Musical Shoes

Final Report
December 7, 2006

Nathaniel Schlossbergand John Parker

Abstract

To encourage toddlers to practice walking and devel op rhythm, the team developed a pair
of musical shoesto play a song, note-by-note on each step. Embedded pressure sensors
in the shoes provide data to a PIC microcontroller to determine when a shoe step has
occurred. At each step, the PIC outputs the next note of the song for a set duration to the
FPGA. The FPGA decodes the note and outputs an oscillating signal corresponding to
the note’ s frequency. The oscillating signal is passed through an audio amplifier before
reaching the speakers in the shoes; the shoe that steps plays the note. The system
successfully identifies a shoe step and plays the corresponding note greater than 95% of
thetime. The notes can be heard clearly in aquiet room at approximately 4 meters away.

Introduction
Following the trend of toys designed to help children grow and develop, the team has

designed a product to encourage toddlers to practice walking and devel op rhythm:
musical shoes. While wearing these shoes, users will be able to play music as they walk
or tap their feet. With each step, the shoes will play the next note in the song, so that the
user can hear cheerful music as s/he walks, while reinforcing rhythm. The user can
choose from among 4 different songs, in case one particular song gets too repetitive.

The entire device was constructed at Harvey Mudd College in the Fall of 2006. It
consists of apressure sensor and speaker in each shoe (2 in total), an audio amplifier, 2
toggle switches, and the Harrisboard PIC microcontroller and FPGA. A block diagram of

the entire system can be found in Figure 1.

Switches

2)

Pressure
2 2

__

Figure 1: System Block Diagram
The two toggle switches alow the user to select from 4 different songs, which are
encoded in the PIC. The pressure sensors act as resistors that change in value when the
user steps down. The pressure sensors are used in a voltage divider circuit that feeds into

an A/D port inthe PIC. The PIC reads the voltage from the pressure sensor. When it

recognizes arising edge in pressure, signifying a step, it serially sends the next encoded
note of the current song to the FPGA. The FPGA receives the encoded note and drives

the shoe speakersto oscillate at the necessary frequency. Before reaching the speakers,

the output runs through an audio amplifier to provide more power to the speakers than the

FPGA could by itself.

New Devices

Two Motorola MC31119P audio amps were used to amplify the signals from the FPGA
before they reached the speakers. As Figure 2 shows, the audio signal from the FPGA

board is fed into the “Audio input,” and the speakers are attached to V,,, andV,, .

PIN CONNECTIONS

5| 1) oo chip
Circuit (I: <Disa:|le

* = Optional
Ry =

Differential Gian=2x ——
i Rj This device contains 45 active transistors.

Figure 2: Differential Audio Amplifier Schematic M C34119P
The manufacturer’s schematic for the standardlayout of the low-power audio
amplifiers."

External Hardware

Asshown in Figure 3, the two sensors are connected in a pull- up network such that when
sufficient pressure occurs, the sensor resistance will decrease and the voltage at the input
channel will increase. Two PIC ports are used as digital inputs for the song switch values
(RA2, RA4). Thefigureillustrates that the FPGA has two output pins for the left (P5)

and right speaker (P6), and areset pin (P1). The FPGA is attached to an audio amplifier

to boost the power to speaker.
3.3V
Fressure
Sensar
[Right Shoe)
» FA0
8Q,. W

Te LeTl See

3.3V

Fressure
Sensor
(Left Shoe)

Gan = 2"Rf'F
sF | Audio

3.3v
F Armp 1 b Rl

Rf = 68KQ

Ri = 47KQ
33 =ong
T =zled
m
RAZ
8Q, . W 1KQ
T Rlghl Shee
33v
Sorg
1 =ieal
Gain = 2°RiFi 01 L pag
- 1KQ
sk — Audio .
— 'ﬂ"mp [-
F Lol e Feml——p 1
1 Speaker -
Rf =68KQ
[R5]
Ri = 47KQ Righl St

Spesker

Figure 3: External Hardware
The external hardware shoes the schematic of the external hardware for the musical
shoes. The audio amplifier was set with a differential gain of ~3. The speakers are
located within the outer heel padding on each shoe. The pressure sensors are
situated underneath the removable sole near the ball of the foot.

One sensor and one speaker is placed in each shoe, with their wires channel ed through
the shoe' s padding and out aside air-hole. The speakers draw up to 100 mW and have a

resistance of 8Q2. The amplifier outputs a voltage of VCC—;O7 , thismeans V. hasa

maximum of 3.8 V, so we conveniently used the 3.3V output from our board to power the

amplifier.

