Infrared Thermography

Final Project Report
December 5, 2017

E155

Lupe Carlos and David Kwan

Abstract:

In this project, the team set out to gather data from an Adafruit AMG8833 8x8 thermal camera
sensor to the Raspberry Pi 3 Model B board through 12C communication protocols, expand and blur that
data to a 32x32 image, transfer that data from the Raspberry Pi to the FPGA on the pMudd Board IV
through SPI communication protocols, and then display the expanded image on a CRT monitor through a
VGA connection. In the end, the team was able to properly setup the I2C communication protocols,
generate a 32x32 enlarged image from the 8x8 IR sensor data through bilinear interpolation, transfer the
data through SPI communication protocols to the FPGA, and then generate the proper signals needed by
the CRT monitor and properly connect it through VGA. In doing so, the CRT monitor displayed a 32x32
heat map generated by the 8x8 IR sensor that refreshed at 3.4Hz and could gather the shapes of objects as

intricate as fingers.

Introduction:

Thermal imaging cameras have many applications in the real world because they can give
multiple temperature readings at once and provide an intuitive platform for those readings. These devices
can be applied in fields ranging from firefighters seeing through smoke to noticing air leaks in homes for
maximizing heating efficiency.

This project is partitioned into four main stages: sensor data collection, data processing in the
Raspberry Pi, communication between Pi and FPGA, and the video driver. Figure 1 depicts the four main

hardware modules in participating in the project.

Raspberry % IR Thermal
Pi Camera

N

SPI

VGA cable

FPGA :> Monitor

Figure 1. Block diagram of Infrared Thermography system

First, the Raspberry Pi communicates with the thermal camera sensor through 12C to collect
temperature readings. Once the Pi has the 8x8 temperature readings, the array is linearly interpolated
twice to obtain a 32x32 array of temperature readings. In this system, a single pixel can be described
using 4 bits, thus 2 temperature values can be described using a single byte. So, the 32x32 array is then
converted into a 16x32 array where each byte describes 2 temperature readings. These values are then
sent to the FPGA over SPI. The FPGA simply takes in data from the Pi on the positive edge of the SPI
clock that only runs when data is being sent. Then, the FPGA shifts in the necessary data from the
Raspberry Pi and uses a series of counters and comparators to properly assign signals that run through all

of the pixels on the CRT monitor as well as to gather the correct parts of the intake data to display based

on the which pixel is being colored at the correct time and to display the full set of pixels at 60 frames per

second to avoid a choppy-looking image.

New Hardware:

The team has implemented two pieces of new hardware, an 8x8 IR sensor and a CRT monitor.
8x8 Infrared Temperature Sensor

Infrared temperature sensors are able to sense electromagnetic waves in the 700nm to the
14,000nm range. These sensors contain photodetectors that are able to convert infrared energy emitted by
heat sources to a proportional electrical signal.

The AMGR8833 IR thermal camera works similarly and is compact enough to fit on a breadboard.
The sensor has a 60° field of view in the horizontal and vertical and is rated to detect temperatures of 0°C
to 80°C at distances up to 5m. The sensor will return an 8x8 array of individual infrared temperature
readings over 12C. The 0.25°C resolution and 10 Hz frame rate of the sensor limits the final resolution and
framerate of the team’s system.
CRT Monitor

A cathode ray tube monitor is a type of computer monitor used popularly in the 1980°s and only
outsold by LCD screens in 2003. The CRT monitor utilizes a travelling electron beam that strikes a
phosphorescent surface. The electron beam travels horizontally across the phosphor-coated screen one
spot at a time (pixel) until it reaches the end and then travels down a row of spots and then travels across
the screen again. The signals that tell the electron beam where to be at a particular time are called Hsync
and Vsync. Because of the nature of the CRT monitor, these signals must be very particular. The Hsync
must be off for 640 + 16 “front porch” + 48 “back porch” clks, then on for 96 clks, for a total of 800 clks
for a total cycle called a scan line. Then, the Vsync signal must be off for 480 + 11 “front porch” + 32

“back porch” scan lines, then on for 2 scan lines for a total of 525 scan lines. The other three signals that

the CRT receives are the Red, Green, and Blue intensity signals. The color signals can only be displayed
during the 640 clks and 480 scan lines. These signals receive between 0 and 0.7V, the greater voltage
corresponding to a greater intensity on the screen. Timed with the Hsync and Vsync signals, the CRT
monitor can receive the right color at the right time to display a desired image. The CRT also receives
grounds for each of the color signals, a ground for the sync signals, and an overall ground. All of these

signals are gathered through VGA connection.

Raspberry Pi Design:

In this project, the Raspberry Pi drives the data collection and processing of the temperature
readings, then sends the processed data to the FPGA.
Software

The AMG8833 is able to connect to the Raspberry Pi through 12C communication protocol. The
12C peripheral is also made available through the piolnit() memory mapping. 12C register mapping on the
Pi is done in the EasyPIO.h header file. I12C is initialized with the i2cInit function which sets the SDA and
SCL pins, sets the SCLK to 100 kHz, and sets the AMG8833 address register as 0x69. The camera is set
to capture data at 10 frames/second through writing 0x00 to the 0x02 register. The i2cWriteToReg
function clears the READ bit indicating a write, writes the data to the FIFO, then writes the register
address to the FIFO. Camera data is obtained through the i2cRead function which only takes the register
address as the input. The function writes the address to the FIFO, then reads the slaves response as the
slave outputs the data from the specified address.

The data processing portion reads all 64 temperature values from the camera, interpolates that
data into a 32x32 array, and sends that to the FPGA video driver. The readPixels function reads all of the
temperature registers and outputs an 8x8 array of temperature values. The output of the camera is

multiplied by the temperature resolution of the camera (0.25°C) to get the temperature reading. This data

is then sent through linearInterp16 and linearInterp32 where it goes through a bilinear interpolation twice
to end up with the 32x32 array of temperature readings. New interpolated values are averages of its
neighboring horizontal (rows) or vertical (columns) elements. The final row is an exact copy of the
penultimate row since there are an odd amount of spaces in the vertical averaging.

The 32x32 array is then converted into a 16x32 array. Every 0.4°C in the range of 26°C to 32°C
will be represented by an integer 0-15. Since 0-15 can be represented using 4 bits, two temperature
values can be described in one byte. So, the number of elements per row in the 32x32 array is halved such
that each byte represents two temperature readings. The result is a 16x32 array of integers in the range of
0-15. This conversion is done in pixelConvert which encodes the temperature values and
bytePixelConvert which combines row elements such that each byte represents two temperature readings.

