Robot Psychiatrist

Alex Grammar and lan Jimenez
E155 Final Project Report
12/11/2009

Abstract

This project attempted to build a robot physiologist with the goal of being able to respond based
on the user input. This input would be transferred to the Harris board via Bluetooth. The robot
was to be made of wood and would use servos to actuate arms in relation to the responses that
the robot makes. It also has LED lights which blink in accordance with the current phrase that is
being played. Unfortunately, the text parser which was created was unable to recognize words
correctly and so the robot failed to respond based on inputs from the user. Currently the robot is
only able to follow a predetermined conversation tree. With a minimal of effort it is possible to
create repair the text parser and to allow the robot to make decisions based on the string provided
by the user.



Introduction

Many toys today are interactive. They respond to user input in an entertaining manner. These
toys have many features, but intractability, flashing lights and movement are common in many of
them. The team has developed a simple toy; a psychologist robot that talks with the user and
helps work out any problems they are having in life. Its body is designed to be humorous, with
twig arms, to illicit a connection with the user. User text is entered into a computer and the robot
responds with speech, light and movement.

The system contains five major subsystems; Speech chip, Bluetooth link, PIC microcontroller,
device hardware and an FPGA (Figure 1: System OverviewFigure 1). The PIC microcontroller
handles communication with the computer interface, the speak jet, and the FPGA. The
BLUESMIiRF module allows text information to pass form computer to PIC. Speech is
generated by the speech chip and amplified by an audio amplification chip. Lastly the servos and
LEDs are driven by the FPGA.

SpeaklJet ———————————Speech Bytes=——————

—> PIC

User Text

BLUESMIRF 1 |

STATE

Device Hardware

LEDs e C ON 1’0 | § sy FPGA e
Servos

Speaking Status
Figure 1: System Overview

The PIC is central to the operation of the device. It steps through the various operational states of
the robot. The PIC also collects user text over a Bluetooth serial link, and transmits speech
control bytes over the USART. After collecting text, the internal text parser determines the
appropriate response. Finally, the PIC communicates its operational state to the FPGA to
coordinate the flashing LEDs and servo motion.



The LED’s are powered by a single output pin of the FPGA. The FPGA the negative side of the
diode is tied to ground and the other tied to the output pin. This allowed for the simple
manipulation of the lights state with a single on/off bit.

The Speech chip generates the voice of the robot. A byte stream is fed into the speech chip which
then generates the vocalizations. Each phrase is stored in the PIC and the chip will enunciate on
byte arrival. The chip also communicates to the FPGA when it is speaking. This is done to time
lock the speaking with the flashing LEDs.

New Hardware

To create a talking robot, we needed to be able to synthesize the voice. This is done through the
use of a MAGNEVATION speakijet chip'. The chip is supplied by +5v and outputs a modulated
square wave. The chip is capable of producing a broad range of sounds as well as varying pitch,
speed and volume.

Communication occurs over a serial link and runs at a 9.6k baud rate. The chip is capable of
auto-detecting a baud rate by being placed in that mode and receiving 0x55 over the serial link.
As bytes sent to the chip are not enunciated before the next byte arrives, the chip has an internal
64 byte buffer. It is capable of running preprogrammed phrases with external triggers, but that
aspect was not used in this design.

EF =
RCI/ET gy P vOut
RCO/E6[| g [ DO/Ready
EST] @ [ D1/Speaking
Eall @ | D2/ Buffer Half Ful
Gndll & P v+
(=
E3 [ @J 1 MO
E20 oo [ M1
E1L %“] Rst
Eol 7 f RCX

Figure 2: Speakjet pin configuration

Servos

We used VEX servos with a carrier frequency of 18.5ms and have a dead band of 1.47ms to
1.55ms. The length of the pulse would determine the position of the servos at that point in time.
If the pulse is Ims long it would move to the full down position and if 2ms to the full up

! http://www.magnevation.com/pdfs/speakjetusermanual.pdf




position. The servos were very simple to work with and should be recommended for any projects
which are need of simple motor.

Schematics
10uF
l
Lm386
Gain  Gain
<)7 V- Bps —X +5v
SpeakJet V+ Vee j
10pF
RC1 Out .01uF
RCO DO —X
E5 D1 \<7 390Q
E4 D2 —X +5v
GND Vce
E3 MO ——
CST —  t5v o
E2 M1
El Rt Vce Vce PIC
Gnd > ———Gnd
£ RCX — Tx [RCD)
Rx
RST —-
RC6
N
Servo
+5v
D T 8
Gnd
PORTD
Vce A
Sig P1 LEDs
390Q 390Q
o> P25 > Speaking
Servo
v
Gnd D P112 RESET
Vce
Sig P127]  Servo
+5v
S

—

Figure 3: Total System Schematic



FPGA Design

In this project we chose to utilize the FPGA as a storage device to hold large blocks of ROM
which would be hold the values required to flash the lights based on the current phrase that was
being spoken by the robot. The robot was built to take in an 8 bit value from the PIC and then
find the location within the memory block that held the values which were associated with the
phrase that was currently being spoken. The servo’s which moved the arms of the robot were
move depending on if the speech chip indicated if it was currently talking or not. The movement
of the arms would be up when the speaking pin was high and would be placed down otherwise.