PI C Microprocessor

The PIC program, “MusicShoes.c,” was coded in C and compiled with MPLAB C18.1>*
The program outputs the next note of the selected song to the FPGA on each sensor press.
The notes are read from one of four arrays at each sensor trigger. Each array has two
eight-bit columns: the first stores the encoded note and the second storesiits play
duration. The arrays are stored in data memory, creating a limit of 127 notes per song (to
keep the size below the 256 byte page size). When the PIC reads a null (0x00) value for
the note, the song is restarted.

To determine when a shoe trigger occurs, the microprocessor converts two analog
signals from the shoe sensors to digital signals, using empirically determined threshold
values. Each of the sensors has atailored threshold due to small differences between the
shoe placements. The song is selected viatwo digitally input switches.

The program operates using two interrupts, one high priority for timer overflow,
and one low priority for A/D conversion completion. The sixteen-bit timer is set to run
for 16.67 ms (corresponding to 60 Hz polling) by presetting the timer register to OXFEBA
and using a scale factor of 1/256 at the 20 MHz external clock speed. Thetimer alows

the program to check the triggers status at 60 Hz, which debounces the triggers. The high

priority interrupt function updates the status of each shoe's present and previous pressure
to determine whether a shoe step has occurred. In addition, the high priority interrupt
function restarts the A/D process. The low priority interrupt function, called at the end of
each A/D completion, records the current value of the A/D register and restarts the A/D
process after switching the input channel.

The code for the PIC can be found in Appendix A. The PIC outputs the notes, via

SPI, to the FPGA with an encoding to designate the shoe speaker on which to play.

Note Encoding

Each musical note has its own distinct sound frequency. When a speaker isdriven to
oscillate high and low at a note’ s particular frequency, it will play that note. In order to
drive the speakers at the correct oscillation, the FPGA slows down itsinternal clock by
the necessary amount, running a counter to a certain period and oscillating the output bit
with each reset of the counter. The period is calculated from the 20 MHz clock speed,
divided by twice the frequency of the note (since one cycle consists of ahigh and low).
Freguencies and counter periods for each note can be found in Appendix C.

Most songs contain notes that span over multiple octaves. Our device plays notes
spanning over three octaves. Increasing the octave of a note corresponds to doubling its
frequency. Therefore, the FPGA encodes periods for the highest octave, and |eft-shifts if
necessary to multiply the note's period by two or four (to decrease the octave by one or
two).

There are twelve notes in an octave, which require 4 bits to express. Since typical

octavesin music begin with C (middle C beginning octave 4), the notes are encoded in

numbers 0000 (C) through 1011 (B). Any other 4-bit numbers (1100-1111) default to C.
Since there are three octaves, two bits describe the octave of the note. The lowest octave
(highest period) is encoded as 00, 01 corresponds to the middle octave, and 10 and 11
correspond to the high octave. Finally, one play bit encodes whether to play a note or to
rest, and one bit determines which shoe speaker to play (left or right). Thistotals 8-bits

of information, which made the serial port an easy medium to transfer note encodings.

FPGA

The FPGA accepts the 8-bit note encoding from the PIC and oscillates the speakers at the
corresponding frequency. It consists of four main modules: a seria-to-parallel shift
register, a note decoder, octave |eft-shifters and multiplexer, and a speaker driver. The
shift register allows the FPGA to receive the 8-bit encoding sent from the PIC and send it
to the other modules. The note decoder accepts bits [3:0], which contain the encoded
note, and reads the proper 17-bit period from alookup table, sending it to the octave
modules. The two octave left-shifters multiply the period by 2 and 4 respectively,
creating the two additional octaves. The 3-way multiplexer inputs the 2 octave bits, [5:4],
and decides which period to input into the driver. The driver uses the 20 MHz clock to
count up to the given period value and invert the speaker’ s output bit at each reset. Two
3-input AND gates accept this output bit, the “play” bit (bit 6), and either the “ shoe bit”
(bit 7) or the inverse of the shoe bit, so that only one shoe plays at atime. Verilog Code

for the FPGA and atop-level schematic can be found in Appendix B.

Results

The most difficult aspect of the project arose when trying to capture foot presses from a
wide range of movements. Three different settings similarly influence the capture of the
shoe steps:

1. The polling frequency determines how often the shoe’s pressure data is
analyzed for presses and releases. A polling frequency set too high causes
bounce on each foot step, and when set too low the system misses rapid
foot steps.

2. Thetrigger threshold set on the Analog to Digital Converter determines
the voltage values for the analog signal that would correspond to high and
to low. The trigger needs to be set lower than the voltage at a shoe step,
and higher than the non-step voltage when a user raises their foot or sitsin
achair with their feet at rest.

