An nVGA Controller

for Integrating Graphics into Microcontroller Projects

William Koven
Drew Macrae

December 11, 2009

Abstract

We designed and demonstrated a system to allow a Spartan 3 FPGA to command a
range of drawing operations on a monitor connected through a VGA cable. The
Graphics Controller can draw single dots or clear the whole screen, and it can use 4
different points on the color-depth resolution tradeoff. The demo seeks to emulate an
Etch-A-Sketch, but other applications could now be designed quickly, using
appropriate serial commands to color individual dots on the screen.

Introduction

The considerable effort required to use a PIC or an FPGA to perform even
rudimentary control of a VGA monitor motivated us to construct a model of a VGA
controller. Traditional VGA controllers use a 256KB memory to store a set of images
and allow a computer to update the screen continuously without requiring the
Central Processing Unit’s constant attention. We set out to produce and
demonstrate a controller that facilitated this kind of management of a monitor and
would hopefully be useable in the future by anyone interested in using a
microcontroller to control a monitor. Over the course of this project we came across
a system much like what we set out to build. It can be found at
http://www.sparkfun.com/commerce/product info.php?products id=8541

It has a well defined instruction set for serial command of writes, and we used a
similar serial instruction set to assure practicality and hopefully expandability. Its
instructions are constrained to using 8bit words, so there is a fair amount of wasted
signaling, but the design certainly simplifies the hardware required for reading in
serial instructions.

Without an external memory, the Spartan 3 on the Harrisboard is capable of storing
about 1/8t% the data used in a traditional VGA system. This led us to reduce the
resolution significantly, and Table 1 shows the required Resolution-ColorDepth
tradeoff to ensure the design could be implemented with the available memory.

Table 1: The limits of the Spartan 3 frame buffer enforce a Resolution-ColorDepth tradeoff.

Resolution Color Depth
320x480 1 Bit (Black and White)
320x240 2 Bit (4 levels of gray)
160x240 4 Bit (16 Colors)
160x120 8 Bit (256 Colors)
VGA Monitor
r%A Cable
VGA DAC
RL2:0] Hsync
::s;s:r

PIC 18F452(0)

(Application Controller)

Spartan 3

(Graphics Controller)

®© ® ()

EShake

Flash Color

Figure 1: A schematic of signaling and devices in our Etch-A-Sketch System.

Signal line width indicates bus width.

In order to demonstrate the power of our graphics controller we decided to
implement an Etch-A-Sketch with four different color modes, so we could show that
an FPGA system can achieve either high resolution display operations or a decent
color depth. Figure 1 shows the main components for this system, where the PIC
contains the application layer, and sends serial instructions to the FPGA which

performs the draws and maintains the screen. In this way the FPGA is acting like the
graphics card on a computer, while the PIC is acting as a CPU.

Timing
The Harrisboard’s clock operates the PIC at 20 MHz. VGA requires something closer
to 25MHz, which we produced from a 20MHz signal using the FPGA’s Digital Clock
Manager. The signaling from the PIC must therefore be asynchronously passed to
the FPGA. The bus is mediated by a parallelizer that reads entire bytes over the SPI
and outputs them over a parallel bus asserting a valid byte while the output is sure
to be stable.

Signal Specifications
We imagine that our model VGA system is more interesting if other designers can

use it as a general display controller. The commands for it are included below. They
should be sent over the PIC SPIL.

Draw Instructions

1. Dot Draw

Drawing a single dot is performed by sending the following string of Bytes:

0x50

X position (16 Bits)

Y position (16 Bits)

Color (8 Bits)

Our design includes a Dot Draw module capable of drawing 10 dots per frame. The X
and Y position must be valid for the current color mode to allow for proper tracking
of which dots have been written.

When dot draws are approaching overflow, an external signal is raised to indicate to
the PIC that a new dot draw will prevent a previously commanded draw from
occurring.

2. Clear Screen
Clearing the screen is performed by sending the following string of Bytes.
0x45
Color (8 Bits)
The screen can be cleared once every two frames.

3. Change Color Mode
The color mode can be changed by sending the following string of Bytes.

0x59
Color Mode (8 bits)

Supported color modes are:
0x00: 1 black and white achieves 320x480 resolution
0x01: 2 bit grayscale at a 320x240 resolution (square pixel groups)

0x02: 4 bit color ata 160x24.0 resolution 1bR,2bG,1bB
0x03: 8 bit color at a 160x120 resolution 3bR,3bG,2bB (square pixel groups)

Changing the color mode doesn’t clear the screen automatically

4. No-Op

The Command Interpreter will only read bytes from the SPI receiver while the next
byte is being sent. Therefore, after the last instruction is sent over the SPI a No-Op
should be sent to guarantee that all bytes of an instruction are properly interpreted.
A No-Op is executed by sending the byte

0x00.

Overflow Warning Flag

The FPGA uses a binary flag to signal to the PIC that it is not prepared for a
command. The flag is raised when the Dot Draw module is filled and undrawn dots
would be overwritten. These are passed back to the PIC over port D pin 7 so that the
user and the designer can observe this behavior.

New Hardware

The Hardware for this project is similar to that of the CrazyGame as implemented on
the PIC by Dayringer and Weiner. There are several elements that we believe we've
improved:

VGA DAC for the Spartan 3

The VGA standard uses a 0-0.7V analog signal on three different conductors
to indicate each of the Red, Green and Blue color values to be displayed. We used a
simple set of 4 resistors to act as a Digital to Analog Converter to allow multiple
digital outputs to control each of these analog signals.

Our VGA controller used 8 bits to represent a color at the greatest color
depth, so that red and green will have 3 bits specifying 8 possible levels, and blue
will has two bits specifying four possible levels. For the sake of simplicity, the circuit
to achieve the blue output is the same as red and green, but the three pins only
achieve four different colors.

Computing the set of resistors to achieve the desired output impedance is a
reasonably simple bit of circuit design. We start by assuming a value for the output
impedance of the FPGA pins. We guessed 30Q so that ideally we would have the
output being run into resistors of at least ten times that value such that the load of
the resistor wouldn'’t affect the output significantly.

We built our DAC by using four different resistors in the configuration shown
in Figure 4. The first three have a resistance of Ri, 2R1 and 4R so that each pin will
have twice the effect on the current into the load resistor, Rz. Our system must then
satisfy two constraints. First, the output must be 0.7 when all the pins are pulled
High(3.3V). Second, the output impedance should match that of the VGA cable,
(75Q2). The output impedance is the parallel addition of R1, 2R1, 4R1 and Rz, and the

output voltage is effectively the result of dividing the input voltage across the
parallel addition of Ry, 2R1 and 4R and R». By solving for these resistances, we get a
set of resister values for the DAC. Then we simply subtract the resistance already
present in the FPGA output pins to achieve the final circuit. We built and tested its
ability to produce the desired output before connecting it to a monitor through the
VGA port.

Figure 2 shows the completed board, which slides into a set of female header
pins placed on the edge of the Harrisboard. It occupies a total of 12 pins of the
Harrisboard’s FPGA 10s.

Figure 2: A photo of the completed DAC. It sits on a set of female headers that
have replaced the male headers on the edge of the Harrisboard.

User Interface

The interface for this circuit is quite simple. We connected a set of five
potentiometers from ground to 3.3V in order to vary output values across the entire
PIC ADC range. We then connected two buttons and four switches so that they have
the appropriate pull-ups or pull-downs to allow them to send 3.3V or 0V to the PIC
input pins. When we became frustrated by potentiometers becoming disconnected,
we built a panel to ensure that they are held in place. To improve the grip and
appearance of our Ul we made knobs of different sizes to control color and position.
Figure 3 shows the layout and the labeling of the knobs.

Figure 3: The user 1nput interface for the Etch A- Sketch demo, the shake
button is on the left, the flashing color button is on the right.