The main function of the FPGA was as the storage device of if the lights were going to be
flashing or not. In an effort to save space and make it easier to code the large block of memory
which was required we slowed the clock speed down from 20MHz to one cycle for every tenth
of a second. This allowed us to use a smaller amount of space on the FPGA since the LED’s
value was refreshed at such a low rate. We did this with a 22-bit counter which functions to slow
the clock to the desired speed since the rest of the control circuit for the LED’s used the most
significant bit of the clock. The counter was reset every time that the most significant bit when
high to insure that we always got the same period. Although the period was not exactly one
tenth of a second it allowed us to avoid large blocks of logic to determine if the counter which
slowed the clock was at an exact value and for the purpose of flashing the LED’s the accuracy
was sufficient.

One of the major issue of trying to pass specific patterns of lights on the LED’s was the fact that
the speech chip we were using held the words in a buffer before saying them and so the current
outgoing bit from the PIC for the most part had no relation to the word that was currently being
said. So we attempted to synchronize the words based upon the amount of time that the
documentation claimed that each sound took to say. Unfortunately, these values appeared to be
off. After many attempts it was impossible to figure out why the time calculated from the stat
sheet was different than the value which was recorded when one timed a phrase. We instead
decided to time all the phrases which our robot said and this allowed for us to implement a
system that could provide unique flash patterns for each phrase. The FPGA was also supposed to
implement a hold function based on the values stored within the memory block. This was
removed due in part the unreliability of the system and the fact that by timing the phrase and
programming the flashes a similar look was achieved.

The block which controls the LED’s is made of three main components. The first module the,
pntmem block serves to translate the incoming values from the PIC. The second module,
mempnt, holds and increments the pointer based on the slowed clock speed but can also accept
an incoming pointer values and replace the current pointer value with that. The final block, led0,



checks if the speech chip is speaking and based on that reads LED value to the output from the
ROM block, which holds the LED’s status.

The first block functions by storing the pointer addresses in a ROM block which essentially
translates the PIC data into pointers. A second module compares the current value to the
pervious value and if it is different it flags the set bit making the value from the pointer ROM file
the new pointer. The original idea was to implement a second such system for the control of the
arms but due to time constraints we were unable to implement this.

The second block is constructed to allow for a settable program counter. A basic counter was
going to be used originally but I found that having a settable flip-flop made it much easier to deal
with the controls which were required and it would be much harder to try and take the standard
counter block and change to being settable.

The final block was the most time consume due in large part to the fact that the block with the
LED memory was generated from a large case structure which spanned almost 256 values.
Throughout the project we attempted to find a more efficient way of creating the ROM file but a
case structure seemed to be just as effective as any other method looked at. The basic code only
took a few minutes but to check different light patterns in software took a long time.

The control system that runs the PWM was very similar to the system that ran the LED.
Although it lacked the implementation of the memory system it would have been able to had one
added extremely quickly but concerns about the amount of memory it would take to store a value
of each cycle stopped this from being implemented. Instead the arms were tied to the speaking
pin which when high moves the arms to the highest position and when low to the lowest position.

We used VEX servos with a carrier frequency of 18.5ms and have a dead band of 1.47ms to
1.55ms. The length of the pulse would determine the position of the servos at that point in time.
If the pulse is 1ms long it would move to the full down position and if 2ms to the full up
position. The servos were very simple to work with and should be recommended for any projects
which are need of simple motor.

PIC

The PIC drives the robot through a series of subroutines that step through a conversation with the
user. Our device has an initial startup routine and then runs the chat program. The chat program
runs on a finite state machine that first acquires a string from the user, parses it for key words
and determines a proper response from the user. Also controlled by the PIC are the phrases used
to generate speech.

The startup routine enables the PIC for USART communication. Port C is used for serial
communication and was configured for both input and output. Initially the USART is configured



for a 115.2k baud rate. This is to communicate with the BLUEMIiRF Bluetooth module. The last
function of the startup routine is to call talkProgram and start the interaction routine.

The first step in the communication routine is to get a string from the user. This is done in two

steps. First, the PIC calls getChar which waits until the byte receive complete flag is thrown. The
contents of the RX receive register are returned. This function is called by the getString function
repeatedly. Characters are collected and stored in inputBuffer until the user sends an enter stroke.

After collecting a string, the array has a space character added to the end. This is to help the
parser. Stepping through the string a temporary array, word, is assembled from the cahrecters
between spaces. Each word is then compared to several key words using strcmp. Strcmp returns
a 0 if there is a match between the two strings passed to it. The word is then checked against a
list of keywords. The keywords are geared towards positive and negative emotions tied to the
sentence, giving a word a polarity. A word is also checked if it is “not” as that shifts the polarity
of the following word. A word with a positive or negative polarity increments a counter for that

type.

This process allows the user to interact with the robot over a serial link. The chat program
comprises this acquisition process, as well as a directed dialogue tree. Each phrase is pre-stored
as a char array in the PIC with the length of the array stored as the first byte. sayPhrase takes in a
character corresponding to the phrase needed to be said. The function runs a for loop that sends
out each character through printf. The most important aspect of sayPhrase is the multiplexing of
the USART. Bluetooth needs 115.2k while the speechjet runs at 9.6k. SPBRG needs to be
changed that the start and end of the function. The baud rate of the chip can be changed, but for
convenience it was simpler to change rates on the PIC side. The last part of sayPhrase is to
output which phrase is being said to PORTD. The phrase is labeled with char and can be written
to a port. This port is connected to the FPGA to flash the lights.