The final array is sent to the FPGA over SPI using the spiSendReceive function. Additionally,
while sending, the Pi will drive the controlPin high to signal to the FPGA that a transfer is in place. When
the transfer is done, the Pi will drive the controlPin low.

Hardware

The AMG8833 camera is connected to the Pi through two wires connecting SCL1 (I12C) and
SDA1 (I2C). The camera is powered through 3.3V from the Pi and the grounds of the camera, Pi, and
FPGA are all tied together.

The Pi connects to the FPGA through three wires: SCLK (SPI), MOSI (SPI), and controlPin (Pin

21).

FPGA Design:

The FPGA on the pMudd Board IV takes in the 16x32 byte array, 4096-bit data in from the

Raspberry Pi and displays it on the CRT monitor through VGA.

Software

The signals needed out of the FPGA and into the VGA are Hsync, Vsync, and the three color
signals, red, green, and blue. The clk must oscillate at 25MHz if the whole screen is to be displayed at
near 60Hz, so the team used Quartus’s clk wizard to multiply the 40MHz clk on the FPGA by 5 and then
to divide by 8 to get 2SMHz. The slower clock is used to count through counterH and counterV.
CounterH is reset when it reaches 799, and then whenever it reaches 799, counterV is counted. CounterV
is reset when it reaches 524. Hsync and Vsync are created based off of these counters. An ON signal is
created to be on in the areas where color was allowed based off of Hsync and Vsync.

Based off of a value between 0 and 3 for brightness for five colors (red, green, blue, and then teal
and yellow based on combinations of those base colors), there is a range of 0-15 that can be utilized for a
range of temperatures since all of the 0 brightness values for all of the colors is the same, black. The team
created a decoder to get from a value between 0 and 15 and display a corresponding color and brightness.
The decoder goes from black to blue to teal to green to yellow to red in terms of temperature; the darker
the version of each color, the lower the temperature.

The input value to the FPGA will be a long value containing all of the information for every
pixel. The team will have the least significant four bits correspond to the upper left pixel, and then the
second least significant four bits correspond to one to the right, and so on, wrapping around so that the
33rd least significant bits correspond to the pixel sitting right below the first pixel. The team offset the
counterV and counterH signals so that they started at 0 and counted to 480 and 640 respectively. Then,
the team multiplied these by 32 and divided by 480 and 640 respectively to get values that ranged from 0
to 31 for both the vertical and horizontal counters. With this, the team could gather the correct pixel data
from the data carrying all 1024 pixels worth of data corresponding to the correct range of pixels on the

monitor by indexing the 1024 pixel array by the two 0-31 counters.

Hardware

The FPGA has to be wired to the CRT monitor through a VGA connection. The VGA connection
takes in red, green, and blue color inputs as well as Hsync and Vsync signals. Additionally, it has five
ground pin connections. The Hsync and Vsync inputs can take in any logical square wave, so they could
be connected directly to the VGA cord without worry of overpowering or not providing enough power to
the circuit. However, the red, green, and blue color signals receive a range of 0-0.7V, corresponding to
brightness. In addition, the team desires two bits of information to be delivered to the CRT monitor for
each color, also corresponding to brightness. This results in four different levels of brightness for each
color. To accomplish this, the team designed a voltage divider superposition circuit. By using two pins,
each outputting 3.3V, the team could achieve the four different levels of brightness between 0 and 0.7V
by having one either output 0 or 0.46V through a voltage divider, and then another providing 0 or 0.24V
through the same circuit. In this way, if both are on, the VGA pin will receive the full 0.7V, and the

amount of voltage can be adjusted by altering which pins are on. The team did the following math to find

. . _ Ry/IR, Ry/IR, . .
the necessary resistors: V' =V * TRk V2 * TRk where the function R1//R2 means in parallel
with, s0, V,,, = V| % si——+ J/, ¥ ——="2— _now, we want Vout to be 0.7 when V1 and V2

» 80, V' oyt 17X BR R, Ry R 2 BB R (R Ry) ’ .

are 3.3V, and we want V1 to provide 2 times the voltage as V2, so we can say

207V _ RsR, 107V _ R3R, : -
135 T RRORGRY 3337 RRCR(CTR) oW we have two equations and three unknowns, but it is

=1

known that the typical impedance from a VGA cable is R3=70 Q. So now we have two equations and two
unknowns, and we can solve for R1 and R2. They turn out to be R1 =390 Q and R2=780 Q. The closest

values in the lab are 390 Q and 680 Q

Schematics:

FPGA HDL Block Diagram

A |

3 W‘ﬁ.;w
1 ‘ Val ot {HOA T o § 3] G &
3 ! A Viag !
— Nallou .] ik . 3
= TR :

i

' __{3,_1 TV

i
i
]

Overall Hardware

Results:

The project properly displays the thermal camera data onto a CRT monitor. When a warm and
cold cup of water are held in front of the camera, a user is able to distinguish between the two just through
looking at the monitor. The resolution of the final image was high enough that one was able to distinguish
fingers on a hand held in front of the camera.

The resolution and framerate of the final product are not as high quality as the team would have
liked. Currently, the project is limited with the thermal camera’s 8x8 resolution. Further interpolation of
the data would enlarge and blur the final image. Additionally, the final image is displayed at a 3.4Hz
refresh rate. This is noticeable to the human eye which results in a choppy display. The camera is able to
output data at a rate of 10Hz. With more time, the team would have addressed this issue next. Another
bug that the team would address in the future is the slight flicker on the screen. When the Pi is loading
new data into the FPGA, horizontal black bars appear on the screen. This could possibly be addressed if
the framerate of the displayed image was fast enough that one wouldn’t notice the black bars on the
screen.

The team ultimately met all of the proposed goals of the project.

