DESIGN PROPOSAL : CONSTRUCTION OF A FREELINING FOUR-LEGGED QUADROPOD
Carolina de Freitas

Paige Pruitt

E155

INTRODUCTION

This project involves the construction
of a four-footed robot on wheels. Figure 1 shows a
similar robot with its trajectory marked by LED
lights over time (Leg-Wheel Hybrid Walking Vehicle
"Roller-Walker"). The “Roller Walker” pictured here
is the motivation for this project, it is a quadropod
robot who “walks” in order to traverse treacherous
terrain and can also turns its feet on its side to
reveal four wheels which allow the robot to glide
across a smooth floor. The rolling capability ensures
that the robot can move as efficiently as possible
regardless of the terrain it is covering.

For this project, the team will examine only

FIGURE 1 shows the roll-walk robot with

LEDs attached to track the motion o for the rolling motion of the hybrid “Roller-Walker
the body and feet of the robot through robot. This simplification adds a constraint (there is
space (HIROSE-FUKUSHIMA ROBOTICS LAB) always a point on the wheel in contact with the

ground) and makes the project more attainable.

The team is using several conference proceedings from the Hirose-Fukushima
Lab to infer details about the robot. Many of the calculations and assumptions for the
Roller-Walker hold true for the team’s creation.

A second inspiration for this project comes from Free Line Skates™ (Farrelly) .In
particular, the movements of the Four Legged Quadropod’s (FLQ) wheels are
reminiscent of the movement of a person on Free Line skates, and thus the two will
share some similar kinematic properties. Specifically, the shape drawn on the floor by
the wheels of the quadrapod and a person on Freelines should be the same. This has
been qualitatively assessed by comparing Figure 1 to an experiment performed by the
team in which a person on freelines skated over waver and then a long sheet of paper —
recording the path of the freelines on the paper. Both paths are sinusoidal in nature
with a phase offset from the front “foot” to the back “foot”.

This project is being constructed as both a Dynamics of Rigid Bodies project and
a Design of Microprocessors project. The robot will be propelled by the motion of 8

servo motors which will all be controlled with the combination of a PIC and an FPGA.
The servos will bend each joint on the legs of the robot (2 joints per leg) and serve as the
driving force behind the robot. The robot built will serve as a physical model used to
verify a theoretical model developed by applying concepts from E175 (Dynamics of Rigid
Bodies). Setting the angular accelerations and displacements of each limb and recording
the forward velocity of the robot with those parameters will serve as a benchmark for
the corresponding theoretical model.

The PIC will generate a pattern of pre-determined acceleration and deceleration
routines for the servos (4 routines). This pattern will be inputted as an 11-bit signal (3
bits for servo identification and 8 bits for servo position). The FPGA will read and store
this signal and output eight separate pulse-modulated signals.

The project has been separated into two sets of goals; a short-term base goal
and long-term stretch goal. This serves the purpose to ensure that the Microprocessors
component can be completed without the completing the Dynamics of Rigid Bodies
portion.

Base Goal

The base goal is to produce a four-legged wheeled robot that can produce
translational movement while connected to a benchtop power-source and a computer.
Instead of simply connecting the wheels of the robot to motors, the wheels will be free
spinning and instead each leg will be controlled by the movement of 2 servos which will
control the pitch and yaw of each leg. By attaining this goal we will have proven that we
were successful in communicating between the PIC and the FPGA and were able to
output the correct output. In order to move the robot across the floor (however
ungracefully, slowly or non-linearly) the team should be able to find a satisfactory
combination of signals trial and error.

Stretch Goal

Beyond this goal, in conjunction with the Rigid Bodies, the team plans to improve
the movement of the robot by precisely determining the angular accelerations and
velocities of each servo-motor to generate a more graceful path. Additionally, the team
would like to attach a battery pack to the robot and control it via a Bluetooth link to a
computer. The user would input text commands (such as <.>,v,”) into HyperTerminal
which will then control how the robot moves. This is a stretch goal because the team is
concerned about the ability of the servos to carry a battery and also concerned about
the amount of power that the servos will be drawing from said battery at once.
Additionally, it may be discovered that the servos purchased are simply not strong

enough, and the restricted geometries of the legos may not allow the robot to move in a
graceful manner.