Lastly the PIC uses these routines to step through the chat program. The chat function is called
and the greeting message is played. The function loops until an exit flag is thrown. The finite
state machine first acquires a string from the user, parses it if needed and then steps through a
dialogue tree. This tree controls which phrase is played and if user input is needed. When it
reaches the end of the tree, the exit flag is thrown and the program exits.

Results

The robot had minor success. The Bluetooth, servos, flashing LEDS and speech chip
function as specified in the proposal. Currently, the problem lies in generating a proper response
to the user input. The issue has been traced down to the string compare functions running in the
text parser. Matching strings are not being recognized and the robot is only responding with a
neutral statement. This indicates that the polarity counters are not being incremented
appropriately. In terms of the humor factor, the robot was well received



Parts List

Servos................ 0%
Harris Board......... 08
Speaklet.............. 0$
Audio Amplifier....0$
BLUESMIRF........ 0%



Appendix

compareltoc_8s
clk —=————=— ck

reset ————=— reset set —=——Jset
s5igin[7:0] _ m—“— sigin[7-0]
servocompare
_ rom :
Bl A[7:0]  DOUT[7:0] -m-@m:::-
setv_1[7:0]

Figure 1: This is module compares the current value to last value and if it is different it loads the
value from ROM file which stores the pointer value. If the value is new it sets set high

speaking g

0]
LEDmem ledhold
PI[7-0] e p{7:0]
LEDmems IedhOId

Figure 2: memled: This holds the ROM file which contains the status of the light at any point.
The mux insures that light is only active when the robot is speaking.



ot
R
hold } L
un1_hold pnt12  DI7:0]  Q[7:0] ety T —
R
[reset
t_4[7:0] )
[setv[7:0] - pnt[7:0]
o
+ NE
uni_pnt[7:0]

Figure 3: pnt: This block controls the storage and movement of memory pointer of the system

reset = ‘ counter_20s
CIONOINICINIIN00R . — —=— clk Servocompare
< \ | = rosel ount] 19 |—m1_ﬂ—.....:|-...!
13 '_‘ ] — ar 5 190 — --!.-—-—|€.ﬁfm__'-'-
f.lh"l' resetpwm btk
pwmcounter
pwmetrl
servoposition
speakng = kg eomparayiiihy 1 31)
pwmvalues

Figure 4: servocontrol: Block of the servo control module which controlled the position of the
arms.

| count[19:0]

compare[19:0]

Figure 5: servocompare: Check the stored value of compare versus the current count of the PWM
counter.



sigdecode

i

speaking ——————=— speaking
i = =— clk
reset =— reset LED —=——jJLED —=
— e S 70 - )
Sigin[7 0] o= sigin[7-0]
LEDctrl
servocontrol
—=— clk
T reset SErVo —s—————senvo =

—=— speaking

servoctrl

Figure 6: main: This is main level of the program which splits the incoming data and use the two
streams to control the level of the arms and the status of the LED lights.



'1JO 10 U0 JaYI8 S,d3 ] aY1 JO 81e1s ay) S|04IU09
UOIYM anjeA 11g auo e sindino pue Jaquuinu 11g § Ue Ul Sayel SIYL 90]g [01U0d a3 8yl J0J d1rewsyds 1Y 8yl st siyl :T ainbi4

q_ T
ypduusiy aposapps| = [0 Juibts
ln:2} L Irll e - bz HRp=]
Ip-2l=s = WEsal
. 2 ——— LS — o
- = ! jas I . - |.m|F lo-zzhunos | |-_|-IA | = |
L2 Ly W —— — =
SC7 IBIN0I
_ = Bupye=as |




PIC code:

//Alex Grammar '10

//Ian Jimenez '11

//HMC E155 final project
//Dr. Woodborg. Talking robot

//includes

#include <p18f4520.h>
#tinclude <stdio.h>
#include <stdlib.h>
#include <string.h>

//hello

char

phrase@[ ]={0x20,0xB7,0x9f,0x92,0xa4,0x01,0x9d,0x01,0x84,0x84,0x8C,0x01,0xaf,0
x88,0xc2,0xbf,0x97,0x01,0x93,0x8a,0xbl,0xab,0x98,0xb4,0x01,0xb8,0xa3,0x01,0x9
8,0x01,0xa0,0x01};

//that is not good

char
phrasel[]={0x11,0xA9,0x84,0xBF,0x01,0x81,0xA7,0x01,0x8D,0x88,0xBF,0x01,0xB3,0
x8A,0x8A,0xB1,0x01};

//tell me about your day

char

phrase2[ ]={0x14,0xBF,0x83,0x92,0x01,0x8C,0x80,0x80,0x01,0x86,0xAD,0xA3,0xBF,0
x01,0x80,0x99,0x01,0xAE,0x9A,0x9A,0x01};