Schematic of constructed circuits

3.3V
22pF
910 o
6200 B[2)/P10
1.3KQ B[1/P11
2.4KQ B[OyP12
A
22pF
o N /] 910 I P
sestd |]
HSyncOutO— O 620Q G[2I/R15
O [E—
VSyncOut OBluerpn | 1.3KQ G1IR17
O—BGnd—
© G[01/R18
O—Gond 24KQ !
O o
11 1
6 RGnd
: o
——AN\/\/\— 22pF
91Q
R
620Q R[RY/R23
R
1.3KQ R[11/R24
R
2.4KQ R[0)/R25
R
43Q Hsyng/P5
R
43Q Vsync/P6
All 1KQ potentiometers
j X/RAO
R/RA1
G/RA2
B/RA3
L 1KQ
v Shake/RA4
Y/RAS5
o
00 RBO/ColorMode[0]
~ RB1/ColorMode[1]
G '~
3900 1 NoCon
RB3/FlashControl
B "

4.4KQ

Figure 4: A Schematic for the breadboarded circuit

Microcontroller design

The PIC microcontroller manages the FPGA display controller and sends commands
to perform and facilitate single pixel draws and full screen clears. By emulating an
Etch-A-Sketch, the PIC demonstrates the utility of a well defined frame buffer and its
ability to store onscreen information until it is overwritten.

Controls

We use the PIC ADC on port A to interface with the 5 potentiometers used to control
the system. A bank of DIP switches selects graphics modes and a pushbutton
“shakes” the system. We configured a second button to provide the user with a
flashing color draw. The PIC interprets the motion of the knobs and switching of the
digital pins and commands the FPGA to draw the appropriate updates to the screen.

Serial interface
The SPI module on the PIC sends data asynchronously to the FPGA. The data is

formatted as dot draw, shake and color mode instructions as shown in the section
on signals in the system overview.

Mediating User Input

User input will be collected by the PIC using PORTA’s ADC capabilities. The
PIC will perform periodic analog to digital conversions on 5 channels and then send
the results to the FPGA Graphics controller in the form of a dot draw. It will also
send color mode changes and command the clearing of the screen with serial
instructions.

Interfacing with the FPGA
The FPGA is where the brunt of the merit for this project lies. The PIC uses the SPI

port in master mode to clock data out to the FPGA at up to 5MbPS. This corresponds
to a few full screens’ worth of single pixel draws per second.

Behavior

The knobs in the order they are interpreted are: X Position, Red Value, Green Value,
Blue Value, and Y Position. Each knob is configured so that the full left is a 0 and full
right is the full range value so it will nicely map to the space. In addition there is one
pushbutton that will clear the screen and 4 dipswitches to configure draw modes.
The available draw modes are described in the signals portion of the introduction.

PIC Helper functions

A designer who wishes to use the FPGA designs developed here would likely want to
use the following helper functions to send commands to their graphical controller.

WriteChar(char Data)

This function manages the Serial Peripheral Interface with the FPGA. It can be used
to send draw commands to the FPGA in a simple project that wishes to gain video
capabilities.

SPlinit()

This function initializes the SPI to communicate with the FPGA it should be called
before WriteChar, and only needs to be called once.

FPGA Design

The FPGA consists of an SPI Receiver, Command Interpreter, Memory Controller,
VGA Controller, and graphics accelerator units which currently include Dot Draw
and Solid Draw. The SPI Receiver receives serial data from the PIC and outputs it in
parallel to the Command Interpreter, which in turn issues instructions to the
graphics accelerator units. The Memory Controller is responsible for managing the
screen buffer and generating the X and Y scan signals as well as arbitrating between
different graphics units. The VGA Controller is responsible for drawing black during
porches and generating HSync and VSync signals.

SPI Receiver

The SPI Receiver is designed to accept 8 bit words over a pair of pins connected to
the PIC. On every rising edge of the SPI clock, SPI data is read into a set of registers,
and every time 8 bits have been read in, they are transmitted to a register that
makes them available in parallel form to the 25 MHz portion of the circuit. While
bits 2-4 are being read in, the SPI Receiver raises a valid flag to indicate that the
parallel bits are valid and aren’t subject to imminent change.

Command Interpreter

The Command Interpreter looks for the rising edge of the signal that indicates the
parallel data is valid, and whenever new parallel data becomes valid, it uses its
values to drive a state machine, setting up a set of control signals for the draw mode
that is currently being invoked and raising a flag to indicate that a draw is to start.

Memory controller

The memory controller generates X and Y coordinates incrementing each clock
cycle, or 25 Hz, and outputs both the current X, Y, and Color signals as well as the
next X and Y coordinates that will be drawn. The controller uses a simple dual
ported 8 bit x 32,768 memory. Whenever the memory controller moves to a new
word in memory, it writes the displayed values to the most recently displayed
region.

The memory is always addressed using the 7 most significant Y coordinate
bits, or Y[8:2], and the 8 most significant X coordinate bits, or X[9:2] where X and Y
refer to the position of the pixel on the monitor that will be drawn. In 8 bit color
mode the color information is stored in the entire byte, and 16 pixels all use that

byte to determine their color. In 4 bit color mode the color is stored in either the
top or bottom nibble addressed according to Y[1], here groups of 8 pixels share
colors. In 2 bit color mode the color information is stored in two bit segments of the
memory byte according to Y[1] and X[1], and four pixels share a color. Finally, in 1
bit color mode each bit of the memory byte holds color information addressed
according to Y[1:0] and X[1] so that color is shared by only two pixels.

There are three stages of pipeline in the memory controller, one before the
memory, one after the memory, and a final stage holding all the current X, Y, and
Color and memory information. The three stages are necessary because there is a
one cycle delay between the address going into the memory and the output value
becoming valid. The first cycle X and Y are advertised to all the graphics
acceleration modules and using combinational logic any module that wishes to draw
raises a request flag. The address for the memory location pertaining to X and Y also
goes into the memory on the first cycle. On the second cycle X and Y advance to
XMemOut and YMemOut while the memory address advances to MemAddrOut and
MemOut becomes the valid memory byte pertaining to XMemOut and YMemOut. A
single graphics unit that requested a draw is then enabled and by combinational
logic a valid color is put on the ColorBus from the graphics unit to the memory unit.
On the third cycle Enable advances to EnableNow while XMemOut and YMemOut
advance to XNow and YNow, and MemAddrOut becomes MemAddrNow. If
MemAddrOut and MemAddrNow are pointing to different memory locations, then
the current modified memory byte is written back into memory at MemAddrNow
and MemNow gets the value from MemOut. Otherwise, the current modified
memory byte is stored back into MemNow. The modified memory byte as well as
the current color are generated using combinational logic involving the current
memory byte, the current BusColor, BusColowNow, and the color mode. See
Appendix D for a timing diagram.

VGA controller

The VGA controller takes in the current X scan and Y scan positions as well as the
color, and either outputs the color if the current scan position is in the viewable
screen area or outputs black. The VGA controller also outputs the HSync and VSync
signals.

Acceleration modules

The Dot Draw module takes in X Coordinates, Y Coordinates, and a Color value. Dot
Draw stores the data in a collection of shift registers that can hold up to 10 different
dots. When the screen reaches the coordinate of any of the dots, a draw is requested
and the dot is marked as written. If the modules ninth dot is currently unwritten, it
raises a buffer full flag to signal to other modules that it cannot hold any more dots
at the moment.

The Solid draw uses enabled registers to hold a color value, and once it is told to
start the color register is un-enabled. Solid Draw then requests to draw its color for

10

at least a full frame by looking for a negative edge, positive edge, and then another
negative edge of VSync before re-enabling the color register.

Results

The system achieves the target resolutions and color depths. It allows for the
expedient design of microcontroller graphics subject to the constraint of the size of
the frame buffer.

References

4dSystems uVGA Picasso
http://www.4dsystems.com.au/prod.php?id=15

“MicroToys Guide: VGA Monitor” D. Rinzler
http://www4.hmc.edu:8001 /Engineering/microtovs /VGA /MicroTovs%20VG

A.pdf

Video Graphics Array
http://en.wikipedia.org/wiki/Video Graphics Array

“PIC Crazygame.exe with Wireless Controller” M. Dayringer, M. Weiner
http://www3.hmc.edu/~sharris/class/e155 /Projects 2007 /CrazyGame.pdf

Extra Parts List

The following components were important for the completion of our project and
were not readily available in the lab

e Knobs (manufactured from soft face scrap)
e Red, Green and Blue LEDs (found in VLSI lab component bins)
e Panel (manufactured from tooltray scrap)
e Female, Soldercup VGA connector (ordered from Mouser)
e Protoboard PCB. (obtained from stockroom)

Future Work

This project has tried to facilitate later expansion and extension to ultimately
convert it to something that acts as a useful peripheral for integration with a PIC. In
the future we intend to do the following:

Web publishing

To save people from reinventing the wheel we’d like to publish a tutorial that
explains the design as well as providing it to anyone who sees fit to use it.