References:

https://forum.allaboutcircuits.com/gallery/photos/vga-pinout.1812/

http://whatis.techtarget.com/definition/cathode-ray-tube-CRT

https://cdn-learn.adafruit.com/assets/assets/000/043/261/original/Grid-EYE SPECIFICATIONS%28Refe

rence%?29.pdf?1498680225

http://www.surecontrols.com/infrared-temperature-sensors

https://forum.allaboutcircuits.com/gallery/photos/vga-pinout.1812/
http://whatis.techtarget.com/definition/cathode-ray-tube-CRT
https://cdn-learn.adafruit.com/assets/assets/000/043/261/original/Grid-EYE_SPECIFICATIONS%28Reference%29.pdf?1498680225
https://cdn-learn.adafruit.com/assets/assets/000/043/261/original/Grid-EYE_SPECIFICATIONS%28Reference%29.pdf?1498680225
http://www.surecontrols.com/infrared-temperature-sensors

Parts List:

pMudd Board IV

Raspberry Pi 3 Model B

Sony CPD-200ES - New - 17" CRT Monitor
Adafruit AMG8833 8x8 Thermal Camera Sensor
3x 390 Q resistors

3x 680 Q2 resistors

10x male to female jumper cables

5x male to male jumper cables

Appendices
Verilog HDL Code

T
/I LCDK_FP
/I Top level module with SPI interface and SPI core
T
module LCDK_FP(input logic clk,
/ISPI
input logic sck, sdi, receiving,
/ICRT thru VGA
output logic [1:0] red, green, blue,
output logic Hsync, Vsync);

/lthe input to this function will be clk, sck, and sdi

/Ithe output will be the red, green, and blue two bit values

/land the hsync and vsync values, all for the CRT monitor

/lthe function will display a 32x32 pixel image on a CRT monitor
/leach pixel will have a range of 0-15 for it's temperature

/lthis means four bits for each pixel for a total incoming
[ltransmission of 4096 pixels.

[[first let's get the 4096 bit array through SPI

logic [4095:0] val1024;

aes_spi spi(sck, sdi, val1024);

/lthen let's generate a 25MHz clk from the 40MHz FPGA clk.

logic c0;

LCDKaltpll altpll(0, clk, c0);

/lthen let's create the counterV, counterH, ON, Hsync, and Vsync signals
/lthe Hsync and Vsync are direct outputs, and the counterH and counterV
/Iwill be helpful later on in the code for timing issues. ON will

/[dictate whenever color should be displayed.

logic ON;

logic [9:0] counterH, counterV;

CounterONHVs cONHVs(c0, counterH, counterV, ON, Hsync, Vsync);

/Inow let's search for the 4-bit value we want from the 4096 bit val1024
/Ibased on the counters counterV/H that are helpful for timing!
logic[3:0] val;

findVal fV(cO, counterV, counterH, val1024, ON, val);

/Inow that we have the value, let's decode it to find the color wanted!
logic [5:0] color;
ColorWrite cw(c0, ON, val, receiving, color);

/Inow that we have the color string, let's split it into it's RGB components!
assign red = color[5:4];

assign green = color[3:2];

assign blue = color[1:0];

/land we're done!

endmodule

T
/[aes_spi

/ISPl interface. Shifts in val1024
[T
module aes_spi(input logic sck,

input logic sdi,

output logic [4095:0] val1024);

/let's shift in the data!l
always_ff @(posedge sck)
val1024 <= {val1024[4094:0], sdi};

endmodule
module findVal(input logic clk,
input logic [9:0] counterV, counterH,
input logic [4095:0] val1024,
input logic ON,
output logic [3:0] val);

/[create some values to normalize by
logic [9:0] Hb, Vb, H, V;
logic [1023:0] index;

//get the start of Hb to be 0

assign Hb = counterH - 94;

/Inow normalize H to between 0 and 640
assign H = Hb*32/640;

/Iget the start of Vb to be 0

assign Vb = counterV - 32;

/Inow normalize V to between 0 and 480
assign V = Vb*32/480;

/lthen let's make an index value that gets at the base
/Ivalue of whichever 4 val bits | want

assign index = 32*V + H;

/Inow for some fancy verilog syntax to access steadily
/lincreasing parts of a long string. | want to grab 4
//bits and then increase the base bit by 4:

assign val = val1024[4*index +: 4];

endmodule

module ColorWrite(input logic c0, ON,
input logic [3:0] val,

input logic receiving,

output logic [5:0] color);

/Ival | color

/10 | black

/11 | dark blue

112 | blue

/13 | bright blue

//4 | dark teal

/15 | teal

/6 | bright teal

/[7 | dark green

//8 | green

/19 | bright green

/IA | dark yellow
/IB | yellow

/IC | bright yellow
/ID | dark red

/IE | red

/[F | bright red

always_comb

if (receiving) color = 6'b000000;
else if(~ON) color = 6'b000000;
else

case(val)

/Iblack

4'b0000: color = 6'b000000;
/Iblue

4'b0001: color = 6'b000001;
4'b0010: color = 6'b000010;
4'b0011: color = 6'b000011;
[Iteal

4'b0100: color = 6'b000101;
4'b0101: color = 6'b001010;
4'p0110: color = 6'b001111;
/Igreen

4'b0111: color = 6'b000100;
4'b1000: color = 6'b001000;
4'b1001: color = 6'b001100;
[lyellow

4'b1010: color = 6'b010100;
4'b1011: color = 6'b101000;
4'p1100: color =6'b111100;
/Ired

4'61101: color = 6'b010000;
4'61110: color = 6'b100000;
4'b1111: color = 6'b110000;
default: color = 6'b000000;
endcase

endmodule

module CounterONHVs(input logic clk,
output logic [9:0] counterH, counterV,
output logic ON, Hsync, Vsync);

/lcounting to 799 and 524 to start the Hsync and Vsync signals
/land get the timing on them
always_ff@(posedge clk)
if (counterH == 799)
begin
counterH <= 0;
if (counterV == 524) counterV <= 0;
else counterV <= counterV + 1;
end
else counterH <= counterH + 1;

/Inext, for the actual Hsync and Vsync signals
/[following the Hsync and Vsync rules
always_comb

if (counterH < 47 | counterH > 750) Hsync = 1;

else Hsync = 0;

always_comb

if (counterV < 1| counterV > 523) Vsync = 1;

else Vsync = 0;

/Inow for the ON signal, when colors should be displayed

/laccording to the VGA rules

always_comb

if ((counterH < 95) | (counterH > 734) | (counterV < 33) | (counterV > 511)) ON = 1'b0;
else ON = 1'b1;

Endmodule
RTL Viewer
&= \sync
LCDKaltpll:altpll - @ Hsync
_ ColorWrite:cw
) areset
clkE=- inckl CounterONHVs:cONHVs ;
receivina i
Hs findVal:fv valBe B

aes_spi:spi

sckmm———— sck 02
sdimm® | sdi i

receiving B

altpll:altpll_component

areset (GND)
inclkO

areset
inclkl1 01

1024[4095..0]-

~reg0
—E»>val1024[4095..0]

E-counterH[9..0]