//that sounds great

char
phrase3[]={0x11,0xA9,0x84,0xBF,0x01,0xBB,0xA3,0x8E,0xB1,0xBB,0xBB,0x01,0xB3,0
x94,0x9A,0xBF,0x01};

//that sounds rough

char
phrase5[]={0x10,0xA9,0x84,0xBF,0x01,0xBB,0xA3,0x8E,0xB1,0xBB,0xBB,0x01,0x94,0
x86,0xBA,0x01};

//lets talk about your parents

char

phrase7[ ]={0x1A,0x91,0x83,0xBF,0xBB,0x01,0xBF,0x88,0xC5,0x01,0x86,0xAD,0xA3,0
xBF,0x01,0x80,0x99,0x01,0xC2,0x84,0x94,0x83,0x8D,0xBF ,0xBB,0x01};

//ok have a good day

char

phrase8[ ]={0x15,0x89,0xB8,0xC2,0x9A,0x01,0xB7,0x84,0xA6,0x01,0x9A,0x80,0x01,0
xB3,0x8A,0x8A,0xB1,0x01,0xAE,0x9A,0x01};

//how did that make you feel

char

phrase9[ ]={0x15,0xB8,0xA3,0x01,0xAE,0x83,0x01,0xA9,0x84,0xBF,0x8C,0x9A,0xC4,0
x01,0xA0,0x01,0xBA,0x80,0x92,0x01};

//how was micro-ps

char

phrasel@[ ]={0x13,0xB8,0xA3,0x93,0x86,0xA7,0x01,0x8C,0x9B,0xC2,0x94,0x89,0x8B,
0x01,0xC6,0x80,0x80,0xBB,0x01};



//what was your favorite machine

char

phrasel1[]={0x19,0xB9,0x88,0xBF ,0x01,0x93,0x86,0xA7,0x01,0x80,0x99,0x01,0xBA,
Ox9A,0xA6,0x94,0x81,0xBF,0x01,0x8C,0x86,0xBD,0x80,0x8D,0x01};

//1 see

char phrasel2[]={0x07,0x9D,0x01,0xBB,0xBB,0x80,0x80,0x01};

//Function Prototypes
void sayPhrase(char);
void parseText(void);
void talkProgram(void);
void getString(void);
void nextState(void);
char getchar (void);

char word [10]; //Individual word buffer

char wordInputIndex=0x00; //Word input buffer index

char currentState=0x00; //Current state of the tlak program
char inputBuffer [64]; // USART input buffer

char inputIndex=0x00; //USART input buffer pointer

char inputByte=0x00; //Input byte holder

char outputByte=0x00; //Output byte holder

char i=0x00; //For loop incrementer

char byteToSay=0x00; //Byte being feed to speechchip
int notFlag=0; //flag indicating a not qualifyier
int exitGame=0; //exit game flag

int positive=0; //positive word counts

int negative=0; //negative word counts

int polarity=0; //polarity of a sentence

int repeatCount=0; //times repeated

#pragma code /* return to the default code section */

char getchar (void) {
// Gets the value inputed on the keyboard
// over the serial port
while (PIR1lbits.RCIF == @){} // Waits for ready flag
PIR1bits.RCIF = 0; // Resets flag
return RCREG; // Returns value

}

//This function gets a string from user input only when input is needed
void getString(void){

inputByte=0x00;

inputIndex=0x00;//Clear input byte holder and pointers

//If the device is in state 1,4,6,8,10,12, do not get user input

if((currentState==0x01) | | (currentState==0x04) || (currentState==0x06) | | (curren



tState==0x08) | | (currentState==0x0A) | | (currentState==0x0C)){
}
//otherwise, get bytes from the user until enter is received.
else{
while(inputByte!=0x0D){
inputByte=getchar(); //get a charecter
inputBuffer[inputIndex++]=inputByte;// store a charecter
}
inputBuffer[inputIndex++]=0x20;// Add a space to the end for the
parser
}
}

void main (void){

TRISC = 0b10000REV;//Config for PortC (PORTC [7] in, PORT [6] out)
TXSTA = 0x24; //enable TX with standard USART options

RCSTA = 0x90; // enable RX

SPBRG = 10; // set baud rate to 115.2k for the bluesmirf

PORTD =0x00; //Set PORTD to 0x00
talkProgram();//Start the talking function

//This is the talking program. It iterates through each of the different
steps
//of the interaction.
void talkProgram(void){
sayPhrase(currentState); //Say the greeting
while(exitGame==0){ //While the interation is not over

getString(); //Get a string from the user

parseText(); //Parse the string for an appropriate response

nextState(); //Determine the next state and communicate with the
user

}

while(1){ //When the game is over, loop forever

}

}

void nextState(void){
if(currentState==0x00){ //First Greeting state
currentState=0x01; //next state is how was micro-ps
//This block determines which response to give the user based on

input
if(positive>negative){
sayPhrase(0x03); //respond with great
}
else if(positive<negative){
sayPhrase(0x01); //respond with not good

