 4) {

songSize = 29;

songPtr = &ImYours;

printf ("now playing:

i'm yours\n");

} else if (songNumber == 5) {
songSize = 27;
songPtr = &theShow;

printf ("now playing:

the show\n");

} else if (songNumber == 6) {

songSize = 8;

songPtr = &bananaPancakes;

printf ("now playing: banana pancakes
} else if (songNumber == 7) {

songSize = 30;

songPtr = &mine;

printf ("now playing:

else {

mine (tswift)\n");

(short)\n") ;

printf ("invalid input: defaulting to song 1\n");

31;
&friendInMe

songSize =
songPtr =
printf ("now playing:

’

friend in me\n");

printf ("\nLet's start!\n\n");

delayMillis (1000);

int chordsSoFar=0;
int fftReceived;

short *spiArray =
int *fftArray =

calloc (totalSamples,
calloc (totalNotes,

sizeof (int)) ;

sizeof (short));

// max mag in bin range

L1177 7 7700777770007 777 707777777777 77777777777777777

//

main loop through song

//

Ny

while
spiReady () ;
// displayChord
[11777777777777777777
//
/11777777777 777777777

int encurrentChord[4]

int currentChord[4] =

int j;

printf ("chord: %d\n",

const int* chordAddr
chord array

encode currentChord

(chordsSoFar < songSize) {

111777777
//
117777777

= {0,0,0,0};
{0,0,0,0};

chordsSoFar) ;

= songPtr[chordsSoFar];

// get the address to the

28

for (3=0; J<4; J++) {
int chordNote = chordAddr[j]; // dereference to get the fret

currentChord[j] = chordNote;

if (3==0) {
if (chordNote == 0) {encurrentChord[0] = 7;} // G
if (chordNote == 5) {encurrentChord[0] = 8;} // Ab
if (chordNote == 6) {encurrentChord[0] = 9;} // A
if (chordNote == 13) {encurrentChord[0] = 10;} // Bb
if (chordNote == 19) {encurrentChord[0] = 11;} // B
if (chordNote == 26) {encurrentChord[0] = 12;} // C

}

if (3==1){
if (chordNote == 0) {encurrentChord[l] = 0;} // C
if (chordNote == 5) {encurrentChord[l] = 1;} // Db
if (chordNote == 6) {encurrentChord[l] = 2;} // D
if (chordNote == 13) {encurrentChord[1l] = 3;} // Eb
if (chordNote == 19) {encurrentChord[1l] = 4;} // E
if (chordNote == 26) {encurrentChord[l] = 5;} // F

}

if (3==2) {
//switch (chordNote) {
if (chordNote == 0) {encurrentChord([2] = 4;} // E
if (chordNote == 5) {encurrentChord[2] = 5;} // F
if (chordNote == 6) {encurrentChord[2] = 6;} // Gb
if (chordNote == 13) {encurrentChord[2] = 7;} // G
if (chordNote == 19) {encurrentChord[2] = 8;} // Ab
if (chordNote == 26) {encurrentChord[2] = 9;} // A

}

if (3==3) {
//switch (chordNote) {
if (chordNote == 0) {encurrentChord[3] = 9;} // A
if (chordNote == 5) {encurrentChord[3] = 10;} // Bb
if (chordNote == 6) {encurrentChord[3] = 11;} // B
if (chordNote == 13) {encurrentChord[3] = 12;} // C
if (chordNote == 19) {encurrentChord[3] = 1;} // Db
if (chordNote == 26) {encurrentChord[3] = 2;} // E

printf ("encurrentChord: %d %d %d %d\n",
encurrentChord[0],encurrentChord[1],encurrentChord[2],encurrentChord[3]);
printf ("currentChord: %d %d %d %d\n",
currentChord[0], currentChord[1],currentChord[2],currentChord[3]);

displayTimedChord (currentChord, 100); // display current target chord
L1717 7700777777077 777777777777
// get spi data //
LTI 700077777077 77777777777

fftReceived = 0;
while (!fftReceived) {
displayChord (currentChord) ;

comparison

avgMagqg) ;

maximum

int spiRead;

int spiDone;

unsigned char datal;
unsigned char data0;
unsigned short datal6;

int sampleCount = 0;

spiRead = digitalRead(SPI_READ); // check if fpga is ready to send

if (spiRead) {
printf ("Receiving FFT results...");
while (sampleCount < totalSamples) {

datal = spiSendReceive (1) ;

data0 = spiSendReceive(l);

datalo = (datal << 8 | data0);
spiArray[sampleCount] = datal6; // store results

// printf ("%i %04x \n",sampleCount, datal6);
sampleCount++;
}
printf ("Finished reading FFT results \n");
digitalWrite (SPI_STOP, 1); // signal fpga to stop
digitalWrite (PI_READY, 0); // pull low while chord

fftReceived = 1;

}
} // end of spi while loop

[I117770777777777777777777777
// process fft results //
IS 777077777 77777777777

int 1i;