NEw HARDWARE

In the Hirose-Fukushima lab in Japan their robot is constructed out of multiple
aluminum parts and features a plethora of on-board electronics to control the motion of
the robot. While this allows the team in Japan precise control, our team doesn't have
the budget or time to construct our robot out of these parts. Instead, our design is
constrained to inexpensive-off-the shelf parts.

The physical body of the robot has been assembled using various parts from the
Lego Mindstorms NXT 2.0 kit provided by the Harvey Mudd College stockroom. These
parts make the majority of the legs, wheels and body of the robot. A summary of the
Lego pieces used and how much they weigh can be found in Appendix 1.

To perform the motion of each leg, the team has installed two Futaba 3003
series servos on each leg. The servos are positioned perpendicular to each other and
hot-glued onto the Lego legs.

In the future, the team plans to implement a Bluetooth-command protocol,
wherein a user can type in a command in HyperTerminal on a computer and the robot
will respond. The team plans on using the BlueSMIRF hardware present in lab to connect
the breadboard wirelessly to the computer and a simple Bluetooth USB dongle on the
computer end.

Lastly, an ambitious goal is to de-tether the robot completely. This de-tethering
is unlikely however, because to do so requires the team acquire a battery and
breadboard which combined weigh less than 800 grams (the remaining weight the
servos can still support) while providing over 2.5 Amps of current to the servos over an
appreciable amount of time.

JOINT PROJECT WITH E175: DYNAMICS OF RIGID BODIES
As mentioned before, this project is a joint project with E175: Dynamics of Rigid
Bodies. For said class, the team is in the process of performing several calculations and
models of the robot to ensure predictable motion of the robot. In properly analyzing all
of the mechanics of the device, the team hopes to more precisely and gracefully control
the robot by determining exactly which angular accelerations are necessary for constant
forward velocity of the machine.

SCHEMATICS

HarrisBoard 2.0 5V
Vin
GND {>
RBO servonumber[0]
RB1 servonumber[1]
RB2 servonumber[2] R
P1 n Servo0
W FLS
P2
R
P4 -~ Servo 1
B
RCO position0] W FLE
RC1 position[1]
R
RC2 postition[2] B S?:rF\a/cs) 2
RC3 positiion[3] W
RC4 position[4]
R
RC5 position[5] B‘ Servo 3
" FRE
RC6 position[6] W
RC7 position[7]
R
P112 E: Servo 4
P113 w BLS
P116
P118 R
P119 B Servo 5
v W BLE
P127
P128
R
P129 IE: Servo 6
P7———— servo0 W BRS
P8——F—— servol
P10—+—— servo2 R Servo 7
P11—F— servo3 W BRE
P12——— servo4
P13——— servo5
P14——— servo6
P15——— servo7

Figure 2 shows the schematic for all the electronics involved in the control unit for the robot.

MICROCONTROLLER DESIGN

We envisioned a design that could be controlled and debugged through C code
written for the PIC microcontroller, but could be maintained with the FPGA. From this
concept we wrote functions in C to control the elbow and shoulder joint movement as
well as the delays necessary to allow the servo to move. These functions were then
implemented in different sequences and for different amounts of time in order to create
the desired motion of the robot. The main functions used are:

set_servo_position(int servonumber, int position)

This function takes an input of a servo number (0 through 7) and a position (0 to 255)
and uses this information to communicate with the FPGA. Because the required pulse
widths for the Futaba S3003 servos are values between .5ms and 2.3 ms, the useful
position values were discovered to be numbers between 10 and 45. However, this
code was designed to create a pulse width of any length and can therefore handle
any 8-bit value.

delay_ms(int time)

This function serves the simple purpose of being a counter and halting the system for
any amount of time in milliseconds. This was very important because if the servo
receives a new position value before it had reached its previous one it will simply
move to the most recent position. We did not want this to happen, as it is very
important for the motion of our robot that each servo completes its intended
motion. Therefore, it is necessary for the PIC to wait a designated amount of time in
between servo calls.

FPGA DESIGN

The FPGA serves as the main waveform producing unit on the robot. The FPGA
reads 11 bits of information from the PIC (3 bits which identify the servo and 8 bits
which identify the position of that servo), and saves this information into the
corresponding register. This register is part of a set of 8 registers. Each register
corresponds to a different servo, and holds the position that servo should be at.