L counterV[9..0]~rég0 LessThan2 E=counterV[9..0]
ounterH eg0 Equal0 o0,
10'hoo1 - 124 ! 100001 -4 < J
‘TessThan3 always2
22" h0000O! EQUAL : T
22'h000000 LessThan(10 hzoB--;‘ﬁ <) —- ==\sync
32 h00000200 0 N =y
N m— T b -
foogE=™ < “EEE T han7
e — ~
“Te8SThan alwafORiRE..; < S jalways3~2
MOZEEESY | —J o - T ol
MUX21 el <] esTh B -
Add1 counterH~[9..0] b ;23*59,<W\‘ i
Ao . R i 10' h0O21 - _'_\ ’
womoo? i <
10'h001 -- — __10'ho00 = — fo'hosF= — —/ ‘ LESS_THAN P
- “PE¥eThan
MUX21 - e
iR)
e

clk -

Add

counterH [9..0I\]-r1. T RN DivO
O tﬂ'haaﬂ. _;E\-l-/f A 14.0)
clk === Sihid

o

Mux0

1 seLpn.g

appe10'h280 -- 2'h3 --
w |l

owoER 3'h0 -]
_‘{AQQ Sho- |
counterV[9..0] B w2 Div1 paiid

8'h3D i + - 14.0] Add2 _3'_h__0_—_

apper 3 h1E0 - T _‘:hO_- 1

DVIDER :3':h0 =

val1024[4095..0] = Fh0—

receiving-—‘
clm=

ON -

val[3..0]|EB—

— WideOr0——
I vy
I ——— /
[21
color~1
4
0 ™~
-1 |
¢ color~2
— WideOn2 1
Iy oy
/
I 3—1//
— color~3 &M
Decoder0 _ ué
sl -
_[.N[a..o] OUT15.0] - WideOr CO|C1r~4
pECODER —] 241
color~5
— &
2 = 0
— WideOr3 ., .
L &8 >
7 color~6
WideOr1
T
§h
Decoder1 :L
—) color~0
,i,,'_“[z"m ouT7..0] 5 i\%

DECODER

color~[12..7]

MUX21

ThermalCam.c
Created:

C Code

8 December 2017
David Kwan (dkwan@hmc.edu)

This is the main file for the Infrared Thermography project.

#include "EasyPIO.h"
#define controlPin 21
#define INPUT 0
#define OUTPUT 1
int main(void){

T 1111
//Variables

T 1111
int 1;

float *p,*n;

char *f,*b;

s
//nit functions
s
piolnit();

spilnit(3300000,0);
i2¢Init(100000,0x69);

pinMode(controlPin, OUTPUT); //set pin 21 as output

W
//12C Read/Write
W

i2cWriteToReg(0x02,0x00); //set to 10 frames/second

Wi
//Interpolation
Wi
//m = linearInterp16(p);

//n = linearInterp32(n);

TN
//Categorize
TN
//f = pixelConvert(n);

T
//Byte Format
T
//b = bytePixelConvert(f);

T

//Read, Interpolate, Categorize, Format, Send
T
while(1){
p = readPixels();
n = linearInterp16(p);
n = linearInterp32(n);
f = pixelConvert(n);
b = bytePixelConvert(f);
for(i=0; 1<512; i++){
spiSendReceive(*(b+i));
digital Write(controlPin,1);

H
digital Write(controlPin,0);
H
return 0;
H
/* EasyPIO.h
* Created: 8 December 2017
* David Kwan (dkwan@hmc.edu)
%
* This is the header file for the Infrared Thermography project.
* This is a modified EasyPIO.h to include 12C and AMG8833 data processing functions
*/

#ifndef EASY PIO H
#define EASY PIO H

// Include statements
#include <sys/mman.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>

T
// Constants
T

// GPIO FSEL Types
#define INPUT 0
#define OUTPUT 1
#define ALTO 4
#define ALT1
#define ALT2
#define ALT3
#define ALT4
#define ALTS

N W a3 N

/M2C

#define SDA PIN 2
#define SCLK_PIN 3
#define HIGH 1
#define LOW 0

T
// Memory Map
T

/I These #define values are specific to the BCM2835, taken from "BCM2835 ARM Peripherals"
//#define BCM2835 PERI BASE 0x20000000

/! Updated to BCM2836 for Raspberry Pi 2.0 Fall 2015 dmh

#define BCM2835 PERI BASE 0x3F000000

#define GPIO_BASE (BCM2835_PERI_BASE + 0x200000)
#define SPI0_BASE (BCM2835 PERI BASE + 0x204000)
#define 2C_BASE (BCM2835_PERI_BASE + 0x804000)

#define BLOCK_SIZE (4*1024)

s

//AMGR8833

T

#define AMGS8833 [12CADDR 0x69; //address for AMG8833
#define AMGS8833 PCTL 0x00;
#define AMGS8833 RST 0x01;

#define AMGS88xx_ FPSC 0x02

#define AMGS88xx INTC 0x03

#define AMG88xx STAT 0x04
#define AMG88xx SCLR 0x05
//0x06 reserved

#define AMG88xx AVE 0x07

#define AMG88xx INTHL 0x08
#define AMG88xx INTHH 0x09
#define AMG88xx INTLL 0x0A
#define AMG88xx INTLH 0x0B
#define AMG88xx IHYSL 0x0C
#define AMG88xx IHYSH 0x0D
#define AMG88xx TTHL 0x0E
#define AMG88xx TTHH 0xOF
#define AMG88xx INT OFFSET 0x010

#define AMG88xx PIXEL OFFSET 0x80

//AMGS8833 Operating Modes

#define AMG88xx_ NORMAL MODE 0x00
#define AMG88xx_SLEEP_MODE 0x01
#define AMG88xx_STAND BY 60 0x20
#define AMG88xx_STAND BY 10 0x21

//sw resets
#define AMG88xx FLAG RESET 0x30
#define AMG88xx INITIAL RESET 0x3F

//frame rates
#define AMG88xx_FPS 10 0x00
#define AMG88xx_FPS 1 0x01

//int enables
#define AMG88xx INT DISABLED 0x00
#define AMG88xx INT ENABLED 0x01

//int modes
#define AMG88xx DIFFERENCE 0x00
#define AMG88xx ABSOLUTE_VALUE 0x01

#define AMG88xx_PIXEL_ARRAY SIZE 64
#define AMG88xx_PIXEL_TEMP_CONVERSION .25 //floats???
#define AMG88xx_THERMISTOR_CONVERSION .0625