3. The sensor placement determines the voltage range for the pressure values
and the non-step pressure value when the user rests their foot. The ideal
sensor configuration provides the widest range of pressure values between
non-step to step and where ambient foot movement has little effect.

The voltage ranges were calcul ated for several types of foot movement, including tapping
while sitting, stepping on tip-toes, walking, and hopping. At the optimal setting, all of
these foot steps were accommodated for, except hopping where the pressure on the sensor
remains at a high voltage for the duration of the hop; thisis due to the foot pressing
against the sole of the shoe mid-air, rather than solely when in contact with the floor.

The hopping was accommodated in one test by raising the threshold value; however,

proper capture of the other foot steps was lost. Therefore we decided not to incorporate
hopping into the normal use of the device.

For the main shoe movements (tapping while sitting, stepping on tip-toes, and
walking), the PIC trigger-sensing system on average receives one false foot press for each
song, corresponding to successful note play of greater than 95% of the time. The speaker
can be heard clearly up to 4 meters away. The hardware in the shoe does not obstruct the
user’s movement or stepping comfort. Future work will seek to embed the PIC, audio
amps, FPGA, switches, and a battery within the shoes, with wireless communication to

make the shoes more versatile.

References

[1] Motorola. Low Power Audio Amplifier: MC34119,

http://www.datasheetcatalog.com/datasheets pdf/M/C/3/4/M C34119.shtml
[2] Microchip. MPLAB C18 C Compiler: User’'s Guide. 15 November 2006.

http://ww21.microchip.com/downloads/en/DeviceDoc/MPLAB_C18 Users Guide 51288j.pdf
[3] Microchip. MPLAB C18 C Compiler: Libraries. 15 November 2006.

http://ww21.microchip.com/downloads/en/DeviceDoc/MPLAB_C18 Libraries 51297f.pdf
[4] Microchip. MPLAB C18 C Compiler: Getting Started. 15 November 2006.

http://ww21.microchip.com/downloads/en/DeviceDoc/MPLAB_C18 Getting_Started_51295f.

pdf
Parts List
Part Source
Speaker Radio Shack
Wire (22 gauge Radio Shack
stranded)

Used Shoes Goodwill

Vendor Part #
273-093
2781218

Price Quantity
$2.59 2

$4.99 1

$10 1 pair

Appendix A: PIC ShoeTriggering Codein C

#i ncl ude<p18f 452. h>
#i ncl ude<ti mers. h>

/*Function Prototypes*/
voi d mai n(voi d)

voi d At oD(voi d);

voi d CheckShoes(void);

/*d obal Variabl es*/

char duration; //time for note to be played

char shoeRprev; /lprior value fromA/ D

char shoelLprev; //prior value fromA/ D

char shoelpres; //current value fromA/ D

char shoeRpres; //current value fromA/ D

char note; /I not e encodi ng

char shoelLtrigger; /10xff is trigger-on (send note), 0x00 is trigger off (do not send
not e)

char shoeRtrigger; //shoe right trigger

#pragnma udata songl = 0x100 //defines 256 byte uninitialized data nenory bl ock for songl
char songl[Ox7F] [0x2] ; /larrays are declared to be | ess than nax banksi ze 256 bytes
[12*127 bytes = 254 bytes
/lerrors occur when, array size equal s max banksize

#pragma udata song2 = 0x200 //defines 256 byte uninitialized data menory bl ock for song2
char song2[Ox7F] [0x2] ;

#pragma udata song3 = 0x300 //song3
char song3[Ox7F] [0x2] ;

#pragma udat a song4 = 0x400 //song4
char song4[Ox7F] [0x2] ;

char r; /lsong [r][c]
char shol d; |/ Hol ds Sel ect val ue to determ ne when select is
changed

/I MPLAB C conpi |l er provides the junp command at 0x00 to main
#pragnma code | ow_vector = 0x18 //insert junp to lowinterrupt at programnmenory 0x18

void | ow_i nterrupt(void) {
_asm
goto AtoD
_endasm
}

#pragma code hi gh_vector = 0x08 //insert junmp to high interrupt at programnenory 0x08
void interrupt(void) ({

_asm

got o CheckShoes

_endasm
}
#pragma code start = 0x100
voi d mai n(voi d) {

int tenp = 0x00; /linitialize variables

unsigned int i; /lvariable for |oop

unsi gned char d; /Ilvariable for |oop

note = OxOf; //default note value (no note playing)
/linitial values

shoeLpr ev = 0x01; //no previous shoe val ues at start
shoeRpr ev = 0x01; /Ino previous shoe val ues at start

shoelLtri gger
shoeRtri gger

0x00; //no trigger have been recorded
0x00; //no trigger have been recorded
shoelLpres = 0x00; //default value 0x00 until a note is played
shoeRpres = 0x00; //default value 0x00 until a note is played