It then outputs all 8 position registers and creates eight corresponding pulse-
modulated waveforms. The output waveforms are all created by an eight-bit counter.
The counter increases from 0 to 255 and will remain high from zero until the counter
reaches the number stored in the corresponding position register, at which time, the
corresponding signal goes low.

Results

Through a combination of close examination of the videos provided by Hirose-
Fukushima labs, Rigid Bodies kinematics calculations, and trial and error, the team was
able to find the necessary servo positions to create translational motion with the lego

model. As it currently works, the robot moves forward but not in the exact way that the
original video indicates. With the Hirose robot, the motion is very smooth and the
wheels follow a sine wave on the floor. For the team’s recreation, this movement was
simplified to a triangular path, which allows the robot to move forward, but in a less
graceful manner. Moreover, the team’s recreation has a different geometry than the
Hirose-Fukushima machine, further constraining the motion it can perform.

None of the stretch goals were met due to time and material constraints. After
testing the robot, it was noted that at 5V the robot draws 2 Amps consistently. It was
impossible to find a battery that was light and robust enough for the project within a
reasonable budget. Moreover, to improve the robot’s movement across the floor would
have introduced at least 6 more unknowns into the dynamics analysis creating an
unsolvable problem, so those efforts were also abandoned. Lastly, the Bluetooth
implementation was also forsaken due to time constraints. Some preliminary C-code
had been written to perform the predicted functions, but could not be debugged in time
for this report.

APPENDIX 1

Bill of Materials. Below are listed all the materials used in the project.

Quantity | Part Name Part Description
2 Lego Mindstorms NXT 2.0 | This kit includes all of lego parts required to built
kit the robot including the tires, hubs, axles, lift arms

(straight and bent) and half bushings.

8 Futaba 3300 Servos These where the 8 servos that controlled the
movement of each leg.

5ft Red wire

5ft White wire For connecting the Bread Board to the robot.

5ft Black wire

1 HarrisBoard 2.0 Includes both the PIC and FPGA necessary for
controlling the robot and some extra
components.

1 Bread Board For wiring the Harris Board to the servos and
ground and power.

2ft Any colored wire For wiring between the Bread Board and the
Harris Board

1 Power Supply Must output at least 5V at 2.5 Amps.

APPENDIX 2
All PIC code used.

#include <pl8f452.h>
#include <math.h>

#define SERVOO_MIN 30
#define SERVO0_MAX 45
#define SERVO1l MIN 10
#define SERVO1l MAX 45
#define buffer 4

/* function protoypes */

void set servo position(int servonumber,int position);
void setup(void);

void delay us(int time);

void main(void);

void delay s(int time);

void delay ms(int time);

// functions
void setup(void){
//TOCON=0b10000001;
TOCON=10000001;
TRISB=0x00;
TRISC=0x00;
TRISD=0x00;
set_servo_position
set _servo_position
set_servo_position
set_servo_position
set _servo_position
set _servo_position
set_servo_position
set _servo_position

}

0,10);
1,10);
2,10);
3,10);
4,10);
5,10);
6,10);
7,10);

A~ N~ o~~~ o~

void delay us(int time){ /// time is .8 microseconds
unsigned int t0,tl,th;
TMROH=0; TMROL=0;
do{
tl= TMROL;
th=TMROH;
t0= tl | th<<8;
//just wait
}while (tO<time);
}

void delay s(int time){
int i;
for(i=0;i<(40*time);i++){
delay us(100000);
}
}

void delay ms(int time){

int i;
for(i=0;i<(1l0*time);i++){
delay us(100);
}
}

void set servo position(int servonumber,int position){ // position
between 10 and 45

PORTB= servonumber;

PORTC= position;

//PORTB=buffer;

//PORTB= buffer;
}

void set servo_elbow(int servonumberl,int servonumber2,int
servonumber3,int servonumber4, int start position, int end position,
int time){

// 0, 2, 30, 35, 400

int i;

int diff;

int incriment;

diff= end position-start position; // 35-30

incriment= time/fabs(diff);