11

http://www.4dsystems.com.au/prod.php?id=15
http://www4.hmc.edu:8001/Engineering/microtoys/VGA/MicroToys%20VGA.pdf
http://www4.hmc.edu:8001/Engineering/microtoys/VGA/MicroToys%20VGA.pdf
http://en.wikipedia.org/wiki/Video_Graphics_Array
http://www3.hmc.edu/%7Esharris/class/e155/Projects_2007/CrazyGame.pdf

Extending Drawing Modes

VGA gives a computer many acceleration modes. Though we only implemented
three and only demonstrated two, the usefulness of this system would be improved
by extending the number of draw modes by adding useful functions.

Rectangle Draws

We implemented a simple Rectangle drawing engine that draws a rectangle of a
specified color. It's not particularly interesting for an Etch-A-Sketch, but many other
projects for this class use rectangular graphical elements quite often.

Text Draws

Printing text to a display is perhaps the most useful single drawing task that a
display controller can perform. In fact, many displays can only display text.
Implementation of a Text Draw mode requires some extension, but the current
serial interface should allow printing of text over the serial port with little effort,
and once a font set has been programmed on the FPGA and a FSM is programmed to
track target position, Text Draws become a reasonable task.

Read Pixel

Certain operations require the reading of the color value at a certain pixel. If the
serial interface were made bidirectional, a command could be written to instruct the
FPGA to transmit the color at a certain pixel.

Line Draws

Diagonal lines are an interesting problem, and programming a digital system to
quickly draw lines is an interesting challenge. This goal is optimistic.

Further Color Modes

The four color modes allow for some adaptability in the uses of the display. Further
work could add additional modes to allow the system to emulate some of the
functions often used in a modern architecture.

Double Buffering

Animation often requires the use of two or four pieces of video memory, one of
which is currently being displayed while the others are being edited. This sacrifices
some resolution or color depth to enable some fidelity in the timing of events
onscreen, or to allow for the undoing of certain draws.

Color Pallet

256 colors is a lot and often a designer would prefer to use a smaller subset of
colors. A color pallet allows the designer to select a subset of these colors that they
will use in a display, and to store the color value as a shorter piece of data that
points towards the address of the color on a pallet rather than to specify the entire
color. For example, this could allow the designer to use any 16 Colors of the 256
possible colors that the DAC can produce while in the 4 bit color mode.

12

Appendix A PIC Microcontroller code

¥:42009-2010\ESketch\Working ESketch_5 Dec 2009 1930pm\PICSoftware 6 12 09\main.c

//Andrew Macrae

[IVGAPIC

//December 6, 2009
//drewmacraefgmail .com

finclude <pl8f452.h>

//these chars let the user developer ADCOND gquickly
//select input channel and configure ADCOND

f/32T08C (0{10a})
//select input chanel ADC{0) (000) - {100)
//set go (o)
J/unimplemented (o)

//ADON (1)

fdefine UseADO 0Ob10000CO1
fdefine UseAD1 0b10001001
fdefine UseAD2 0bl0010001
#define UseAD3 0b10011001
#define UseAD4 0b10100001//this is pin RAS

//not really the height or widths, really the maximum address value

fdefine CMODW 319

fdefine CMOOH 478//this is large enough that the FIR overestimates by one B max
//this value tweaked”

#define CMOIW 319
fdefine CMO1H 239

fdefine CM10W 160
//this value tweaked* it was small enough the FIR underestimates by one at max

fdefine CM10H 239

fdefine CM11W 160
fdefine CM11H 120
//both these values tweaked® small enough the FIR underestimates by one at max

//gain is skewed 0.5% to avoid low level steady state errors due to rounding
#define IIRGain 50.25//vary gain and satisfy below
fdefine ITRRem 0.95//1000-Gain = 990 = Rem*1000

int get_AN Vichar channelConf)//uses the ADC to monitor the PIC's output
)
char i;

ADCONO=channelConf; //configure the channel using the argument

for(i-0;i<40;i++)//this will allow the cap to charge
{l

//start conversion
ADCONObits.GO~1;

while (ADCONObits.GO) //wait till done
8]

return ADRESH*256+ADRESL;//return an 10 bit reading of analog voltage
)

void writeChar (char output)//make writes a bit easier
{
SSPCON1bits.WCOL = 0;//set collision bit low
S5PBUF output; fltry a write
while (S5PCONlbits.WCOL = 1)
| /lkeep trying till it worked
SSPCON1bits.WCOL - 0; //set collision bit low
SSPBUF - output; fitry a write

13

¥:42009-2010\ESketch\Working ESketch_5 Dec 2009 1930pm\PICSoftware 6 12 09\main.c

)

woid S5PIinit(veid)//initialize the S5PI for this project
{

TRISC-0x00; /{set PORTC as outputs

PORTCbhits.RC4 1:

//configure SSPSTAT

//Sample bit sample at middle

//Transmit at rising edge

//don't care

S5PSTAT 0b010000D00;

//eonfigure SSPCON1
//no collision
//don't care
f/enable the ssp
//clock idles low
//8P1 Master clock = FOSC/4
SSPCON1 0b00100000;
PORTCbits.RC4 0;
]

void ADinit (weid) //initialize the ADC for this project
)

TRISA=0xFF; //set PORTA as inputs

ffeonfigure ADCON1

//Right Justify

//32T0SC

//unimplemented

//eonfigura AN 0-4 to be ADCS

ADCON1-=0b10000000;
]

void main(veid) |

(0
(1)
(000000)

(]
(o)
(1)
()
(0000}

(1)
({0 10)
(oo
(0010}

long int IIRmx;//x*1000 and filtered to reduce jitter
leng int IIRmy;//y*1000 and filtered to reduce jitter

long int x; //temporary variable for x
long int y; //temporary variable for y

long int lastX:;//the slew limiter needs to know last output

leng int lastY;

unsigned int i;//temporary iterator

unsigned long int width;//the color mode is used to set these

unsigned long int height;

char colorMode;//store the color mode to detect changes and send new one

int R;//read in color values
int G;
int B;

chaxr color;//concatenated color byte

TRISB-0xFF; //set PORTB as inputs
INTCONZbits.REPU 0;//pull up port b pins

TRISD-0xFF; //set PORTD as inputs

ADinit()://initialize SFRs to access ADCs
SPIinit();//initialize SFRs to access SPls

while(1) |
if ((PORTB&0bO0000011) |=colorMode)
|//detected a color mode change
colorMode= (PORTBA0bO00O0D0011) ;

/fupdate color mode on PIC and FPGA
writeChar (0x59) ; //changa color mode
writeChar (colorMede); //write colorMode

if(colorMode==0) //update widths and heights co compute x and y

2

14

¥:42009-2010\ESketch\Working ESketch_5 Dec 2009 1930pm\PICSoftware 6 12 09\main.c

{
width-CMOOW;
height -CMOOH;
t
if (colorMode==1)
[
width=CMO1W;
height=CMO1H;
|
if (colorMode~~2)
[
width=CM10W;
height-CM10H;

|
if (colorMode - 3)
l
width -CM11W;
height-CM11H;
!

x =~ get AN V(UseADO);//read x and y

x = {x*width)>>10; //then scale to writable range
Yy = get AN V(UseAD4);

y =(y* (height))>>10;

last¥=y;//initialize slew rate limiting filter
lastX-x;

IIRmy-y*1000;//initialize the infinite impulse response filter
TIRmx=x*1000;

writeChar (0x45);//fill screen with
writeChar(color);//dialed in color
]

if (!PORTAbits.RAd) //if someone presses the shake button
i
writeChar (0x45);//fill screen with
writeChar(color);//dialed in color
I

if (PORTBbits.RB3) //if the flash button isn't held, read in a color
|
R = (get AN V(UseADl)>>2)s0b11100000;
G = (get_AN_V(UseAD2)>>5)&0b00011100;
B = (get AN _V(UseAD3)>>8)40b00000011;
color = RIG|B;//concatenate the colors
]
else
color++;/fotherwise flash the color