//wite song to array => Why do you build nme up, buttercup baby

10

/I page length is 256 bytes so array (song) max length is 127 notes
songl[0x0] [0] =0x60; // not e
songl[Ox0] [1] =0x10; //duration: 0x10 is 1/8th note, 0x20 i s quarter note, 0x40 hal f
note etc
songl[0x1] [0] =0x59;
songl[Ox1] [1] =0x10;
songl[0x2] [0] =0x57;
songl[0x2] [1] =0x10;
songl[0x3] [0] =0x55;
songl[0x3] [1] =0x10;
songl[0x4] [0] =0x54;
songl[0x4] [1] =0x10;
songl[0x5] [0] =0x54;
songl[0x5] [1] =0x10;
songl[0x6] [0] =0x55;
songl[0x6] [1] =0x10;
songl[0x7] [0] =0x54;
songl[0x7] [1] =0x10;
songl[0x8] [0] =0x54;
songl[0x8] [1] =0x10;
songl[0x9] [0] =0x52;
songl[0x9] [1] =0x10;
songl[Oxa] [0] =0x54;
songl[Oxa] [1] =0x10;
songl[Oxb] [0] =0x54;
songl[Oxb] [1] =0x10;
songl[Oxc] [0] =0x52;
songl[Oxc] [1] =0x10;
songl[Oxd] [0] =0x50;
songl[Oxd] [1] =0x10;
songl[Oxe] [0] =0x50;
songl[Oxe] [1] =0x10;
songl[Oxf] [0] =0x47;
songl[Oxf] [1] =0x10;
songl[0x10] [0] =0x55;
songl[0x10] [1] =0x10;
songl[Ox11] [0] =0x55;
songl[Ox11] [1] =0x10;
songl[0x12] [0] =0x55;
songl[0x12] [1] =0x10;
songl[0x13] [0] =0x54;
songl[0x13] [1] =0x10;
songl[0x14] [0] =0x52;
songl[0x14] [1] =0x10;
songl[0x15] [0] =0x50;
songl[Ox15] [1] =0x10;
songl[0x16] [0] =0x55;
songl[0x16] [1] =0x10;
songl[0x17] [0] =0x54;
songl[0x17] [1] =0x10;
songl[0x18] [0] =0x54;
songl[0x18] [1] =0x10;
songl[0x19] [0] =0x47,
songl[0x19] [1] =0x10;
songl[Ox1A] [0] =0x55;
songl[Ox1A] [1] =0x10;
songl[Ox1B] [0] =0x54;
songl[Ox1B] [1] =0x10;
songl[0x1(] [0] =0x54;
songl[Ox1C] [1] =0x10;
songl[Ox1D] [0] =0x52;
songl[Ox1D] [1] =0x10;
songl[Ox1E] [0] =0x52;
songl[Ox1E] [1] =0x10;
songl[Ox1F] [0] =0x54;
songl[Ox1F] [1] =0x10;
songl[0x20] [0] =0x52;
songl[0x20] [1] =0x10;
songl[0x21] [0] =0x50;
songl[0x21] [1] =0x10;
songl[0x22] [0] =0x50;