// downsample FFT to get maxes in ranges we specify
for (i=0; i<totalNotes; 1i++){
int minBin = binRange[0] [i];
int maxBin = binRange[1l][i];
int avgMag = maxVal (spiArray, minBin, maxBin);
fftArray[i] = avgMag;
printf ("$s $d sd %d \n", (*notePtr) [i], minBin, maxBin,

// find 4 max of noteBins array

int maxChord[6] = {0,0,0,0,0,0};

int notelIndex = 0;

for (1=0; i<totalMax; 1i++) {
maxChord[i] = maxIndex (fftArray,16);
noteIndex = maxChord[i];
printf ("note%d = %d (%s) \n",i, notelIndex, (*notePtr) [notelndex]);
fftArray[noteIndex] = 0

; // force to 0 so we can find the second

[1/7707177 7770777777 77777777777
// compare chords //
[1/7701777 7777777777 77777777777

int g;

int score = 0; // score = how many notes match

for (g=0; g<4; gt++) {
if (encurrentChord[g] == maxChord[0]) {score++;}
else if (encurrentChord[qg] == maxChord[l]) {score++;}
else if (encurrentChord[qg] == maxChord[2]) {score++;}
else 1if (encurrentChord[g] == maxChord[3]) {score++;}
else 1f (encurrentChord[q] == maxChord[4]) {score+t+;}
// else if (encurrentChord[q] == maxChord[5]) {score++;}

}

printf ("score: %d\n\n",score);

if (score > 3)
gooddJob () ;

chordsSoFar++;

{ // move on if measured chord = target

} // end of main while loop
printf ("You did it!\n");

victory () ;
clearChord() ;
free (songPtr) ;
free (spiArray) ;
free (fftArray);

return 0; // exit code

LI 70707007007
// Finding Max Functions //
NNV

// 1if correct chord, show next chord

// Returns the index of the maximum value in an array

int maxIndex (int *array, int size) {

int 1i;

int max=0;

int index=0;

for (1i=0;i<size;i++) {

if (array[i]>max) {

}

max = arrayl[i];

index = 1i;

return (index) ;

// Given a (pointer to)

an array of shorts and range [a,b],

// determines the maximum value in that range

31

int maxVal (short *array, int a, int b) {
int 1i;
short max= 0;
for (i=a; i<=b; i++){
if (arrayl[i]l>max) {

max = arrayl[i];

}

return (max) ;

int avgVal (short *array, int a, int b){

int i;

unsigned int avg = 0;

unsigned int wval;

for (i=a; i<=b; 1i++){
val = arrayl[i]; // cast
avg = avg + (int) wval;

}

avg = avg/abs (b-a);

return ((int) avg);

Appendix D2: Raspberry Pi C - uku.h

1117777777777 77777777777777777777777777777777
// uku.h //
L1177 77

#define stringl 4

#define string2 17
#define string3 27
#define stringd 22

#define fretl 5
#define fret2 6
#define fret3 13
#define fretd 19
#define fret5 26
#define fret0 O

#define SPI READ 18
#define SPI STOP 23
#define PI_READY 25

const int totalSamples = 1024;

const int totalNotes = 16;

const int Fs = 4884; // sampling frequency
const int totalMax = 5;

const char *notes[] =
{"C4", "Db4", "D4H, "Eb4", "E4", "F4 "’ "Gb4"’ "G4", "Ab4", "A4 "’ "Bb4", IIB4", "C5ll’ llDb5ll’ IID5", "Eb5
"}

const int binRange([2][16] = {{52,61,64,68,72,76,81,86,91,96,102,108,114,121,128,141},
// min bins

{60,63,67,71,75,80,85,90,95,101,107,113,120,127,140,150}}; // max bins

const int A[4] = {fret2, fretl, fretO, fretO};

const int Am[4] {fret2, fret0, fretO, fretO};
const int A7[4] = {fret0, fretl, fretO, fretO};
const int Am7[4] = {fretO, fretO, fretO, fretO};

const int Bb[4] = {fret3, fret2, fretl, fretl};

const int Bbm[4] = {fret3, fretl, fretl, fretl};
const int Bb7[4] {fretl, fret2, fretl, fretl};
const int Bbm7[4] = {fretl, fretl, fretl, fretl};

const int B[4] = {fretd, fret3, fret2, fret2};

const int Bm[4] = {fretd4, fret2, fret2, fret2};
const int B7[4] = {fret2, fret3, fret2, fret2};
const int Bm7[4] = {fret2, fret2, fret2, fret2};

const int C[4] = {fret0, fretO, fretO, fret3};
const int Cm[4] = {fret0O, fret3, fret3, fret3};
const int C7[4] = {fret0, fretO, fretO, fretl};
const int Cm7[4] = {fret3, fret3, fret3, fret3};
const int Cmaj7[4] = {fretO, fretO, fretO, fret2};
const int Cadd9[4] = {fret(O, fretd4, fret3, fret3};

const int Db[4] = {fretl, fretl, fretl, fretd};
const int Dbm[4] = {fretl, fretd, fretd, fretd};
const int Db7[4] {fretl, fretl, fretl, fret2};
const int Dbm7([4] = {fretl, fretl, fretO, fret2};
const int Dsus2[4] = {fret2,fret2,fret0, fret0};