® get AN _V(UseADO);//read and scale x and y
®x = (x*width) >>10;

y - get AN V(UseAD4);

y =(y* theight))>>10;

TIRmx IIRmx * IIRRem + x * IIRGain;//apply the IIR low pass filter
IIRmy IIRmy * IIRRem + y * IIRGain://it has a fixed precision at 1000x

x = IIRmx*0.001;//scale value back to writable range
y = IIRmy*0.001;

if (PORTDbits .RDT==0) //if the overflow flag is low
{
if(lastY<y)//allow the pixel to move one step
{last¥+i;}
if(lastY>y)
{last¥--;}
if (lastX<x)
{lastX++; |

¥:42009-2010\ESketch\Working ESketch_5 Dec 2009 1930pm\PICSoftware 6 12 09\main.c

else if(lastX>x)
{lastX--;|

writeChar (0x50) ;//pixel put instr

writeChar (lastX>>8);//MSBs X
writeChar (lastX); //1SBs

writeChar (lastY>>8);//MSBs
writeChar (lastY); //LSBs

3

writeChar (colar) ; f/all the colors

16

Appendix B Verilog FPGA code

VGAGraphicsManager.v Fri Dec 11 05:29:36 2009

1 ‘timescale 1ns / lps
2 PEEEELEELTETEILEEET IR R0 P PP i i ddddiddiiididditridddrititrisddiditiiiridy
3 // Designers: William Koven and Drew Macrae
4 // Contact: william.koven@gmail.com drewmacraelgmail.com
5 // Create Date: 15:36:14 11/22/2009
6 // Module Name: VGAGraphicsManager
7 // Project Name: uPs final project
8 // Target Devices: XILINX SPARTAN XC35400
] // Description: This project leverages the Spartan's high speed parallel nature
10 // to manage acceleration and maintnance of draws to a VGA monitor
11 r
12 // Revision:
13 // Revisien 0.01 - File Created
14 // Revision 0.02 - Done flashing screen, beginning to update based on PIC data
15 // Revision 0.03 - Draws, in need of optimization
16 // Revision 0.04 - Full color draw works well. moving on to other modes
17 // Revision 0.05 - December 6, 2009 no known issues
18 LELELLELLLL LR LR L L LA ET L B LT TR EE L LS BT L E LB LT T
18 module VGAGraphicsManager(input SPIClk,
20 input SPID,
21 input Reset,
22 output Ready,
23 output VGAClk,
24 output HSync, //VGA Outputs
25 output VSync,
28 output [2:0] R,
27 output [2:0] G,
28 output [2:0] B,
29 output [7:0] DLED, //Debug LED's
30 input PICClk,
31 input IOReset);
32
33 wire CLKFB;//throwaway feedback signal for DCM
34 wire Waiting:;
35
36 wire Valid; //it's safe to read parallelized data from PIC
37 wire [7:0] ParD; //parallelized data from the PIC
38
39 wire [15:0] XCoordinate; //Current X Coordinate of the cursor
40 wire [15:0] YCoordinate; //Current Y Coordinate of the cursor
41 wire [7:0] cColor; //Current color of the cursor
42 wire [2:0] ColorMode;
43 wire DDGo, CSGo,RDGo; //Dot Draw Go, Clear Go, Rectangle Draw Go
44
45 wire BuffFull; //whether the dot draw buffer is full
48
47 wire [15:0] XNext, YNext; // Next X and Y coordinate being drawn to screen
48 wire DrawDot, DotEnable; // Dot request and dot enable signals
49 wire ScolidReq, SclidEnable; // Solid draw request and solid enable
50 wire RectReq, RectEnable; // Rect draw and request
51 wire [15:0] UpperX, UpperY, LowerX, LowerY;
52 wire [7:0] BusCeclor;
53 reg [3:0] Counter;
54
55 wire [15:0] XScan, Y¥YScan; //The current position of the VGA scan line
56 wire [7:0] DrawRegq; //The bus holding requests for the ColorBus
57
58
58 wire [7:0] Enable; //The bus holding enable lines for the ColorBus
60
61 wire [7:0] oQutCeolor; //The color being drawn out teo the VGA cont
Page 1

17

VGAGraphicsManager.v

62
€3
64
65
686
&7
68
69

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
1z0
121
122

Fri Dec 11 05:29:36 2009
wire writ;

VGAClockGen vgaclock(PICClk,Reset,VGAClk,CLKFB);//25MHz PixelClock for VGA

SPIPar spipar(SPIClk, IOReset,SPID,Ready,Valid, ParD);

//this command interpreter will be a state machine that interprets SPI Data
ComInt comint (VGAClk,ICReset,Valid,ParD,Waiting,XCoordinate, YCoordinate,

Color, ColorMode, DDGo, C5Go, RDGo) ;

//These give debug information on the LEDs

//assign DLEDI[0] = DDGo;
//assign DLED[1] = CSGe;
//assign DLED[3] = RDGo;

//assign DLED[6:4] = ColorMode;

//if we want to debug the databus we can monitor it
//assign DLED[6:0] = ParD[6:0];

//if we want to debug position we can monitor the bits that change often
//assign DLED([3:0) = XCoordinate[3:0];
//assign DLED[6:4] = YCoordinate[2:0];

//this LED lights when the buffer is full
assign DLED[7] = BuffFull;

assign SolidColor = Color;

assign RectColor = Color;
assign UpperX = XCoordinate;
assign LowerX = 16'h00a0;
assign UpperY = ¥YCoordinate;
assign LowerY = 16'h0078;

//this is graphical accelerator draws dots when

//commanded by the interpreter

DotDraw dotdraw (VGAClk,Reset, XCoordinate, YCoordinate,ColorMode,Color, DDGo,
XMNext,¥YNext, DrawDot, DotEnable, BusColor,BuffFull);

//this fills the screen when commanded by the interpreter
SclidColor solid(VGAClk,Reset,SclidEnable,Color, SolidReq, BusColor,CSGo,VSync)

// NOTE: Rectange Draw works, however it is currently unused in the project
RectangleDraw rect (VGAClk,Reset,UpperX,UpperY, Lower¥, LowerY, XNext, YNext,
Coleor,RectEnable, RDGo, RectReq, RDReady, BusColor) ;

assign DrawRegq = {5'b0,RectReq, SolidReq, DrawDot};
assign {RectEnable,SclidEnable,DotEnable} = Enable[2:0];

//control the memory and the pointer for the scanline and the peripherals
MemCont memcont (VGAClk,Reset,BusColor,ColorMode, DrawReqg, XNext, YNext, XScan,
¥Scan,Enable,QutColor,writ) ;

//controls the VGA port based on scanlines from MemCont
//and data passed by memory controller
VGACont vgacont (VGAClk,Reset,OutColor,XScan, ¥Scan,HSynec,VSyne,R,G,B,writ);

endmodule

module ComInt(input VGAClk, Reset, WValid,

input [7:0] ParD,
cutput Waiting,

Page 2

18

~ VGAGraphicsManager.v

123
124
125
126
127
128
129
130
131
132
132
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

output reg [15:0] XCoordinate, YCoordinate,
ocutput reg [7:0] OutcCeolor,
cutput reg [2:0] ColorMode,
cutput reg DDGo,
cutput reg CSGo,
cutput reg RDGo):

reg [7:0] Color;

reg [7:0] State;

wire SyncValid;

wire SyncValidLast;

wire VEdge;

FlopR vsynchronizer (VGAClk, Reset, Valid, SyncValid):;//Syncronize valid bit
FlopR vdelay(VGAClk, Reset, SyncValid,SyncValidLast);//delay wvalid one more

assign VEdge = SyncValid&~SyncValidlLast; //indicate data is valid and new
assign Waiting = State == 8'h00;//Waiting says that writes will be in frame

always@(*)

begin
case (ColorMode [1:0]) //remix and zero fill colors
2'b00:0utColor={7'b0,Coloxr[7]}: //2 color is 0000_000W
2'b0l:0utColor={6'b0,Color[7:6]1}: //4 coler is 0000_00WW
2'bl0:0utColor={4'b0,Color(7],Color(4:3],Color[1])};//16 " " O000_RGGE
2'bll:0utColor=Color; //256 color is RRRG_GGBB
endcase
end

always@ (posedge VGAClk, posedge Reset)

begin
if (Reset)
begin
State <= 8'b0; //make sure all flops are resettable
ColorMode <= 3'b0;
Color <= §'b0;