// Pointers that will be memory mapped when piolnit() is called
volatile unsigned int *gpio; //pointer to base of gpio

volatile unsigned int *spi; //pointer to base of spi registers
volatile unsigned int *i2c; //pointer to base of i2¢ registers

T
/I GPIO Registers
T

// Function Select

#define GPFSEL ((volatile unsigned int *) (gpio + 0))

typedef struct

{
unsigned FSELO
unsigned FSEL1
unsigned FSEL2
unsigned FSEL3
unsigned FSEL4
unsigned FSEL5
unsigned FSEL6
unsigned FSEL7
unsigned FSEL8
unsigned FSEL9
unsigned 2 2;

} gpfselObits;

#define GPFSELODbits (*(volatile gpfselObits*) (gpio + 0))

#define GPFSELO (*(volatile unsigned int*) (gpio + 0))

LW W W W W W W W W W

typedef struct

{
unsigned FSEL10 3
unsigned FSEL11 3
unsigned FSEL12 :3
unsigned FSEL13 :3;
unsigned FSEL14 3
unsigned FSEL15 3

unsigned FSEL16
unsigned FSEL17
unsigned FSEL18
unsigned FSEL19
unsigned 1 2;
} gpfsellbits;
#define GPFSEL 1bits (*(volatile gpfsellbits*) (gpio + 1))
#define GPFSEL1 (*(volatile unsigned int*) (gpio + 1))

(A

W W W W
(A

typedef struct

{
unsigned FSEL20
unsigned FSEL21
unsigned FSEL22
unsigned FSEL23
unsigned FSEL24
unsigned FSEL25
unsigned FSEL26
unsigned FSEL27
unsigned FSEL28
unsigned FSEL29
unsigned 1 2;

} gpfsel2bits;

#define GPFSEL2bits (* (volatile gpfsel2bits*) (gpio + 2))

#define GPFSEL2 (* (volatile unsigned int *) (gpio + 2))

[ARERASINA

-

(AR

LW W W W W W W W W W
. .« e . .

(A

typedef struct

{
unsigned FSEL30
unsigned FSEL31
unsigned FSEL32
unsigned FSEL33
unsigned FSEL34
unsigned FSEL35
unsigned FSEL36
unsigned FSEL37
unsigned FSEL38
unsigned FSEL39
unsigned 1 2;

} gpfsel3bits;

#define GPFSEL3bits (* (volatile gpfsel3bits*) (gpio + 3))

#define GPFSEL3 (* (volatile unsigned int *) (gpio + 3))

[ARERASINA

-

(AR

LW W W W W W W W W W
. .« e . .

(A

typedef struct

{
unsigned FSEL40
unsigned FSEL41
unsigned FSEL42
unsigned FSEL43
unsigned FSEL44
unsigned FSEL45
unsigned FSEL46
unsigned FSEL47

- [ARERASINA

-

(A

LW W W W W W W W
. .« e .

(A

unsigned FSEL48 :3;

unsigned FSEL49 :3;

unsigned 1 2;
} gpfseldbits;
#define GPFSELA4bits (* (volatile gpfseldbits*) (gpio + 4))
#define GPFSEL4 (* (volatile unsigned int *) (gpio + 4))

typedef struct

{
unsigned FSEL50
unsigned FSELS51
unsigned FSEL52
unsigned FSEL53
unsigned : 20;

} gpfselSbits;

#define GPFSELS5bits (* (volatile gpfselSbits*) (gpio + 5))

#define GPFSELS (* (volatile unsigned int *) (gpio + 5))

(A

W W W W
[

// Pin Output Select
#define GPSET ((volatile unsigned int *) (gpio + 7))
typedef struct
{
unsigned SETO 1
unsigned SET1 1
unsigned SET2 1
unsigned SET3 1
unsigned SET4 01
unsigned SETS5 1
unsigned SET6 1
unsigned SET7 1
unsigned SET8 1
unsigned SET9 1
unsigned SET10 1
unsigned SET11 1
unsigned SET12 1
unsigned SET13 1
unsigned SET14 1
unsigned SET15 1
unsigned SET16 1
unsigned SET17 1
unsigned SET18 1
unsigned SET19 :1
unsigned SET20 : 1;
unsigned SET21 :1
unsigned SET22 1
unsigned SET23 1
unsigned SET24 1
unsigned SET25 1
unsigned SET26 1
unsigned SET27 1
unsigned SET28 1
unsigned SET29 1
unsigned SET30 1
unsigned SET31 1

} gpsetObits;
#define GPSETObits (* (volatile gpsetObits*) (gpio + 7))
#define GPSETO (* (volatile unsigned int *) (gpio + 7))

typedef struct

{
unsigned SET32
unsigned SET33
unsigned SET34
unsigned SET35
unsigned SET36
unsigned SET37
unsigned SET38
unsigned SET39
unsigned SET40
unsigned SET41
unsigned SET42
unsigned SET43
unsigned SET44
unsigned SET45
unsigned SET46
unsigned SET47
unsigned SET48
unsigned SET49
unsigned SET50
unsigned SET51
unsigned SET52
unsigned SET53
unsigned 1 10;

} gpsetlbits;

#define GPSET 1bits (* (volatile gpsetlbits*) (gpio + 8))

#define GPSET1 (* (volatile unsigned int *) (gpio + 8))

bk bk ek ek ek ek bk ek b ek ek ek ek bk e ek ek ek ek e ek

// Pin Output Clear

#define GPCLR ((volatile unsigned int *) (gpio + 10))

typedef struct

{
unsigned CLRO
unsigned CLR1
unsigned CLR2
unsigned CLR3
unsigned CLR4
unsigned CLRS5
unsigned CLR6
unsigned CLR7
unsigned CLR8
unsigned CLR9
unsigned CLR10
unsigned CLR11
unsigned CLR12
unsigned CLR13
unsigned CLR14
unsigned CLR15
unsigned CLR16

Ptk e

— e e e e

unsigned CLR17 1

unsigned CLR18 1

unsigned CLR19 1

unsigned CLR20 1

unsigned CLR21 1

unsigned CLR22 1

unsigned CLR23 : 1

unsigned CLR24 : 1;
unsigned CLR25 :1

unsigned CLR26 1

unsigned CLR27 1

unsigned CLR28 1

unsigned CLR29 1

unsigned CLR30 1

unsigned CLR31 1

}gpclrObits;