const int D[4] = {fret2, fret2, fret2, fretO};

const int Dm[4] = {fret2, fret2, fretl, fretO};
const int D7[4] = {fret2, fret2, fret2, fret3};
const int Dm7[4] = {fret2, fret2, fretl, fret3};

const int Eb[4] = {fret0O, fret3, fret3, fretl};

const int Ebm[4] {fret3, fret3, fret2, fretl};
const int Eb7[4] {fret3, fret3, fret3, fretd};
const int Ebm7[4] = {fret3, fret3, fret2, fretd};

const int E[4] = {fretl, fret4, fretO, fret2};

const int Em[4] = {fret0, fretd4, fret3, fret2};
const int E7[4] = {fretl, fret2, fret0, fret2};
const int Em7([4] = {fretO, fret2, fretO, fret2};

33

const int F[4] = {fret2, fretO, fretl, fretO};
const int Fm[4] = {fretl, fretO, fretl, fret3};
const int F7[4] = {fret2, fret3, fretl, fret3};
const int Fm7[4] = {fretl, fret3, fretl, fret3};
const int Gb[4] = {fret3, fretl, fret2, fretl};
const int Gbm[4] = {fret2, fretl, fret2, fretO};
const int Gb7[4] = {fret3, fretd, fret2, fretd};
const int Gbm7[4] {fret2, fretd, fret2, fretd};
const int G[4] = {fret0, fret2, fret3, fret2};
const int Gm[4] = {fret0, fret2, fret3, fretl};
const int G7[4] = {fret0, fret2, fretl, fret2};
const int Gm7[4] = {fretO, fret2, fretl, fretl};
const int Ab[4] = {fret5, fret3, fretd, fret3};
const int Abm[4] = {fretd, fret3, fretd, fret2};
const int Ab7[4] = {fretl, fret3, fret2, fret3};
const int Abm7[4] {fretl, fret3, fret2, fret2};
const int goodl[4] = {fretl, fretl, fretl, fretl};
const int good2[4] = {fret2, fret2, fret2, fret2};
const int good3[4] = {fret3, fret3, fret3, fret3};
const int good4[4] = {fretd, fretd, fretd, fretd};
const int good5[4] = {fretb5, fretb5, fretb, fret5};

L1777 77 7777777777777 777777777777777777777777777
// You've Got A Friend In Me //
1117777777777 0777777777777777777777777777777777

const int* friendInMe[31] = {F,C,F,F7,
Bb,Bb, F,F7,
Bb,Bb, F,F7,
Bb,F,A,Dm,
Bb,F,A,Dm,
Bb,F,A,Dm,

G7,Cc,¥,Db,G7,C,F}; // an array of 31 pointers to int arrays

L1777 7707777 7777777777777 7/777777777777777777777
// Somewhere Over The Rainbow //

L1770 7770077770777 77777 777777777777

{C,G,Am,F,C,G,Am,Am,F,F,//intro
c,C,Em,Em,F,F,C,C,//0000-00000-0000000
¥,F,E7,E7,Am,Am, F,F,
c,C,Em,Em,F,F,C,C,//chorus
¥,¥Cc,C,G,G,Am,An, F, F,

c,C,Em,Em,F,F,C,C,

¥F,¥C,C,G,G,Am,Am, F,F};

const int* somewhere[62] =

34

11177777777 777777777777777777777777777777777777
// Mele Kalikimaka //
111777777777 7777777777/7777777777777777777777777

const int* meleKalikimaka[31l] = {C,C,C,C,C,C,//mekalikimaka is the...
G7,G67,67,G67,G7,G7,G7,G7, //day... that's the...
c,c,c7,c7,%,F,A7,A7, //sway.. here we know that...
p7,D7,C,C,A7,AT,
Dm, G7,C};

[T 7777777777777 777700777 777777 777777777
// I'm Yours - 4 chord song //
LI 7070707070070 777777777

const int* ImYours[29] = {C,G,Am,F,
c,G,Am, F,
c,G,Am, F,
Cc,G,Am,F,
c,G,Am, F,D7,
c,G,Am, F,
C,G,Am,F};

[1/700777 7770777 7770777777077777777777777777777
// The Show - 4 chord song //
[1/7007777 7777777777777 777777777777777777777777

const int* theShow([27] = {C,G,Am,F,
c,G,Am, F,
c,G,Am, F,
C,G,Am, F,G,
c,G,Am, F,
c,G,Am,F,G,C};

[177777 7777777777777 777777777777777777777777777
// Banana Pancakes Chords //
11177777707 777777777777777777777777777777777777

const int* bananaPancakes[8] = {G,D,Am,C7,G,D,Am,C7};

1117777777777 7777777777777777777777777777777777
// Mine (t-swizzle) //
L1177 77

const int* mine[30] = {(C,G,D,Em,C,G,D,
c,G,p,C,G,0,C,G,D,C,G,D,
c,G,D,Em,Dsus2,C,
G,D,Em,Dsus2,C};

35