11

songl[0x22] [1] =0x10;
songl[0x23] [0] =0x47,
songl[0x23] [1] =0x10;
songl[0x24] [0] =0x55;
songl[0x24] [1] =0x10;
songl[0x25] [0] =0x55;
songl[0x25] [1] =0x10;
songl[0x26] [0] =0x55;
songl[0x26] [1] =0x10;
songl[0x27] [0] =0x54;
songl[0x27] [1] =0x10;
songl[0x28] [0] =0x54;
songl[0x28] [1] =0x10;
songl[0x29] [0] =0x55;
songl[0x29] [1] =0x10;
songl[Ox2A] [0] =0x57;
songl[Ox2A] [1] =0x10;
songl[0x2B] [0] =0x54;
songl[Ox2B] [1] =0x10;
songl[0x2(] [0] =0x55;
songl[0x2(] [1] =0x10;
songl[Ox2D] [0] =0x57;
songl[0x2D] [1] =0x10;
songl[Ox2E] [0] =0x54;
songl[Ox2E] [1] =0x10;
songl[Ox2F] [0] =0x55;
songl[Ox2F] [1] =0x10;
songl[0x30] [0] =0x57;
songl[0x30] [1] =0x10;
songl[0x31] [0] =0x59;
songl[0x31] [1] =0x10;
songl[0x32] [0] =0x57;
songl[0x32] [1] =0x10;
songl[0x33] [0] =0x55;
songl[0x33] [1] =0x10;
songl[0x34] [0] =0x54;
songl[0x34] [1] =0x10;
songl[0x35] [0] =0x55;
songl[0x35] [1] =0x10;
songl[0x36] [0] =0x55;
songl[0x36] [1] =0x10;
songl[0x37] [0] =0x55;
songl[0x37] [1] =0x10;
songl[0x38] [0] =0x54;
songl[0x38] [1] =0x10;
songl[0x39] [0] =0x52;
songl[0x39] [1] =0x10;
songl[Ox3A] [0] =0x50;
songl[Ox3A] [1] =0x20;
songl[Ox3B] [0] =0x47;
songl[Ox3B] [1] =0x10;
songl[0x3C] [0] =0x55;
songl[0x3C] [1] =0x10;
songl[0x3D] [0] =0x54;
songl[Ox3D] [1] =0x10;
songl[Ox3E] [0] =0x54;
songl[Ox3E] [1] =0x10;
songl[Ox3F] [0] =0x54;
songl[Ox3F] [1] =0x10;
songl[0x40] [0] =0x52;
songl[0x40] [1] =0x10;
songl[0x41] [0] =0x52;
songl[Ox41] [1] =0x10;
songl[0x42] [0] =0x52;
songl[0x42] [1] =0x10;
songl[0x43] [0] =0x50;
songl[0x43] [1] =0x10;
songl[Ox44] [0] =0x4B;
songl[0x44] [1] =0x10;
songl[0x45] [0] =0x50;
songl[0x45] [1] =0x20;

12

songl[0x46] [0] =0x00; // end of song, null value for note
songl[0x46] [1] =0x00; // end of song

//wite song => Tetris Misic
song2[0x0] [0] =0x64; // not e
song2[0x0] [1] =0x10; // dur ati on
song2[0x1] [0] =0x5B;
song2[0x1] [1] =0x10;
song2[0x2] [0] =0x60;
song2[0x2] [1] =0x10;
song2[0x3] [0] =0x62;
song2[0x3] [1] =0x10;
song2[0x4] [0] =0x60;
song2[0x4] [1] =0x10;
song2[0x5] [0] =0x5B;
song2[0x5] [1] =0x10;
song2[0x6] [0] =0x59;
song2[0x6] [1] =0x10;
song2[0x7] [0] =0x59;
song2[0x7] [1] =0x10;
song2[0x8] [0] =0x60;
song2[0x8] [1] =0x10;
song2[0x9] [0] =0x64;
song2[0x9] [1] =0x10;
song2[Oxa] [0] =0x62;
song2[Oxa] [1] =0x10;
song2[Oxb] [0] =0x60;
song2[Oxb] [1] =0x10;
song2[Oxc] [0] =0x5B;
song2[Oxc] [1] =0x10;
song2[Oxd] [0] =0x5B;
song2[Oxd] [1] =0x10;
song2[Oxe] [0] =0x60;
song2[Oxe] [1] =0x10;
song2[Oxf] [0] =0x62;
song2[Oxf] [1] =0x10;
song2[0x10] [0] =0x64;
song2[0x10] [1] =0x10;
song2[0x11] [0] =0x60;
song2[Ox11] [1] =0x10;
song2[0x12] [0] =0x59;
song2[0x12] [1] =0x10;
song2[0x13] [0] =0x59;
song2[0x13] [1] =0x10;
song2[0x14] [0] =0x62;
song2[0x14] [1] =0x10;
song2[0x15] [0] =0x62;
song2[0x15] [1] =0x10;
song2[0x16] [0] =0x65;
song2[0x16] [1] =0x10;
song2[0x17] [0] =0x69;
song2[0x17] [1] =0x10;
song2[0x18] [0] =0x67;
song2[0x18] [1] =0x10;
song2[0x19] [0] =0x65;
song2[0x19] [1] =0x10;
song2[Ox1A] [0] =0x64;
song2[Ox1A] [1] =0x10;
song2[Ox1B] [0] =0x64;
song2[Ox1B] [1] =0x10;
song2[0x1C] [0] =0x60;
song2[0x1C] [1] =0x10;
song2[0x1D] [0] =0x64;
song2[Ox1D] [1] =0x10;
song2[Ox1E] [0] =0x62;
song2[Ox1E] [1] =0x10;
song2[Ox1F] [0] =0x60;
song2[Ox1F] [1] =0x10;
song2[0x20] [0] =0x5B;
song2[0x20] [1] =0x10;