}



else {

sayPhrase(0x0eC); //respond with neutral i see
}
}
else if(currentState==0x01){ //Ask how was micro-ps state
currentState=0x03; //next state is favorite machine
sayPhrase(0x0A); //respond with micro-ps inqury
}
else if(currentState==0x03){ //respond to user input again state
currentState=0x04; //next is askin what favorite machine is
if(positive>negative){
sayPhrase(0x03); //respond with great
}
else if(positive<negative){
sayPhrase(0x05); //respond with sounds rough
}
else {
sayPhrase(0x0eC); // respond with I see
}
}
else if(currentState==0x04){ //ask what favorite machine is state
currentState=0x05; // next is saying that sounds great
sayPhrase(0x0B); //ask for favorite machine
}
else if(currentState==0x05){ //tell user that sounds great state
currentState=0x06; //next is asking about parents
sayPhrase(0x03); //say that sounds great
}
else if(currentState==0x06){// ask about parents state
currentState=0x07; //next is a polarity response
sayPhrase(0x07); //ask about parents
}
else if(currentState==0x07){ //polarity response state
currentState=0x08; //next is ask how that makes you feel
if(positive>negative){
sayPhrase(0x03); //respond with sounds great
}
else if(positive<negative){
sayPhrase(0x01); //respond with not good

}



}

else {
sayPhrase(0x0eC); //1 see

}

else if(currentState==0x08){ //ask user how they feel state

}

currentState=0x09; //next is polarity response
sayPhrase(0x09); //ask about how that made them feel

else if(currentState==0x09){//polarity response state

}

currentState=0x0A; //next is ask about day state
if(positive>negative){
sayPhrase(0xeC); //say I see if positive
}
else if(positive<negative){
sayPhrase(0x05); //say that is rough if negative
}
else {
sayPhrase(0x03); // say that is great if neutral
}

else if(currentState==0x0A){ //ask about how users day was state

currentState=0x0B; //next state is polarity response
sayPhrase(0x02); //ask about users day

else if(currentState==0x0B){ //polarity respons states

}

currentState=0x0C; //next state is exit state
if(positive>negative){

sayPhrase(0x03); //if positive, respond with that is great
¥
else if(positive<negative){

sayPhrase(0xeC); //if negative, respond with i see
¥
else {

sayPhrase(0x05); //respond with that is rough.

}

else if(currentState==0x0C){ //exit state

sayPhrase(0x08); //play goodbye message
exitGame=1; //set exit game flag



void parseText(void){
positive=0; //reset positive word counter
negative=0; //reset negative word counter
wordInputIndex=0x00; //reset word buffer
for(i=0;i<inputIndex;i++){ //for the length of the string
inputByte=inputBuffer[i]; //pull a charecter
if(inputByte==0x20){ //If the charecter is a space
word[wordInputIndex++]=0x00;
if(word=="goodbye "){ //if the word is goodbye, exit the program
currentState=0x0C;
}
else if(word=="not"){//if the word is not, set the not qualifyer
flag
notFlag=1;

else
if((currentState==0x00) | | (currentState==0x03) || (currentState==0x04)){// if we
are in states 0,3,4

if(!(strcmp("good
",word) | |strcmp("ok",word)||strcmp(word, "great")||strcmp(word, "fine")||strcmp
(word, "happy"))){ //if the word is a positive word
if (notFlag==0){ //and the not flag isnt set
positive=positive+1l;// increment the positive word

counter
}
else{ //if the not flag is set
negative=negative+l;//increment the negative word
counter
notFlag=0;// reset the not flag
}

}

//This does the same thing as positive words, but does
increments the negative word counter
else
if(!(strcmp(word, "bad")||strcmp(word,"sad")||strcmp(word, "mad") | |strcmp(word,
"terrible"))){
if (notFlag==0){
negative=negative+1;

}

else{
positive=positive+1;
notFlag=0;



}
//default: do nothing

else{}
}
//after handling a word, reset the word buffer
wordInputIndex=0x00;
¥
//if the charecter is a legal letter, store it to the word buffer
else if((inputByte>=0x21)||(inputByte<=0x7E)){
word[wordInputIndex++]=inputBuffer[i];

}

//This code block communicates with the speakjet. Depending on the char fed
to it
//The device reads one of the phrase arrays and sends it to the speakjet.
//The block then resets the USART for bluetooth communication.
void sayPhrase(char phrase) {
SPBRG = 129; //Set baud rate to 9.6k
TRISD = 0x00; //clear output state
if(phrase==0x00){//if the prase to say is 0x@0, set portd to ©x00 play
phrase 0
PORTD=0x00;
for(i=0x01;i<phraseo[0];i++){
printf("%c",phraseo[i]);
}
}

//else if its 1 do the same as for © but with phrase 1, and so on.

else if(phrase==0x01){
PORTD=0x01;
for(i=0x01;i<phrasel[0];i++){
printf("%c",phrasel[i]);
}

}

else if(phrase==0x02){
PORTD=0x02;
for(i=0x01;i<phrase2[0];i++){
printf("%c",phrase2[i]);
}

}

else if(phrase==0x03){
PORTD=0x03;
for(i=0x01;i<phrase3[0];i++){
printf("%c",phrase3[i]);
}



else if(phrase==0x05){
PORTD=0x05;
for(i=0x01;i<phrase5[0];i++){
printf("%c",phrase5[i]);
}