¥Coordinate <= 16'b0;
YCoordinate <= 16'b0;
end
else
begin
case (State) //this is an FSM for reading commands from shift register
8'h00: begin //0riginal state is waiting for data

DDGe <= 1'b0; //clear out either of the bits triggerring a draw
CsSGo <= 1'b0;
if (VEdge) //if there is new walid data:
begin
case (ParD)
8'h59: State <= 8'h0l; //trigger a color mode change
8'h50: State <= 8'h02; //trigger a dot draw
8'h45: State <= 8'h07; //clear or overwrite entire screen
default: State <= 8'h00;//igncre anything else

endcase
end
else
State<=8'h00; //state only changes if new data
end
8'h01:begin //ColorMode change state
if (VEdge) f//if new data read it in as the color mode

Fri Dec 11 05:29:36 2009

Page 3

19

VGAGraphicsManager.v
184
185
186
187
188
189
150
191
182
193
194
195
156
197
198
198
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

Fri Dec 11 05:29:36 2009

begin
State <= 8'h00;
ColorMode <= ParD[2:0];
end
else
State<=8'h01l; //otherwise wait
end
8'h02:begin //DotDraw first state
if (VEdge) //read first byte of new data as upper x address
begin

State<=8'h03;
XCoordinate[15:8]<=ParD;
end
else
State<=8'h02; //otherwise wait
end

8'h03:begin //DotDraw second state
if (VEdge) //read second byte of new data as lower x address
begin
State<=8'h04;
XCoordinate[7:0]<=ParD;
end
else
State<=8'h03; //otherwise wait
end

8'h04:begin //DotDraw third state
if(VEdge) //read third byte of new data as upper y address
begin
State<=8'h05;
YCoordinate[15:8]<=ParD;
end
else
State<=8'h04; //otherwise wait
end

8'h05:begin //DotDraw fourth state
if (VEdge) //read fourth byte of new data as the lower y address
begin
State<=8'h06;
YCoordinate[7:0]<=ParD;
end
else
State<=8'h05; //otherwise wait
end

8'h06:begin //DotDraw fifth state
if (VEdge) //read fifth byte as the color
begin
State <= B8'h00;
Coclor <= ParD;
DDGo <= 1'bl; //then raise a flag to run a dot draw
end
else
State<=8'h06; //otherwise wait
end

8'h07:begin //clear screen state
if (VEdge) //read first byte as color and tell clearscreen to go

Page 4

20

VGAGraphicsManager.v

245
246
247
248
249
250
251
252
253
254
255
2586
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
2786
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
3035

begin
State <= 8'h00;
Color <= ParD;
CSGo <= 1'bl;
end
else
State<=8'h07; //if no new data wait
end

default: State<=8'h00;//it shouldnt ever get here

endcase
end
end
endmodule

//1 store data from the SPI
module SPIPar(input SPIClk,Reset,
input SPID,
ocutput Ready,
output Valid,
output [7:0] ParD);

Wire [7:0] SREGOut;
wire [2:0] bitCount;

assign Ready = bitCount == 0;//this raises a flag saying data is in frame
assign Valid = (bitCount > 1) & (bitCount < 4);
//the above comparisons say data is safe to read

SRegBR sreg(SPIClk, Reset, SPID, SREGOut)://collects data from SPI

//stores parallel data when ready
Reg8enR regout (SPIClk,Reset,Ready, SREGOut, ParD);

//counts B clockedges to know when to enable above reg
Count3b counter (SPIClk,Reset,bitCount);
endmodule

//structural resettable flop
module FlopR(input Clk, Reset, D,
output reg Q};
always@ {posedge Clk, posedge Reset)
begin
if (Reset)
Q<=1'b0;
else
Q<=D;
end
endmodule

//I count to B
module Count3b(input Clk, Reset,
output reg [2:0] Q)
always@ (posedge Clk, posedge Reset)
begin
if (Reset)
Q<=3"b0;
else
Q<=Q+1;

Page 5

Fri Dec 11 05:29:36 2009

21

VGAGraphicsManager.v

306
307
308
309
310
311
312
313
314
315
31le
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

end
endmodule

Fri Dec 11 05:29:36

//I store D and shift Q whenever I see a rising edge of Clk

module SRegB8R(input

Clk,

Reset,D,

output reg [7:0] Q):
always@ (posedge Clk, posedge Reset)

begin
if (Reset)
Q <= 7'b0;
else
Q <= {Q[6:0],D};
end
endmodule

//I store D whenever I see En and the rising edge of a clock
module Reg8enR(input Clk, Reset, En,
[7:0] D,
output reg [7:0] Q):
always@ {posedge Clk, posedge Reset)

input

begin
if (Reset)
Q <= 7'b0;
else
if (En)
Q <= D;
end
endmodule

l,uft
* A Dot Draw module
*/
module DotDraw (input
input
input
input
input
input

reg
reg
reg
reg
wire
wire
reg

that can hold up to 10 draw reguests at a time.

VGAClk, Reset,
[15:0] XCoordinate, YCoordinate,
ColorMode,

[7:0]
DDGo,

Color,

[15:0] XNext, YNext,
cutput DrawDot,

input DotEnable,

cutput [7:0] BusColor,
output buffFull);

[89:0] XCoords;
[89:0] YCoords:
[79:0] cCeolors;

[9:0]
[9:0]
[9:0]
[9:0]

Unwritten;
StillUnwritten;
WriteReguest;
Writing;

//if second to last dot hasn't been drawn predict that full soon
Unwritten[1];

assign buffFull =

// See if any dot module wants to draw
assign WriteRequest =

{

(XNext == XCoords[B:0] & ¥YNext == YCoords[8:0]},
(XNext == XCoords[17:9] & YNext == YCoords[17:9]),
(XNext == XCoords[26:18] & YNext == YCoords[26:18]),

(XNext == XCoords[35:27] & YNext == YCoords([35:27]),

2009

Page 6

22

VGAGraphicsManager.v

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
380
391
392
393
394
395
396
397
398
399
400
401
402
403
404
4035
4086
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

Fri Dec 11 05:29:36 2009

{XNext XCoords[44:36] & YNext == YCoords[44:36]),
(XNext XCoords[53:45] & YNext == ¥YCoords[53:45]),
(XNext XCoords[62:54] & YNext == YCoords[62:54]),
(XNext XCoords[71:63] & YNext == YCoords[71:63]),
(XNext XCoords[B80:72] & YNext == YCoords[80:72]),
(¥Next == XCoords[89:81] & YNext == ¥YCoords[B89:81])

bi

//1If any dot module wants to draw, request the ColorBus
assign DrawDot = ~(WriteRequest==10'b0);

assign StillUnwritten = Unwritten&~Writing;

always@ (posedge VGAClk, posedge Reset)

begin
if (Reset)
begin
XCoords <= 50'b0;
YCoords <= 90'b0;
Colors <= 80'b0;
Unwritten <= 10'b0;
Writing <= 10'b0;
end
else
begin
Writing <= WriteRegquest;
// if told to draw, shift all the draws down one dot module
if (DDGo)
begin
XCoords <= [XCoordinate[8:0],XCoords[89:9]}:;
YCoords <= {YCoordinate[8:0],Y¥Coords[89:9]};
Colors <= ([Color([7:0],Colors[79:8]};
Unwritten <= {1'bl,StillUnwritten[9:1]};
end
// otherwise keep the values until they're drawn
else
Unwritten <= StillUnwritten;
end
end

//use the Writing signal to use the right color to drive color bus
assign BusColor = ~(DotEnable) ? 8'bzzzz zzzz :
Writing[9] ? Colors([79:72]:

Writing([8] ? Colors[71:64]:
Writing[7] ? Colors([63:56]:
Writing[&] ? Colors([55:48]:
Writing[5] ? Colors([47:40]:
Writing[4] ? Colors[39:32]:
Writing[3] ? Colors([31:24]:
Writing[2] ? Colors([23:16]:
Writing([l] ? Colors([15:8]:
Writing([0] ? Colors[7:0]: 8'bzzzz_zzzZz ;

endmodule

‘,.ft

* Draws a solid coleor as long as it's teld to.
* Should be changed just draw the screen a solid color.
*f

module SolidColor(input VGAClk, Reset,

Page 7

23

~ VGAGraphicsManager.v

428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488

input SolidEnable,
input [7:0] Colorin,
output SolidReq,
output ([7:0] BusCelor,
input Go,

input Vsyne);

reg [7:0] DrawColor;
reg [1:0] State;