13

song2[0x21] [0] =0x5B;
song2[0x21] [1] =0x10;
song2[0x22] [0] =0x60;
song2[0x22] [1] =0x10;
song2[0x23] [0] =0x62;
song2[0x23] [1] =0x10;
song2[0x24] [0] =0x64;
song2[0x24] [1] =0x10;
song2[0x25] [0] =0x60;
song2[0x25] [1] =0x10;
song2[0x26] [0] =0x59;
song2[0x26] [1] =0x10;
song2[0x27] [0] =0x59;
song2[0x27] [1] =0x10;
song2[0x28] [0] =0x00; / / end of song,
song2[0x28] [1] =0x00; // end of song

//wite song => Darth Vader Misic
song3[0x0] [0] =0x47;// not e
song3[0x0] [1] =0x10; // dur ati on
song3[0x1] [0] =0x47;
song3[0x1] [1] =0x10;
song3[0x2] [0] =0x47;
song3[0x2] [1] =0x10;
song3[0x3] [0] =0x43;
song3[0x3] [1] =0x10;
song3[0x4] [0] =0x4A,;
song3[0x4] [1] =0x10;
song3[0x5] [0] =0x47;
song3[0x5] [1] =0x10;
song3[0x6] [0] =0x43;
song3[0x6] [1] =0x10;
song3[0x7] [0] =0x4A;
song3[0x7] [1] =0x10;
song3[0x8] [0] =0x47;
song3[0x8] [1] =0x10;
song3[0x9] [0] =0x52;
song3[0x9] [1] =0x10;
song3[Oxa] [0] =0x52;
song3[Oxa] [1] =0x10;
song3[Oxb] [0] =0x52;
song3[Oxb] [1] =0x10;
song3[Oxc] [0] =0x53;
song3[Oxc] [1] =0x10;
song3[0xd] [0] =0x4A;
song3[Oxd] [1] =0x10;
song3[Oxe] [0] =0x46;
song3[Oxe] [1] =0x10;
song3[Oxf] [0] =0x43;
song3[Oxf][1] =0x10;
song3[0x10] [0] =0x4A,
song3[0x10] [1] =0x10;
song3[Ox11] [0] =0x47,
song3[0x11] [1] =0x10;
song3[0x12] [0] =0x57;
song3[0x12] [1] =0x10;
song3[0x13] [0] =0x47;
song3[0x13] [1] =0x10;
song3[0x14] [0] =0x57;
song3[0x14] [1] =0x10;
song3[0x15] [0] =0x56;
song3[0x15] [1] =0x10;
song3[0x16] [0] =0x55;
song3[0x16] [1] =0x10;
song3[0x17] [0] =0x54;
song3[0x17] [1] =0x10;
song3[0x18] [0] =0x53;
song3[0x18] [1] =0x10;
song3[0x19] [0] =0x54;
song3[0x19] [1] =0x10;
song3[Ox1A] [0] =0x48;

nul |

val ue for note

14

song3[Ox1A] [1] =0x10;
song3[0x1B] [0] =0x51
song3[0x1B] [1] =0x10
song3[0x1(] [0] =0x50
song3[0x1C] [1] =0x10
song3[0x1D] [0] =0x4B
song3[0x1D] [1] =0x10
song3[Ox1E] [0] =0x4A,
song3[Ox1E] [1] =0x10
song3[Ox1F] [0] =0x49
song3[Ox1F] [1] =0x10
song3[0x20] [0] =0x4A,
song3[0x20] [1] =0x10
song3[0x21] [0] =0x43
song3[0x21] [1] =0x10
song3[0x22] [0] =0x46
song3[0x22] [1] =0x10
song3[0x23] [0] =0x43
song3[0x23] [1] =0x10
song3[0x24] [0] =0x4A,
song3[0x24] [1] =0x10
song3[0x25] [0] =0x47
song3[0x25] [1] =0x10
song3[0x26] [0] =0x43
song3[0x26] [1] =0x10;
song3[0x27] [0] =0x4A,
song3[0x27] [1] =0x10
song3[0x28] [0] =0x47
song3[0x28] [1] =0x10
song3[0x29] [0] =0x00; // end of song, null value for note
song3[0x29] [1] =0x00; // end of song