// PORTD=fabs(diff);

set servo position(servonumberl,start position); //**
set servo position(servonumber2,45-(start position-10));

if(dif£<0){
for(i=0;i<fabs(diff);i++){
set servo _position(servonumberl,start position-i);
set servo _position(servonumber3,start position-i);
set servo position(servonumber2,45-(start position-10)+i);
set servo position(servonumber4,45-(start position-10)+i);
delay ms(incriment);

}
}
else{
for(i=0; i<diff; i++){
set _servo _position(servonumberl,start position+i);
set servo position(servonumber3,start position+i); //***
set servo position(servonumber2,45-(start position-10)-i);
set servo position(servonumber4,45-(start position-10)-i);
delay ms(incriment);
}
}
}
/] ——m e
// MAIN!
void main(void){
setup();
while(1){
set _servo position(1l,30); // shoulder
set_servo position(3,25); // shoulder

set_servo_position(5,25);
set_servo_position(7,30);

set servo elbow(2,0,6,4,29,34,200); // was 25-30

set_servo_position(1l,25);
set _servo position(3,30);

set servo elbow(2,0,6,4,34,29,200);

set _servo position(1l,30); // shoulder
set_servo_position(3,25);

set_servo_position(5,35);
set_servo_position(7,20);

set servo elbow(2,0,6,4,29,24,200);

set_servo position(1l,35);
set_servo_position(3,20);

set servo elbow(2,0,6,4,29,24,200); // shoulder

APPENDIX 3

All Verilog code used.

module PWM(
input cl

input [2:0] servonumber,

k,

input [7:0] position,

input reset,

output reg servoo0,

output
output
output
output
output
output
output

):

reg
reg
reg
reg
reg
reg
reg

servol,
servo2,
servo3,
servo4,
servob5,
servob6,
servo7

reg[7:0] counter;

reg[10:0] delay;

reg[7:0] positionO0;
reg[7:0] positionl;
reg[7:0] position2;
reg[7:0] position3;
reg[7:0] position4;
reg[7:0] position5;
reg[7:0] positioné6;
reg[7:0] position7;

always @ (posedge clk)

begin

if (servonumber==3'b000) positionO=position;

(servonumber==3'b001) positionl=position;
(servonumber==3'b010) position2=position;
(servonumber==3'b011) position3=position;
(servonumber==3'b100) positiond=position;
(
(

else
else
else
else
else
else
else

if
if
if
if
if
if
if
if

if
if
if
if
if
if
if

servonumber==3'b101) position5=position;
servonumber==3'b110) position6é=position;
(servonumber==3'bl1l1l) position7=position;
if (counter==position0)servo0=0; // when counter =

// servo0 goes low

counter==positionl)servol=0;
counter==position2)servo2=0;

counter==position3) servo3=0;
counter==positiond4) servo4=0;
counter==position5) servo5=0;
counter==position6) servo6=0;
counter==position7) servo7=0;
counter==255 || reset==1)

begin

counter=0;
servo0=1;
servol=1;
servo2=1;
servo3=1;
servo4=1;

position,

servob5=1;
servob6=1;
servo7=1;
end
if(delay[10]==1)

begin
counter=counter+1;
delay=0;
end
delay = delay+1;
end

endmodule

// check that delay is big enough
// we're sending the servo between
// 50 Hz and 100 Hz
// currently : 76 Hz

// increase actual counter

// increase delay counter

WoRkKS CITED

Farrelly, Ryan. About | Freeline Skates. 2005. 4 October 2009
<http://www.freelineskates.com/FREELINE/website/aboutus.html>.

Hirose, Shigeo and Takeuchi Hiroki. "Study on Roller-Walk (Basic Characteristics and its control)."
Internation Conference on Robotics and Automation. Minneapolis, MN: IEEE, 1996. 3265-3270.

Hirose-Fukushima Robotics Lab. Leg- Wheel Hybrid Walking Vehicle "Roller-Walker". 2006. Tokyo Institute
of Technology. 5 October 2009 <http://www-

robot.mes.titech.ac.jp/robot/walking/rollerwalker/rollerwalker_e.html>.

kopanda. Latest, an introduction of an advanced snake robot in Japan. 15 March 2006. 4 October 2009
<http://www.youtube.com/watch?v=4cAwzS5ZqO0_w>.