//if there's a request to draw a solid ceoler

assign SolidReq = ~(State == 2'b00);
assign BusColor = (SolidEnable) ? DrawColor : B'bzzzz_zzzz;
always@ (posedge VGAClk,
begin
if (Reset)
begin
State <= 2'b01;
DrawCelor <= 8'b0;

posedge Reset)

//on reset do a draw
//clear DrawColor

end
else
begin //this state machine tracks whether whole screen has bee
case (State)
2'b00:
begin
if (Go)
begin
State <= 2'b01; //wait
DrawColor <= CelorlIn; e
end
end
2'b01: State <= ~Vsync ? 2'bl0 : 2'b01l;

2'bl0: State <= Vsync ? 2'bll : 2'b10; //I've seen on
2'bll: State <= ~Vsync ? 2'b00 : 2'bll;//Im locking for se
endcase
end
end
endmodule

*

Will draw a rectange specified by the given upper left hand corner
and the lower right hand corner. Each instance of the module can on
* draw one rectangle at a time. The Ready signal goes high when the

* module can take another rectangle input.

o'l
module RectangleDraw(input VGAClk, Reset,
input [15:0] UpperX,
input [15:0] LowerX, LowerY,
input [15:0] XNext, YNext,
input [7:0] RectColoer,
input RectEnable,
input Go,
output RectReq,
output reg Ready,
output [7:0] BusColor);:

*

UpperY,

reg SeenFirst, Seenlast; //Checks to see if the full rectangle was

Fri Dec 11 05:29:37 2009

n printed

ing state
his ceolor

//I'm drawing

e negedge
cond edge

ly

drawn

Page 8

24

VGAGraphicsManager.v

489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
518
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546€
547
548
549

Fri Dec 11 05:29:37

// Registers to keep hold start values until the rectange is drawn
reg GoReg;

reqg [7:0] ColorReg;

reg [15:0] UpperXReg, UpperYReg, LowerXReg, LowerYReg;

reg [15:0] LastUpperX, LastUpper¥Y, LastLowerX, LastLowerY;

always@ (posedge VGAClk, posedge Reset)
begin
if (Reset)
begin
GoReg <= 1'b0;
SeenFirst <= 1'b0;
SeenLast <= 1'b0;
UpperXReg <= 16'b0;
UpperYReg <= 16'b0;
LowerXReg <= 16'b0;
LowerYReg <= 16'b0;
Ready <= 1'bl;
ColorReg <= 8'b0;
end
else
begin
//Enabled on ready registers
if (Ready) //If ready, take new values
begin
UpperkXReg <= UpperX;
Upper¥YReg <= UpperY;
LowerXReg <= LowerX;
LowerYReg <= LowerY;
ColorReg <= RectColor:;
end
// Keep drawing for a full frame and guarranty that the entire
// rectangle gets drawn. Enabled on !Go registers
if (GoReq)
begin
Ready <= 1'b0;
if (XNext == UpperXReg & YNext
SeenFirst <= 1'bl;
else
SeenFirst <= SeenFirst:
if (¥Next == LowerXReg & YNext
Seenlast <= 1'bl;
else
SeenlLast <= Seenlast;

I}
i

UpperYReqg)

[}
)

LowerYReqg)

if (SeenFirst & Seenlast)
GoReg <= 1'b0;
end
//Otherwise look for new values for go and set Ready
//and reset SeenFirst and SeenLlast.
else
begin
GoReg <= Go;
Ready <= 1'bl;
SeenFirst <= 1'b0;
SeenLast <= 1'b0;
end
end
end

assign RectReq = (XNext > UpperXReg &

2009

Page 9

25

VGAGraphicsManager.v

Fri Dec 11 05:29:37 2009

550
551
552
553
554
555
556

558

€606
607
€08
€09
610

XNext < LowerXReg &
¥YNext > Upper¥YReg &
YNext < LowerYReg & GoReg);
assign BusColor = (RectEnable) ? ColorReg : 8'bzzzz_zzzz;

endmodule

J,nft

* The Memory Controller module. This module manages memory operations
* and sends output colors to the VGA controller.
* it also outputs the X and Y coordinates for upcoming draws

*/
module MemCont (input VGAClk,
input [7:0]
input [1:0]
input [7:0]

Reset,
BusColor,
CelorMode,
DrawReq,

output reg [15:0] XOut,YOut,
output reg [15:0] XScan,¥Scan,
cutput [7:0] Enable,

output [7:0]
input writ);

wire [7:0] MemOut;
wire [7:0] MemWriteBack:
reg [7:0] MemNow:

//Scan values adjusted for first writable position to be at 0

QutColor,

// The next memory value

// The current memory value

//There is a one cycle delay on the memory values, so there
//is cne pipeline stage going into the memory, another just
//after the memory, and a final stage where all values are
//current for the pixel about to be written. Y values

//are constant

{and change during porches) so Y scan location

//does not need as much pipeline.
wire [15:0] XScanMemlIn,¥YScanMemIn;
reg [7:0] XScanMemOut;

reg [15:0] XScanNow,YScanNow;

//The three stages of memory address as taken from (X,¥)Scan

wire [14:0] MemAddrIn;
reg [14:0] MemAddrOut;
reg [14:0] MemAddrNow;

//Memory Write Enable

wire MemWE;

//Either holds the MemWriteBack values for the current memory

//byte or the next memory value
wire [7:0] TempMemVal;

//Holds the current bus ceolor
reg [7:0] BusColorNow;

// A register to keep last cycles requests for selMaskSig to
// decide whether to use the mem location or the CurBusColor

reg [7:0] EnableNow;

//Holds either the current memory color value
//or the BusColor value
wire [7:0] Color2Mask;

// The value to be written to memory

Page 10

26

~ VGAGraphicsManager.v

611
€12
€13
614
€15
€16
617
618
€19
620
€621
622
623
624
625
626
627
628
629
€30
631

633
634
635
636
637
638
639
&40
641
642
643
644
645
646
647

653

670
671

Fri Dec 11 05:29:37 2009

//The current color from memory based on color mode
reg [7:0] MemColorNow;

//The write back and color wvalues for the different colore modes
wire [7:0] MemWBl, MemWB2, MemWB4;
wire [7:0] Colorl, Color2, Color4d;

PR R et e R e

BEGIN ASSIGNMENTS AND SUB-MODULES

e sk e s sk o e e e ok ok e ok e e ok ok e ok ok ke e e ke kb e ok e ke ok ke ok ke ek e Rk ek ok ke ke

// The X and Y Scan for memory addressing
// adjust to make top left corner 0,0
assign XScanMemIn = XScan - 136;

assign ¥ScanMemIn = ¥Scan - 28;

assign MemAddrIn = [YScanMemIn([8:2],XScanMemIn[9:2]};

//1f the current memory address is different from the address

//beign read, then MemNow should take next memory value,

//otherwise it should take the updated memory byte

assign TempMemVal = (MemAddroOut != MemAddrNow) ? MemOut : MemWriteBack;

//1f the current memory address is different from the address
//beign read, then write back the updated memory byte
assign MemWE = (MemAddroOut != MemAddrMNow) & writ;

//An 8bx32786 dual ported RAM, not big enough for VGA

//but big enough for something close

VideoMem videomem (VGAClk,MemWriteBack,MemAddrNow, MemWE,
VGAClk, MemAddrIn,MemoOut) ;

//Construct the appropriate MemoryColorNow depending on the color Mode
always@ (*)
begin
case (ColorMode)
2'b00:case({XScanNow([1l],¥ScanNow([1:0]})
3'b000:MemColorNow <= {7'b0,MemNow([0]}
3'b001:MemColorNow <= {7'b0,MemNow([1]}
3'b010:MemColorNow <= {7'b0,Memiow[2]}
3'b01l:MemColorNow <= {7'b0,MemNow([3]};
3'b100:MemColorNow <= (7'b0,MemNow([4]}
3'bl0l:MemColorNow <= {7'b0,MemNow[5]}
3'bl10:MemColorNow <= {7'b0,MemNow([&]}
3'blll:MemColorNow <= (7'b0,MemNow[7]}
endcase
2'b0l:case({XScanNow([l],¥ScanNow[1]})
2'b00:MemColorNow <= {6'b0,MemNow([1:0]}
2'b01l:MemColorNow <= {6'b0,MemNow([3:2]}
2'bl0:MemColorNow <= {&6'b0,MemNow[5:4]}
2'bll:MemColorNow <= {&6'b0,MemNow([7:6]}
endcase
2'bl0:case (¥YScanNow[1l])
1'b0:MemColorNow <= {4'b0,MemNow[3:0]};
1'bl:MemColorNow <= {4'b0,MemNow([7:4]1};
endcase
2'bll:MemColorNow <= MemNow;
endcase
end

.
;
;

.