//wite song => Hall of the Muuntain King
song4[0x0] [0] =0x4B; / / not e
song4[0x0] [1] =0x10; // dur ati on
song4[0x1] [0] =0x51;
song4[0x1] [1] =0x10;
song4[0x2] [0] =0x52;
song4[0x2] [1] =0x10;
song4[0x3] [0] =0x54;
song4[0x3] [1] =0x10;
song4[0x4] [0] =0x56;
song4[0x4] [1] =0x10;
song4[0x5] [0] =0x52;
song4[0x5] [1] =0x10;
song4[0x6] [0] =0x56;
song4[0x6] [1] =0x10;
song4[0x7] [0] =0x55;
song4[0x7] [1] =0x10;
song4[0x8] [0] =0x51;
song4[0x8] [1] =0x10;
song4[0x9] [0] =0x55;
song4[0x9] [1] =0x10;
song4[Oxa] [0] =0x54;
song4[Oxa] [1] =0x10;
song4[Oxb] [0] =0x50;
song4[Oxb] [1] =0x10;
song4[Oxc] [0] =0x54;
song4[Oxc] [1] =0x10;
song4[Oxd] [0] =0x4B;
song4[Oxd] [1] =0x10;
song4[Oxe] [0] =0x51;
song4[Oxe] [1] =0x10;
song4[Oxf] [0] =0x52;
song4[Oxf] [1] =0x10;
song4[0x10] [0] =0x54
song4[0x10] [1] =0x10
song4[0x11] [0] =0x56
song4[Ox11] [1] =0x10
song4[0x12] [0] =0x52
song4[0x12] [1] =0x10

15

song4[0x13] [0] =0x56;

song4[0x13] [1] =0x10;

song4[0x14] [0] =0x5B;

song4[0x14] [1] =0x10;

song4[0x15] [0] =0x59;

song4[0x15] [1] =0x10;

song4[0x16] [0] =0x56;

song4[0x16] [1] =0x10;

song4[0x17] [0] =0x52;

song4[0x17] [1] =0x10;

song4[0x18] [0] =0x56;

song4[0x18] [1] =0x10;

song4[0x19] [0] =0x59;

song4[0x19] [1] =0x10;

song4[Ox1A] [0] =0x00; // end of song, null value for note
song4[0x1A] [1] =0x00; // end of song

TRI SC = 0x00; //Port Cis an output port to the FPGA
TRI SA = 0x17; //Port A has four input ports, 2 fromA/D, 2 digital
for song sel ect[1:0]
// RAO, RAl are set anal og, and RA2, RA4 are

set digital
ADCON1 = 0x04; //ADwith 3 analog, 5 digital and i nternal voltage
ref erences
ADCONO = 0x81; //turns on AI/'D
/*wait 33 cycles (12 mcrosecs) for AADrequired acquisition tine*/
for(i=0x0; i < Ox21; i++) {//33 in deci mal = 0x21
tenp +=i; [/ del ay vari abl e

Pl Rlbits. ADI F
Pl Elbits. ADI E
RCONbi ts. | PEN

0x0; //clears AlDinterrupt flag

0x1; //set up A/Dinterrupt

0x1; //enables priority levels on interrupts
| NTCONbits. G E = 0x1; //set up interrupts

| NTCONbi t s. PEI E = 0x1;

| NTCONbi t s. TMROI E 0x1; //enable tinmer interrupt

| NTCON2bi t s. TMROI P 0x1; //set tinerO as high priority interrupt
| PR1bi ts. ADI P 0x0; //set A’/Das lowpriority interrupt
ADCONObi ts. GO 0x1; //Run A/ID

//start timer
TMROH = OXFE;//set tinmer high val ue
TMROL = OxBA;//set tiner |ow
//timer set to 65210 so that timer interrupts at 60hz
TOCON = 0x87;//16bit counter with 1/ 256 prescale and start counter
whi | e(1) {//runs continuously except when interrupts occur
r = 0x00;//restarts song
while (note !'=0x00) {//runs until table ends and then | oops
//set up SPI
SSPCON1 = 0x22; [l config sspcon
SSPSTATbi ts. SMP = 0x1; //config sspstat
SSPSTATbi t s. CKE = 0x1; //config sspstat
i f(shoeRtrigger || shoeLtrigger) {
//set for loop tine equal to duration
for(d=0x00; d < duration; d++) {
for(i=0x0000; i < OxO08ff; i++) {
/Il scal es-up each duration increnent
if (shoeRtrigger) {
shoeRtri gger = 0x00;
/lreset trigger
shoeLtrigger = 0x00;
//double triggers will result in music only played on the right shoe
note = note | 0x80;
/laccesses the MSB makes it 1 (=rightshoe)
SSPBUF = not e;
//output note data to FPGA
SSPCON1 = 0x22;
/Il config sspcon

16

//config sspstat
//config sspstat

/lresets duration count if triggered

/lreset trigger
//output note data to FPGA
/Il config sspcon
//config sspstat

//config sspstat

SSPSTATbi t s. SMP

SSPSTATbi t s. CKE

d=0x00;
again

}
el se i f(shoeLtrigger)