}

else if(phrase==0x07){
PORTD=0x07;
for(i=0x01;i<phrase7[0];i++){
printf("%c",phrase7[i]);
¥

b

else if(phrase==0x08){
PORTD=0x08;
for(i=0x01;i<phrase8[0];i++){
printf("%c",phrase8[i]);
¥

b

else if(phrase==0x09){
PORTD=0x09;
for(i=0x01;i<phrase9[0];i++){
printf("%c",phrased[i]);
¥

b

else if(phrase==0x0A){
PORTD=0x0A;
for(i=0x01;i<phrasel0[0];i++){
printf("%c",phraselo[i]);
¥

¥

else if(phrase==0x0B){
PORTD=0x0B;
for(i=0x01;i<phrasell[0];i++){
printf("%c",phrasell[i]);
¥

b

else if(phrase==0x0C){
PORTD=0x0C;
for(i=0x01;i<phrasel2[0];i++){
printf("%c",phrasel2[i]);
¥

b

//default do nothing

else{

}
SPBRG = 10; // when finished, reset the baud rate to 115.2k



FPGA Code:

module main(
input [7:0] sigin,
input speaking, clk, reset,
output LED, servo

)5

sigdecode LEDctrl( sigin, speaking, clk, reset, LED );

servocontrol servoctrl( clk, rest, speaking, servo);
endmodule

module servocontrol(input clk, reset, speaking,
output servo);

parameter plusectrl = 20;
reg resetpwm;
wire [plusectrl-1:0] count,compare;

//Combinational Logic:
//To set the period of the entire wave
always @(*)
begin
if (reset) begin
resetpwm <=1;
end
else if (count > 20'd370000) begin
resetpwm <= 1;
end
else begin
resetpwm <=0;
end
end

// PWM counter
counter #(plusectrl) pwmcounter (clk, resetpwm, 1'bl,

count);
// Controls values
servoposition pwmvalues (speaking, compare);
servocompare pwmctrl ( count, compare, servo);
endmodule

module servocompare (input [19:0] count, compare,



output reg servo);

// This modules comapares the values from compare to count and sees
// if the wave should be high. If compare less than or == to count
// goes low on reset pulls wave to 1 agian

always @ ( * )
begin
if ( compare <= count)
servo <= 2'b0;
else
servo <= 2'b1l1;
end

endmodule

module servoposition (input speaking,

output reg [19:0]compare);
// While speaking his arms will raise to highest position
// Otherwise he moves them to lowest position

always @(*)
begin
if (speaking )
compare <= 20'd40000;
else
compare <= 20'd20000;
end
endmodule

module LEDmem ( input [7:0] pnt,
output reg value);

// mem block to control the period of time that each light is on
// should be used with .1 s
always @ ( * )

case( pnt )

// START PHRASE ©

8'h00: value <= 1'b0;
8'ho1l: value <= 1'bil;
8'h02: value <= 1'bo;
8'h03: value <= 1'bil;
8'ho4: value <= 1'bo;



8'ho3:
8'ho4:
8'ho5:
8'ho6:
8'ho7:
8'hes:
8'h09:
8'hoA:
8'hoB:
8'hocC:
8'heD:
8'hoE:
8'hoF:
8'hl0:
8'hil1l:
8'hl12:
8'h13:
8'hl4:
8'h15:
8'hl6:
8'hl17:
8'hl18:
8'h19:
8'hlA:
8'h1B:
8'hlcC:
8'h1D:
8'hlE:
8'hlF:
8'h20:
8'h21:
8'h22:
8'h23:
8'h24:
8'h25:
8'h26:
8'h27:
8'h28:
8'h29:
8'h2A:
8'h2B:
8'h2C:
8'h2D:
8'h2E:
8'h2F:
8'h30:

value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value

COoOCOoCOoOCOocCOoOC0o0C0C0o0000000Co0co0c0cCoco0o00c0c0c0c00cCO0cCco0oco0coco0oc0o00cOoO0c0c0co0O0cC0Cococ oo o
e e We Le Le Lo Be Lo Le Le Lo Lo We Lo Le Le Le Le Lo Le Lo Le Lo Lo

e we Wwe Vwe W

//End phrase ©
; //Start phrase 1

e e We We W We Ve we W Wwe Vwe o e

3
;//End Phrase 1
;//Start Phrase 2

PRPRRRPRRPRRPRRPRRRPRRPRRPRPRPRRPRRPRPRRPRRPRRPRRPRPRIEPPRPRRPRRPRPRPRREPRPRRPRIEPRPRRPRRPRRPRRPRRPRRPRRPRRRERRRPR
OCROROROOROOROOROOROROIOOROOIOROIOORROROOROOROOR O R
-