Page 11

27

_ VGAGraphicsManager.v

672
€73
€74
875
€76
677
678
€79
&80
681
€82
683
€84
685
6886
687
688
689
890
€91
€92
693
694
695
€96
697
€98
699
700
701
702
703
704
705
7086
707
708
709
710
711
712
713
714
715
716
17
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732

Fri Dec 11 05:29:37 2009

//If the ColorBus was enabled, take the BusColor,

//otherwise select the MemNowColor to mask and output

Muxl 8 selMaskSig (MemColorNow, BusColorNow,
({|EnableNow) != 1'b0),ColorZMask);

//Add a stage of pipeline and output the enable signals
//for the given draw requests using a priority decoder
ColorBusEnable selectPeripheral (VGAClk,Reset,DrawReq,Enable);

//Combinaticnal logic that outputs the current color

//to the VGA contreoller and the modified byte to write back to

//the memory for each color mode

ColorMasklb masklb (MemNow,ColorZMask, XScanNew([1],
YScanNow[1:0],MemWB1,Colorl);

ColorMask2b maskZb (MemNow, Color2Mask, XScanNow([1],Y¥ScanNow([1], MemWB2, Color2);

ColorMask4b maskd4b (MemNow,ColorZMask, YScanNow[1l] ,MemWB4,Colord);

//select the correct color and write back values depending on ColorMode
Mux2_8 selectWB(MemWBl, MemWBE2,MemiWB4,Color2Mask, ColorMode, MemWriteBack);
Mux2 8 selectC(Colorl,ColorZ,Colord,Color2Mask,ColorMede,OutColor);

//Combinaticnal logic that assigns the X and Y output coordinates
//of the next pixel depending on the color mode
always@(*)
begin
case (ColorMode)
2'bll:begin
// Xout is between 0 and 160
Xout = (XScan > 136) ? {8'b0,XScanMemIn([9:2]} : 16'b0;
// ¥Yout is between 0 and 120
YOout = (¥Scan > 27) ? {9'b0,¥ScanMemIn([&:2]} : 16'b0;
end
2'bl0:begin
// Xout is between 0 and 160
Xout = (XScan > 136) ? {8'b0,XScanMemIn([9:2]} : 16'b0;
// ¥Yout is between 0 and 240
Yout = (¥Scan > 27) ? {8'b0,Y¥ScanMemIn[8:1]} : 16'b0;
end
2'b0l:begin
// Xout is between 0 and 320
XOout = (XScan > 136) ? {7'b0,XScanMemIn[9:1]} : 1l&'b0;
// Yout is between 0 and 240
YOout = (¥Scan > 27) ? {8'bO0,¥ScanMemIn[8:1]} : 16'b0O;
end
2'b00:begin
// ¥Xout is between 0 and 320
XOout = (XScan > 136) ? {7'b0,XScanMemIn([9:1]} : 16'b0;
// Yout is between 0 and 480
Yout = (¥YScan > 27) ? {7'b0,¥ScanMemIn[8:0]} : 16'b0O;
end
endcase
end

// Resetable Registers
always@ (posedge VGAClk, posedge Reset)

begin
if (Reset)
begin
//reset state of memCont
MemNow <= B8'b0;
MemAddrout <= 8'b0;

Page 12

28

VGAGraphicsManager.v

Fri Dec 11 05:29:37 2009

733 MemAddrNow <= 15'b0;

734 XScanMemOut <= 8'b0;

735 XScanNow <= 16'b0;

736 YScanNow <= 16'b0;

737 XScan <= 16'b0;

738 YScan <= 1&6'b0;

739 BusColorNow <= 8'b0;

740 EnableNow <= 8'b0;

741 end

742 else

743 begin

744 //Clk edge, registers get new values
745 MemAddrout <= MemAddrIn;

746 MemiddrNow <= MemAddrOut;

747

748 MemNow <= TempMemVal;

749

750 EnableMow <= Enable;

751

752 XScanMemOut <= XScanMemIn;

753 XScanNow <= XScanMemOut;

754 YScanNow <= YScanMemIn;

755

756 BusColorNow <= BusColor;

757

758

759 f*kk****k****k****k****l**i*k****i****l****i****
760 Manage Scan Lines for VGA Controller

761 e vk e o sk ok ki ik ke o ke o o ok o ok ok ok o ik ke ek ke kS

762 if (¥XScan < B00)

763 XScan <= XScan+l;
764 else

765 begin

766 XScan <= 0:

767 if (YScan < 525)
768 YScan <= YScan+l;
769 else

770 begin

771 ¥Scan <= 0;

772 end

773 end

774 end

775 end

776 endmodule

7717

178 module Mux3_1(input [7:0] D,
779 input [2:0] Sel,
780 cutput reg Q);
781 //3 select lines and 1 output bit
782 always@ (*)

783 begin

784 case (Sel)

785 3'b000:Q<=D[0]:

786 3'b001:Q<=D[1]:

787 3'b010:Q<=D[2];

788 3'b011:Q<=D[3];

789 3'bl00:Q<=D[4];

790 3'bl01:Q<=D[5];

791 3'b110:Q<=D[6];

792 3'b1l11:Q<=D[7];

793 endcase

Page 13

29

VGAGraphicsManager.v Fri Dec 11 05:29:37 2009

794 end

795 endmodule

796

797 //2 select lines and 2 ocutput bits
748 module Mux2_ 2(input [7:0] D,
799 input [1:0] Sel,
800 output reg [1:0]1Q);
801

802 always@(*)

803 begin

804 case (Sel)

805 2'b00:0<=D[1:0];

806 2'b01:Q<=D[3:2]:

807 2'bl0:Q<=D[5:4];

808 2'b11:Q<=D[7:6];

809 endcase

810 end

811 endmodule

812

813 //1 select line and 4 output bits
814 module Muxl_4(input ([7:0] D,
815 input Sel,

8l6 output reg [3:0]Q);
817

818 always@(*)

819 begin

820 case (Sel)

821 1'b0:Q<=D[3:0];

822 1'bl:0<=D[7:4];

823 endcase

824 end

825 endmodule

826

827 /f1 select line and 8 output bits
828 module Muxl_8(input [7:0] DO,
829 input [7:0] D1,
830 input Sel,

831 output reg [(7:0] Q);
832

833 always@ (*)

834 begin

835 case (Sel)

836 1'b0:0<=D0;

837 1'bl:Q<=D1;

838 endcase

839 end

840 endmodule

841

842 //2 select lines and & output bits
843 module Mux2_8(input [7:0] DO,
844 input [7:0] D1,
845 input [7:0] D2,
846 input [7:0] D3,
847 input [1:0] Sel,
848 output reg [7:0] Q)
849

850 always@(*)

851 begin

852 case (Sel)

853 2'b00:Q<=D0;

854 2'b01:Q<=D1;

Page 14

~ VGAGraphicsManager.v

855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
ggs
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
204
205
906
907
08
908
910
911
912
913
914
9135

Fri Dec 11 05:29:37

2'b10:0<=D2;
2'bl11:Q<=D3;
endcase
end
endmodule

‘I."
* Takes the draw requests and outputs the appropriate
* enable signals using a priority decoder to give
* enable the highest priority reguest.
v/
module ColorBusEnable (input VGAClk, Reset,
input [7:0] DrawReq,
output reg [7:0] Enable);:

always@ (posedge VGAClk, posedge Reset)

begin
if (Reset)
Enable <= 8'h00;
else
begin
casez (DrawReq)
8'bl?2?_2?72: Enable <= 8'h80;
8'b017?7?_%277??: Enable <= 8'h40;
8'b001?_?7?7?7?: Enable <= 8'h20;
8'p0001_7???: Enable <= 8'hl0;
8'b0000_1%77?: Enable <= 8'h08;
8'b0000_0177: Enable <= 8'h04;
8'p0000_001?: Enable <= 8'h02;
8'p0000_0001: Enable <= 8'h01l;
default: Enable <= 8'h00;
endcase
end
end
endmodule
/ /Wordmap

//Wiord is broken down 4 different ways.