#define GPCLRObits (* (volatile gpclrObits*) (gpio + 10))
#define GPCLRO (* (volatile unsigned int *) (gpio + 10))

typedef struct

{
unsigned CLR32
unsigned CLR33
unsigned CLR34
unsigned CLR35
unsigned CLR36
unsigned CLR37
unsigned CLR38
unsigned CLR39
unsigned CLR40
unsigned CLR41
unsigned CLR42
unsigned CLR43
unsigned CLR44
unsigned CLR45
unsigned CLR46
unsigned CLR47
unsigned CLR48
unsigned CLR49
unsigned CLR50
unsigned CLR51
unsigned CLR52
unsigned CLR53
unsigned 1 10;

}gpclrlbits;

#define GPCLR1bits (* (volatile gpclrlbits*) (gpio + 11))

#define GPCLR1 (* (volatile unsigned int *) (gpio + 11))

bk b ek ek ek ek b ek b ek ek ek bk e ek ek ek ek ek e ek e

// Pin Level
#define GPLEV ((volatile unsigned int *) (gpio + 13))
typedef struct
{
unsigned LEVO0 1
unsigned LEV1 1

unsigned LEV2
unsigned LEV3
unsigned LEV4
unsigned LEVS5
unsigned LEV6
unsigned LEV7
unsigned LEV8
unsigned LEV9
unsigned LEV10
unsigned LEV11
unsigned LEV12
unsigned LEV13
unsigned LEV14
unsigned LEV15
unsigned LEV16
unsigned LEV17
unsigned LEV18
unsigned LEV19
unsigned LEV20
unsigned LEV21
unsigned LEV22
unsigned LEV23
unsigned LEV24
unsigned LEV25
unsigned LEV26
unsigned LEV27
unsigned LEV28
unsigned LEV29
unsigned LEV30
unsigned LEV31
} gplevObits;
#define GPLEVObits (* (volatile gplevObits*) (gpio + 13))
#define GPLEVO (* (volatile unsigned int *) (gpio + 13))

ke ke

—m b b e b e e e e b e b e e e e e e e e e

typedef struct

{
unsigned LEV32 1
unsigned LEV33 1
unsigned LEV34 1
unsigned LEV35 1
unsigned LEV36 1
unsigned LEV37 1
unsigned LEV38 1
unsigned LEV39 o1
unsigned LEV40 1
unsigned LEV41 o1
unsigned LEV42 1
unsigned LEV43 1
unsigned LEV44 1
unsigned LEV45 1
unsigned LEV46 1
unsigned LEV47 1
unsigned LEV48 1

unsigned LEV49 1
unsigned LEV50 o1
unsigned LEVS51 1
unsigned LEV52 o1
unsigned LEV53 o1
unsigned 1 10;

}gplevlbits;

#define GPLEV 1bits (* (volatile gplev1bits*) (gpio + 14))

#define GPLEV1 (* (volatile unsigned int *) (gpio + 14))

T
/I SPI Registers
T

typedef struct

{
unsigned CS :2;
unsigned CPHA :1;
unsigned CPOL :1;
unsigned CLEAR :2;
unsigned CSPOL :1;
unsigned TA :1;
unsigned DMAEN :1;
unsigned INTD :1
unsigned INTR :1
unsigned ADCS :1;
unsigned REN :1
unsigned LEN :1
unsigned LMONO :1;
unsigned TE_EN :1
unsigned DONE 1
unsigned RXD 1
unsigned TXD 1
unsigned RXR :1
unsigned RXF :1;
unsigned CSPOLO :1
unsigned CSPOL1 1
unsigned CSPOL2 1
unsigned DMA_LEN 1
unsigned LEN_LONG 1
unsigned :6;

}spiOcsbits;

#define SPIOCSbits (* (volatile spiOcsbits*) (spi + 0))

#define SPIOCS (* (volatile unsigned int *) (spi + 0))

#define SPIOFIFO (* (volatile unsigned int *) (spi + 1))
#define SPIOCLK (* (volatile unsigned int *) (spi + 2))
#define SPIODLEN (* (volatile unsigned int *) (spi + 3))

T
/1 12C Registers
T
typedef struct

unsigned READ
unsigned
unsigned CLEAR
unsigned
unsigned ST
unsigned INTD
unsigned INTT
unsigned INTR
unsigned
unsigned I2CEN
unsigned

}2ccbits;

#define I2CCBITS (* (volatile i2ccbits*) (i2¢c + 0))

S NG S G L NS S TS R

&

typedef struct

{
unsigned TA :1;
unsigned DONE :1;
unsigned TXW :1;
unsigned RXR :1;
unsigned TXD :1;
unsigned RXD :1;
unsigned TXE :1;
unsigned RXF :1;
unsigned ERR :1;
unsigned CLKT :1;
unsigned :22;

}i2csbits;

#define I2CSBITS (* (volatile i2¢sbits*) (i2¢ + 1))

typedef struct

{
unsigned DLEN :16;
unsigned :32;

}i2cdlenbits;

#define [2CDLENBITS (* (volatile i2cdlenbits*) (i2¢ + 2))

typedef struct

{
unsigned ADDR :7;
unsigned :25;

}12cabits;

#define I2CABITS (* (volatile i2cabits*) (i2¢ + 3))

typedef struct
{
unsigned DATA :8;
unsigned :24;
}2cfifobits;

#define I2CFIFOBITS (* (voltaile i2cfifobits*) (i2c +4))

typedef struct
{

unsigned CDIV :16;

unsigned :32;
}2cdivbits;
#define [2CDIVBITS (* (volatile i2cdivbits*) (i2¢c + 5))
typedef struct
{
unsigned REDL :16;
unsigned FEDL :16;
}i2cdelbits;
#define I2CDELBITS (* (volatile i2cdelbits*) (i2c + 6))
typedef struct
{
unsigned TOUT :16;
unsigned :32;
}2cclktbits;

#define 2CCLKTBITS (* (volatile i2cclktbits*) (i2¢ + 7))

#define I2CC (* (volatile unsigned int *) (i2¢ + 0))
#define 12CS (* (volatile unsigned int *) (i2¢c + 1))
#define [2CDLEN (* (volatile unsigned int *) (i2¢c + 2))
#define I2CA (* (volatile unsigned int *) (i2c + 3))
#define I2CFIFO (* (volatile unsigned int *) (i2c + 4))
#define I2CDIV (* (volatile unsigned int *) (i2¢ + 5))
#define I2CDEL (* (volatile unsigned int *) (i2¢ + 6))
#define I2CCLKT (* (volatile unsigned int *) (i2c + 7))

T g
/I General Functions
T g
void piolnit() {

int mem_fd;

void *reg_map;