-



8'h31:
8'h32:
8'h33:
8'h34:
8'h35:
8'h36:
8'h37:
8'h38:
8'h39:
8'h3A:
8'h3B:
8'h3C:
8'h3D:
8'h3E:
8'h3F:
8'h41:
8'h42:
8'h43:
8'h44:
8'h45:
8'h46:
8'h47:
8'h48:
8'h49:
8'h4A:
8'h4B:
8'h4cC:
8'h4D:
8'h4E:
8'h4F:
8'h50:
8'h51:
8'h52:
8'h53:
8'h54:
8'h55:
8'h56:
8'h57:
8'h58:
8'h59:
8'h5A:
8'h5B:
8'h5C:
8'h5D:
8'h5E:
8'h5F:

value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value

O'D'O'D'CTUCTUCTO'D'O'D'O'D'CTUCTUCTO'D'E:D'O'D'CTUCTUCTUD'O'D'O'D’CTUCTUCTUD‘O’D’
-

PORPRORFRLROO®
-

e e Wwe Ve Wwe W Ve W we W e e We We Wwe Wwe W we Wwe W

PRPOOPRPRPORPRPROPRPROOROORPROR
-

J

0;//End phrase 2
1;//Start Phrase 3

(W)
. e

OrRrOoOFrRrOOS
e e Ve We Wwe Ve W We Wwe W

OFrRrORFRRFLO
-

* we

J
;//End Phrase 3
1;//Start Phrase 5

“e o e Wwe Vwe Wwe wo

PRPRRRPRPRPRRPRRPRRRPRRPRRPRRPRPRRPRRPRPRRPRRPRRPRPRPRIEPPRPRPRRPRRPRPRRPRPRRPRRPRPRIEPRPRRPRRPRRPRRPRREPRRPRRERRPRRREPR

e



8'h60:
8'h61l:
8'h62:
8'h63:
8'h64:
8'h65:
8'h66:
8'h67:
8'h68:
8'h69:
8'h6A:
8'h6B:
8'h6cC:
8'h6D:
8'h6E:
8'h6F:
8'h70:
8'h71:
8'h72:
8'h73:
8'h74:
8'h75:
8'h76:
8'h77:
8'h78:
8'h79:
8'h7A:
8'h7B:
8'h7C:
8'h7D:
8'h7E:
8'h7F:
8'h80:
8'h81:
8'h82:
8'h83:
8'h84:
8'h85:
8'h86:
8'h87:
8'h88:
8'h89:
8'h8A:
8'h8B:
8'h8C:
8'h8D:

value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value

O'D'O'D'CTUCTUCTO'D'O'D'O'D'CTUCTUCTO'D'%'D'O'D'CTUCTUCTUD'O'D'O'D’CTUCTUCTUD‘O’D’
-

ORrRrPRoOCOOROR R
-

e we Wwe Wwe wo e e Wwe Vwe o

POFRPROFRLROFRLROFLO
-

J

9;//End Phrase 5
1;//Start Phrase 7

OFRrOFRRFRPOFRLROOS
Ve Lo Le Lo e Lo Lo Lo e

(ool )
e e e

OFrRPrOO0OFRFRPOFRPROFRLRORLRO®
e Wwe We Ve We We Ve W Ve Ve W Ve We We W Ve Wwe W

;// Phrase 7 end
;// Phrase 8 start

-

PRPRRRPRRPRRPRRPRRRPRRPRPRRPRPRPRRPRRPRPRRPRPRRPRPEPRPRIEPPRPRPRRPRRPRPRRPRPRREPRRPRPRREPRPRRPRRPRRPRRPRREPRRPRREPRRPRRRPR

e



8'h8E:
8'h8F:
8'h90:
8'ho1l:
8'h92:
8'h93:
8'h94:
8'h95:
8'h96:
8'h97:
8'h98:
8'h99:
8'hoA:
8'h9B:
8'hocC:
8'h9D:
8'h9E:
8'h9F:
8'hAo9:
8'hAl:
8'hA2:
8'hA3:
8'hA4:
8'hA5:
8'hA6:
8'hA7:
8'hA8:
8'hA9:
8'hAA:
8'hAB:
8'hAC:
8'hAD:
8'hAE:
8'hAF:
8'hBo:
8'hB1:
8'hB2:
8'hB3:
8'hB4:
8'hB5:
8'hB6:
8'hB7:
8'hBS8:
8'hB9:
8'hBA:
8'hBB:

value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value

O'D'O'D'CTUCTUCTO'D'O'D'O'D'CTUCTUCTO'D'%'D'O'D'CTUCTUCTUD'O'D'O'D’CTUCTUCTUD‘O’D’
-

O o0 RrRrROR,RRFLROR
“e W

e Wwe Wwe Ve We W Wwe Wwe o e e Wwe W Wwe We Ve W We Wwe W

ProOoOOFROFROFLROFLROFRLROFROFRPROFRL O R
-

6 // Phrase 8 end
1;// Phrase 9 Start

(W)
. e

RPORORORRPRRORRPR
e e Wwe We Ve We we We Ve W We We We We Wwe we we W

//Phrase 9 end
//Start Phrase 10

RPRRRPRRRRRRRPRREPREPRERERERERERERRERRERRERRRPREBRERRERRRR

e



8'hBC:
8'hBD:
8'hBE:
8'hBF:
8'hCo:
8'hC1:
8'hC2:
8'hC3:
8'hC4:
8'hC5:
8'h(C6:
8'hC7:
8'h(C8:
8'hC9:
8'hCA:
8'hCB:
8'hCC:
8'hCD:
8'hCE:
8'hCF:
8'hDO:
8'hD1:
8'hD2:
8'hD3:
8'hD4:
8'hD5:
8'hD6:
8'hD7:
8'hD8:
8'hD9:
8'hDA:
8'hDB:
8'hDC:
8'hDD:
8'hDE:
8'hDF:
8'hEOQ:
8'hE1l:
8'hE2:
8'hE3:
8'hE4:
8'hE5:
8'hE6:
8'hE7:
8'hES:
8'hE9:

value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value

O'D'O'D'CTUCTUCTO'D'O'D'O'D'CTUCTUCTO'D'E:D'O'D'CTUCTUCTUD'O'D'O'D’CTUCTUCTUD‘O’D’
-

OFrRPrO0OFRPRORO®
-

RPORORORORRPRRRPLRROROR
e e Wwe We We We We We We Ve We We We we we we W

J

0;//End Phrase 10
1;//Start Phrase 11

(O]
e We

(ool )
« e e

PRRPRRPRRPRRPRORPRORROROR
we weo e Wwe We We Wwe We We Ve Ve we Ve Ve we Ve We Vwe We Wwe W

PRPRRRPRPRPRRPRRPRRRPRRPRRPRPRPRPRRPRRPRPRRPRPRRPRPRPRIEPPRPRPRRPPRPRERRPRRPRPRRPRRPRRPRRPRRPRRPRRERRRERRPRRRPR

e



8'hEA: value <= 1'b9;//End Phrase 11
8'hEB: value <= 1'b0;//Start Phrase 12
8'hEC: value <= 1'b1l;

8'hED: value <= 1'bo;

8'hEE: value <= 1'bl;

8'hEF: value <= 1'bo;

8'hFO: value <= 1'bo;

8'hF1l: value <= 1'bil;

8'hF2: value <= 1'b0;

8'hF3: value <= 1'bl;

8'hF4: value <= 1'bl;

8'hF5: value <= 1'b01;
8'hF6: value <= 1'b01;//End Phrase 12
default: value <= 1'bo;
endcase
endmodule

module flpr #(parameter bits =32) (input clk, reset, input [bits-1:0]
d,
output reg [bits-1:0] q);
// Standard async reset flop
always @(posedge clk, posedge reset)
if (reset) begin

q <=0;
end
else begin

q <= d;
end

endmodule

module counter #(parameter slow = 32)
// Standard Counter with reset
(input clk, reset, en,
output reg [slow-1:0] count);

always @ (posedge clk, posedge reset)
if (reset) count <= 8'b0;
else if (en)
count <= count +1;

endmodule
module flpre #(parameter bits =32)

(input clk,reset, en,
input [bits-1:0] d,



output reg [bits-1:0] q);

// Standard async reset flop with en
always @(posedge clk, posedge reset)
if (reset) begin

q <=0;
end
else if (en) begin
q <= d;
end

endmodule

module compareltoc #(parameter ctrl =32)
(input clk, reset,
input [ctrl-1:0] sigin,
output reg set);
// This compares the last value seen with the current value to
// detect change.
wire [7:0] sigholde;

//holds value of sigin for later compare
flpr #(ctrl) siginflpre ( clk, reset, sigin, sighold9);

always @ ( * ) begin
if (sigholde != sigin)
set =1'bl;
else
set = 1'b0;
end
endmodule

module mempnt #(parameter ctrl = 32) (input clk, reset, set, hold,
input [ctrl-1:0] setv,
output reg [ctrl-1:0] pnt);

// Stores the pointer for a memory block increments if ! hold

// Allows for the setting of the counter from an external source
// Expects a bit to indicate hold

// NOTE: Hold functionality tied to © because of issues

always @ (posedge clk, posedge reset)
if (reset)
pnt <= 8'b00000000;
else if (hold)



pnt <=pnt;
else if (set)

pnt <= setv;
else

pnt <= pnt +1;

endmodule

module sigdecode(

pnt);

input [7:0] sigin,
input speaking, clk, reset,
output LED);

// "slow" defines the number of bits avialabe to
// slow the provided clk down by set about

// giver period of .1 sec

parameter slow = 23;

// define the internal variable
wire [slow-1:0] count;

wire resetcnt, set;

wire ledhold;

wire [7:0] pnt, setv ;

// Generates clk with a period of .5 sec
counter #(slow) ledclk(clk, resetcnt, 1'bl, count);

// Decodes PIC inputs to pointer values
pntmem #(7) leddecode (count[slow-1], reset, sigin, set, setv);

// Holds PNT values
mempnt #(8) mempnth (count[slow-1], reset, set, 1'b0, setv,

// Translates pointer to memory values
ledo led_O(speaking, pnt, ledhold);

// used to release the LED change on only clk edges
flpr #(2) LEDflp(clk, reset, ledhold, LED);

// alows the counter to be reset by globle reset and overflow
assign resetcnt = (reset | count[slow-1]);

endmodule

module ledo



(input speaking, input [7:0] pnt,
output reg ledhold);
// Controls the output to LED
// The LED's should only be on if the docter is speaking
wire ctrl;

//Memory which stores desired values of LED's
LEDmem LEDmems ( pnt, ctrl);

always @ ( * ) begin
// if speaking pass the current value from memory
if (speaking)
ledhold <= ctrl;
// else leave the lights off
else
ledhold <= 1'b0;
end

endmodule