//feach word represents a 4x4 grid of monitor pixels
//that can be further broken down to

//2%x1 tinyPixels,

//2%2 littlePixels,

//4x2 mediumPixels,

/for left as 4x4 largePixels

module ColorMasklb(input [7:0] MCByte,
input [7:0] CByte,
input xPos,
input [1:0] yPos,
output reg(7:0] DatWe,
output [7:0] DatcC):

wire OutSig;
//select the appropriate signal to output
assign OutSig = CByte[O0];

//Mux3_1 outSelMux(CByte, {xPos,yPos},OutSig);

//mix to Black White

2009

Page 15

31

VGAGraphicsManager.v

916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
240
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976

Fri Dec 11 05:29:37 2009

assign DatC = (OutSig,OutSig,OutsSig,OutSig,0OutsSig,OutsSig,OutSig,Cutsig}:

always@(*)
begin
case ({xPos,yPos}) //mask and shift to reconstruct memory word
3'b000:DatWB<={MCByte[7:1],0utSig};
3'b001:DatWB<={MCByte[7:2],0utSig,MCByte[0]};
3'b010:DatWB<={MCByte([7:3],0utSig,MCByte[1:0]}
3'b011:DatWB<={MCByte[7:4],0utsSig, MCByte[2:0]}
3'b100:DatWB<={MCByte[7:5],0uts8ig, MCByte[3:0]}
3'bl0l:DatWB<={MCByte[7:6],0utSig,MCByte[4:0]}
3'bl10:DatWB<={MCByte[7],0utsSig,MCByte([5:0]};
3'blll:DatWB<={0OutSig,MCByte([6:0]};
endcase
end
endmodule

module ColorMask2b(input [7:0] MCByte,
input [7:0] CByte,
input xPos,
input yPos,
output reg [7:0] DatWB,
ocutput [7:0] DatcC);

wire [1:0] Outsig;
//Mux2_ 2 outSelMux(CByte, {xPos,yPos},OutSig);

//select appropriate output
assign OutSig = CByte[1:0];

//grayScale output
assign DatC = {OutSig,Outsig(l],0utsig,OutsSig[l],cutsig}:;

always@ (*)
begin
case ({xPos,yPos})//mask and shift to reconstruct memory word
2'b00:DatWB<={MCByte[7:2],0utSig};
2'b0l:DatWB<={MCByte[7:4],0utsSig,MCByte[1:0]};
2'bl0:DatWB<={MCByte[7:6],0utsig,MCByte[3:0]};
2'bll:DatWB<={0OutSig, MCByte[5:0]};
endcase
end
endmodule

module ColorMask4b(input [7:0] MCBEyte,
input [7:0] CByte,
input yPos,
output reg[7:0] DatwWB,
output [7:0] DatcC);

wire [3:0] outsSig:;
//select appropriate output
assign OutSig = CByte[3:0];
//Muxl_ 4 outSelMux (CByte,yPos,0utSig);
//4bColor out 1'bR,2'bG,1'bB

assign DatC = {OutSig[3],0utSig[3],0utsSig[3],0utsig(2:1],0utsig(l],
Qutsig([0],0utsig[0]}:

Page 16

32

VGAGraphicsManager.v Fri Dec 11 05:29:37 2009

977

978 always@ (*)

978 begin

980 case (yPos) //mask and shift to reconstruct memory word
981 1'b0:DatWB<={MCByte[7:4],0utsig};

1:3) 1'bl:DatWB<={OutSig, MCByte[3:0]};:

983 endcase

984 end

985 endmodule

986

8e7 //Note that no masking or writeback reconstruction is required for 8b'Ceolor
988

989 module VGACont (input VGAClk,

990 input Reset,

9581 input [7:0] Color,

292 input [15:0] XNext, YNext,

993 ocutput reg HSync, VSync,

994 output reg [2:0] R, G, B,

985 ocutput writ):

996

997 wire [2:0] writable;

998

999 //are we in the writable area?

1000 assign writable[0]) = (XNext > 137) & (XNext < 778) &
1001 (YNext > 27) & (YNext < 508);
1002 assign writable[l] = writable[0];

1003 assign writable[2] = writable([l];

1004 assign writ = writable[0];

1005

10086 always@ (posedge VGAClk, posedge Reset)

1007 begin

1008 if (Reset)

1009 begin//reset the state

1010 HSynec <= 1'b0:

1011 Vsync <= 1'b0;

1012 R <= 3'b0;

1013 G <= 3'b0;

1014 B <= 3'b0;

1013 end

1016 else

1017 begin

1018 HSync <= ~(XNext < 96);//negative polarity syncs.
1019 VsSync <= ~(YNext < 2);

1020 R <= Color([7:5]&writable;//make our porches and such.
1021 G <= Color[4:2]&writable;

1022 B <= {Color[l:0],Color[l]}&writable;//using Colorl will make blues brigh
1023 end

1024 end

1025 endmodule

1026

Page 17

33

Appendix C Top Level of Graphics Controller

L
7l [
[ue
P L 171
[y > n
iy sy - lgh o
[hopsn “ IO e
1 BPI§ 3E - SN
k
W -+
lepopies
JWostlaw “1 yoopeda
i/
Tty S 1t)| \gug“ = N6 W
[NS0 W
malAa R ey il BN
i (0203613 et i
ARIPop . R LT et
- By VAR
1, n L i)
)] ,MESEOS_
n) B [y et Jedds

(i Jopnan .

1o 03 iRy (1102 e F_S_@g U5 1ds
R ngg L barar e by Ay ,»fw@
— 0(#(o . i A5

49I | e v | ey
(a0 W, IEdids
- S i3]
2 90
KA Hvn | i
HRq Q malgafumay (9]
<l

34

Appendix D Memory Controller Timing Diagram

s 2 ATV VA 8 Ygeal

"IV T XXXk XK o M A

v LR i

L0 XTS5 X X X XXX XXX W <)) 73

TTTT KT X

e e e e,

;,.MItw\uwvA W75 TN T T _\@\u il

2 BTN PRGN PSP E NG

argew) VAEIUJ% MVA

\u@u_{.VAﬁM o7 3o jgg o 14

IR XTI IR X T T T IR OGRS SR o I SIS SOX, W A

(AoPP N TAFFY X8 TPPE K TV TPEE X XXX SOOI #0opo~1w

L.a \\%sx

N 7 4

L T7PFT XA PPV X T

TFA X AT K

V7 0A X ITN S X Ko SC KSR XX WY oW

\Q%‘\Q\Jx il s X

Trop N N VQAVA{\V«VA\V/\V\V& K01

A X

VXXX KKK XK KSIXXK " X

I X2 X

A VA..}I..lI al!.:ivVA\/mM ¥ \\VM;/PAVAVA S oI

Figure 5: Timing diagram for signals moving through the Memory Controller. Signal names are

as specified by the Verilog file in Appendix B.

35

	Abstract
	Introduction
	Timing
	Signal Specifications
	Draw Instructions
	1. Dot Draw
	2. Clear Screen
	3. Change Color Mode
	4. No-Op

	Overflow Warning Flag
	VGA DAC for the Spartan 3
	User Interface

	Schematic of constructed circuits
	Microcontroller design
	Controls
	Serial interface
	Mediating User Input
	Interfacing with the FPGA
	Behavior

	PIC Helper functions
	WriteChar(char Data)
	SPIinit()

	FPGA Design
	SPI Receiver
	Command Interpreter
	Memory controller
	VGA controller
	Acceleration modules

	Results
	References
	Extra Parts List
	Future Work
	Web publishing
	Extending Drawing Modes
	Rectangle Draws
	Text Draws
	Read Pixel
	Line Draws

	Further Color Modes
	Double Buffering
	Color Pallet

	Appendix A PIC Microcontroller code
	Appendix D Memory Controller Timing Diagram