// /dev/mem is a psuedo-driver for accessing memory in the Linux filesystem
if ((mem_fd = open("/dev/imem", O RDWR|O SYNC)) <0) {

printf("can't open /dev/mem \n");

exit(-1);
H

reg_map = mmap(
NULL, //Address at which to start local mapping (null means don't-care)
BLOCK SIZE, //Size of mapped memory block
PROT READ|PROT WRITE,// Enable both reading and writing to the mapped memory
MAP_SHARED, // This program does not have exclusive access to this memory
mem_fd, // Map to /dev/mem
GPIO_BASE); // Offset to GPIO peripheral

if (reg_map == MAP_FAILED) {
printf("gpio mmap error %d\n", (int)reg_map);
close(mem_fd);
exit(-1);

gpio = (volatile unsigned *)reg_map;

reg_map = mmap(
NULL, //Address at which to start local mapping (null means don't-care)
BLOCK SIZE, //Size of mapped memory block
PROT READ|PROT WRITE,// Enable both reading and writing to the mapped memory
MAP_SHARED, // This program does not have exclusive access to this memory
mem_fd, // Map to /dev/mem
I12C BASE); // Offset to GPIO peripheral

if (reg_map == MAP_FAILED) {
printf("i2c mmap error %d\n", (int)reg_map);
close(mem_fd);
exit(-1);
H

i2¢ = (volatile unsigned *)reg_map;

reg_map = mmap(
NULL, //Address at which to start local mapping (null means don't-care)
BLOCK SIZE, //Size of mapped memory block
PROT READ|PROT WRITE,// Enable both reading and writing to the mapped memory
MAP_SHARED, // This program does not have exclusive access to this memory
mem_fd, // Map to /dev/mem
SPI0 BASE); // Offset to SPI peripheral

if (reg_map == MAP_FAILED) {
printf("spi mmap error %d\n", (int)reg_map);
close(mem_fd);
exit(-1);

H

spi = (volatile unsigned *)reg_map;

}

T
// GPIO Functions
T

void pinMode(int pin, int function) {
intreg = pin/10;
int offset = (pin%10)*3;
GPFSEL[reg] &= ~((0b111 & ~function) << offset);
GPFSEL[reg] |= ((Obl11 & function) << offset);

}

void digital Write(int pin, int val) {
int reg = pin / 32;
int offset = pin % 32;

if (val) GPSET([reg] = 1 << offset;
else GPCLR[reg] = 1 << offset;
H

int digitalRead(int pin) {
int reg = pin / 32;
int offset = pin % 32;

return (GPLEV[reg] >> offset) & 0x00000001;
H

void pinsMode(int pins[], int numPins, int fxn) {
int i;
for(i=0; i<numPins; ++i) {
pinMode(pins[i], fxn);
§
H

void digital Writes(int pins[], int numPins, int val) {
int i;
for(i=0; i<numPins; i++) {
digital Write(pins[i], (val & 0x00000001));
val =val >>1;
§
H

int digitalReads(int pins[], int numPins) {
int 1, val = digitalRead(pins[0]);

for(i=1; i<numPins; i++) {
val |= (digitalRead(pins[i]) << i);
}

return val;

}

T
// SPI Functions
T

void spilnit(int freq, int settings) {
//set GPIO 8 (CE), 9 (MISO), 10 (MOSI), 11 (SCLK) alt fxn 0 (SPIO0)
pinMode(8, ALTO);
pinMode(9, ALTO);
pinMode(10, ALTO);
pinMode(11, ALTO);

//Note: clock divisor will be rounded to the nearest power of 2
SPIOCLK = 250000000/freq; // set SPI clock to 250MHz / freq
SPIOCS = settings;

SPIOCSbits. TA = 1; // turn SPI on with the "transfer active" bit

char spiSendReceive(char send){

}

SPIOFIFO = send; // send data to slave
while(!SPIOCSbits. DONE); // wait until SPI transmission complete
return SPIOFIFO; // return received data

short spiSendReceivel6(short send) {

short rec;

SPIOCSbits. TA = 1; // turn SPI on with the "transfer active" bit
rec = spiSendReceive((send & 0xFF00) >> 8); // send data MSB first
rec = (rec << 8) | spiSendReceive(send & 0xFF);

SPIOCSbits. TA = 0; // turn off SPI

return rec;

T
// 12C Functions
T

/Mnitialize i2¢ clk, pins, and slave address
void i2clnit(int freq, int adr) {

}

//set GPIO 2 (SDAL1), 3 (SCL1)
pinMode(2, ALTO);
pinMode(3, ALTO);

12CDIV = 250000000/freq; //core clock/CDIV typical is 100kHz
12CA = adr; //chip address

//Clear status flags
void i2¢_ClearStatus(void){

}

I2CSBITS.CLKT = 1;
I2CSBITS.ERR = 1;
[12CSBITS.DONE = 1;

//Wait until transfer is done
void i2¢_waitDone(void)

{
int timeout = 50;
while((!(I2CSBITS.DONE)) && --timeout){
usleep(1000);
H
if (timeout == 0)
printf("Error: Timeout. \n");
H
//Write to FIFO

void i2cWrite(char data) {

I2CCBITS.READ = 0; //Write packet transfer
I2CDLEN = 1; //1 byte to be written
//data = data & OxFF;

}

I2CFIFO = data;

i2¢_ClearStatus();

I2CCBITS.I2CEN = 1; //Turn on BSC controller
I2CCBITS.ST = 1; //start transfer
i2c_waitDone();

//Write to a register
void i2cWriteToReg(char data, char reg) {

}

I2CCBITS.READ = 0; //Write packet transfer
I2CDLEN = 2; //2 byte to be written

//data = data & OxFF;

I2CFIFO = data;

i2¢_ClearStatus();

I2CCBITS.I2CEN = 1; //Turn on BSC controller
I2CCBITS.ST = 1; //start transfer
/i2¢_waitDone();

I12CFIFO =reg;

/li2¢_ClearStatus();

/M2CCBITS.I2CEN = 1,

/M2CCBITS.ST = 1;

i2c_waitDone();

//Read from a register
char i2cRead(char reg) {

i2cWrite(reg);

I2CDLEN = 1;

i2¢_ClearStatus();

I2CCBITS.READ = 1; //Read packet transfer
I2CCBITS.CLEAR = 1; //Clear FIFO
I2CCBITS.I2CEN = 1; //Turn on BSC controller
I2CCBITS.ST = 1; //start new transfer
i2c_waitDone();

return I2CFIFO;

T

// AMG8833

// readPixels

/I Gets 8x8 array of temperature readings from sensor
T

float* readPixels(void){

static float pixelArray[64];
int i,temp;
float tempFloat;

for(i=0;1<128;i++){
if(i%2 == 0){ //if even, lower byte
temp = (float)i2cRead(0x80 + 1);
H
else{ //if odd, upper byte, concatenate with lower byte
tempFloat = (float) (temp | (i2cRead(0x80 + 1) << 8));
pixelArray[i/2] = tempFloat / 4; //temperature conversion

//print array

printf(" \r\n");
printf(" readPixels \r\n");
printf(" \r\n");

for(int j=0; j < 64; j++) {
if(j%8 == 0){

printf("\r\n");

}

printf("%f, ",pixel Array[j]);
}
printf("\r\n");

return pixelArray;

}

T
//Interpolation
T

//Linear 8x8 -> 16x16

float* linearInterp16(float array[64]){
static float newArray[256];
int i;
int j=0;

/Iplace original in correct places, everything else is 0
for(i=0; 1<256; i++){
if((1%2 ==0) && ((1%32) <16)){
newArray[i] = array[j];

s
H
else{

newArray[i] = 0;
H

/Ivertical averaging, except for first and last row
for(i=16; i<240; i++){
if((1%2 ==0) && ((1%32) > 15)){
newArray[i] = (newArray[i-16] + newArray[i+16])/2;
H

//copy last given row into 16th row
for(i=240; 1<256; i++){

newArray|[i] = newArray[i-16];
H

//Row linear interpolation, average
for(i=0; 1<256; i++){
if(1%2==1) {
newArray[i] = (newArray[i-1] + newArray[i+1])/2;

H
if(1i==255){
newArray|[i] = newArray[i-16];
H
H
//print array
printf(" \r\n");
printf(" linearInterp16 \r\n");
printf(" \r\n");

for(int j=0; j < 256; j++) {
if(j%16 == 0){
printf("\r\n");
H
printf("%.2f, " ,newArray[j]);
H
printf("\r\n");
printf("\r\n");

return newArray;

}

//Linear interpolation 16x16 -> 32x32
float* linearInterp32(float array[256]){
int i;
int j=0;
static float newArray[1024];

/Iplace original in correct places, everything else is 0
for(i=0; 1<1024; i++){
if((1%2 == 0) && ((1%64) <32)){
newArray[i] = array[j];

s
H
else{

newArray[i] = 0;
H

/Ivertical averaging, except for first and last row

for(i=16; i<992; i++){
if((1%2 == 0) && ((1%64) > 31)){
newArray[i] = (newArray[i-32] + newArray[i+32])/2;
H

//copy last given row into 16th row
for(i=992; 1<1024; i++){

newArray|[i] = newArray[i-32];
H

//Row linear interpolation, middle value so average
for(i=0; 1<1024; i++){
if(1%2==1) {
newArray[i] = (newArray[i-1] + newArray[i+1])/2;
H
if(i==1023){
newArray[i] = newArray[i-32];

H
H
//print array
printf(" \r\n");
printf(" linearInterp32 \r\n");
printf(" \r\n");

for(int j=0; j < 1024; j++) {
if(§%32 == 0){

printf("\r\n");

H

printf("%.2f, " ,newArray[j]);
H
printf("\r\n");

printf("\r\n");

return newArray;

T T
//Categorize

//Range: 26-32 C Change color every 0.4 C
T T

char* pixelConvert(float array[1024]){

static char pixelArray[1024];
int i,j;
//Reversed order
for(i=0;i<1024; i++){
if(array[i] > 32)
pixelArray[i] = 15;
else if (array[i] > 26 && array[i] <=26.4)

pixelArray[i] = 1;

else if (array[i] > 26.4 && array[i] <= 26.8)
pixelArray[i] = 2;

else if (array[i] > 26.8 && array[i] <=27.2)
pixelArray[i] = 3;

else if (array[i] > 27.2 && array[i] <=27.6)
pixelArray[i] = 4;

else if (array[i] > 27.6 && array[i] <= 28)
pixelArray[i] = 5;

else if (array[i] > 28 && array[i] <=28.4)
pixelArray[i] = 6;

else if (array[i] > 28.4 && array[i] <= 28.8)
pixelArray[i] = 7,

else if (array[i] > 28.8 && array[i] <=29.2)
pixelArray[i] = 8§;

else if (array[i] > 29.2 && array[i] <=29.6)
pixelArray[i] = 9;

else if (array[i] > 29.6 && array[i] <= 30)
pixelArray[i] = 10;

else if (array[i] > 30 && array[i] <=30.4)
pixelArray[i] = 11;

else if (array[i] > 30.4 && array[i] <= 30.8)
pixelArray[i] = 12;

else if (array[i] > 30.8 && array[i] <=31.2)
pixelArray[i] = 13;

else if (array[i] > 31.2 && array[i] <=31.6)
pixelArray[i] = 14;

else if (array[i] > 31.6 && array[i] <=32)
pixelArray[i] = 15;

else //less than 26C
pixelArray[i] = 0;

//Reverse the columns to fix image reversal
for(int row=0; row<32; row-++){
for(int col=0; col<16; col++){
char temp;
temp = pixelArray[(row*32)+col];
pixelArray[(row*32)+col] = pixel Array[(row*32)+(31-col)];
pixelArray[(row*32)+(31-col)] = temp;

//print array

printf(" \r\n");
printf(" pixelConvert \r\n");
printf(" \r\n");

for(int j=0; j < 1024; j++) {
if(§%32 == 0){
printf("\r\n");

H

printf("%d, ",pixel Array([j]);
H
printf("\r\n");
printf("\r\n");

return pixelArray;

}

T 77T
//Format into 16x32.
//Combine row values into a single byte
//Two temperature readings per byte
T 17T
//16x16 now. turn into 8x16
char* bytePixelConvert(char array[1024]){

static char bytePixelArray[512];

int i,j;

for(i=0;i<1024;i++){

if(i%2!=0){ //if odd, append to last
bytePixelArray[i/2] = array[i] | (array[i-1] << 4);

H
H
//print array
printf(" \r\n");
printf(" bytePixelConvert \r\n");
printf(" \r\n");

for(int j=0; j <512; j++) {
if(1%16 == 0){
printf("\r\n");
}
printf("%d, ",bytePixelArrayl[j]);
}
printf("\r\n");
printf("\r\n");

return bytePixelArray;

}
#endif