SSPBUF = not e;

SSPCON1 = 0x22;

0x1;

0x1;

{//shoe |l eft trigger
shoeLtrigger = 0x00;

SSPSTATbi ts. SMP = 0x1;

SSPSTATbi ts. CKE = 0x1;

d = 0x00;
again

SSPBUF = OxOF; //stop playing nmusic after duration is met

//reset duration counter if triggered
}
}
}
}
}
#pragma i nterruptl ow At oD
voi d AtoD(voi d) {
char i;
char tenp;
tenp = 0xO;
if (ADCONObits.CHSO == 0x0) {
shoeRpres = ADRESH,
ADCONObi t s. ADON = 0x0;
ADCONObi t s. CHSO = 0x1;
ADCONObi t s. ADON = 0x1;
PIRlbits. ADIF = 0x0; //clear
Pl Elbits. ADE = 0x1; /
I NTCONbits. G E = 0x1;
| NTCONbi ts. PEI E = 0x1;
temp = 0xO0;
for (i=0x0; i < Ox21; i++)
tenp = tenp + Ox1;
}
ADCONObi ts. GO = 0x1;//Run A/'D
}
el se {//if ANDIleft shoes was just
shoelLpres = ADRESH,
/1 does not clear A/Dinterrupt
ADCONObi t s. ADON = 0x0;
ADCONObi t s. CHSO = 0x0;
ADCONObi t s. ADON = 0x1;
Pl Rlbits. ADl F = 0x0;
Pl Elbits. ADl E = 0x1;
I NTCONbits. G E
| NTCONbi t s. PEI E
}
}

#pragma i nterrupt CheckShoes//tiner interrupt
voi d CheckShoes(void) {
char s; //select song bit
s = PORTA & 0x14; //0x00 for "song 1",
for "song 4"
if (s !'= shold) {
r = 0x00;

shold = s;
I NTCONbi ts. TMROI E = Ox1;//re-enable ti

/linterrupt when A/Dis finished

/1if AIDright shoes was just run
//shoeR is assigned to A/D val ue

//turn A/D of f

// change to channel 1
//resets turn on AAD
A/Dinterrupt flag

/set up A/Dinterrupt

//set up interrupts

{//waits for A/Dto acquire channel

| eft shoe

run

//shoeL is assigned to A/ D val ue
flag until A/Dis run again

//turn A/D of f

!/ change to channel 0
//resets turn on AAD
/lclear A’Dinterrupt flag

//set up A/'D interrupt

= 0x1; //set up interrupts

= 0x1;

0x04 for "song 2", 0x10 for "song 3",

ner

0x14

17

TMROH = OxFE; //set tiner high val ue

TMROL = OxBA;//set tiner |ow

I NTCONbi ts. TMROI F = Ox0;//reset timer interrupt flag

TOCON = 0x87;//16 bit counter go

if (shoeRpres > 0xQ0) {//threshold is 0xBO

i f (shoeRprev == 0x00) {//shoe was not already pressed

el se

shoeRtrigger = Oxff;

if (s == 0x00) {
note = songl[r][O0x0];//note read
duration =songl[r][Ox1];//duration read

}
else if (s == 0x04) {
note = song2[r][0x0]; //note read
duration = song2[r][0x1]; //duration read

}
else if (s == 0x10) {
note = song3[r][0x0]; //note read

duration = song3[r][0x1]; //duration read
el se {

note = song4[r][0x0]; //note read

duration = song4[r][0x1]; //duration read
}
r++ //moves to the next note
{ /1 shoe was al ready pressed

shoeRt ri gger = 0x00;

shoeRprev = 0x01;//sets the current state to on

}
el se {
shoeRtri gger = 0x00;
shoeRprev = 0x00;
if (shoeLpres > 0x90) ({ /1threshol d was enmpirically determ ned and set

notes at the sane tine

el se

/*

if (shoeLprev == 0x00) { /1 shoe was not already trigger

shoelLtrigger = Oxff;
if (shoeRtrigger == 0x00) {
//we check that right shoe was not trigger to avoid pulling two

if (s == 0x00) {
note = songl[r][O0x0];//note read
duration = songl[r][Ox1];//duration read

}

else if (s == 0x04) {
note = song2[r][0x0];//note read
duration = song2[r][O0x1];//duration read

}

else if (s == 0x10) {
note = song3[r][0x0];//note read
duration =song3[r][0x1];//duration read

el se {
note = song4[r][0x0];//note read
duration = song4[r][Ox1];//duration read

r++;//noves to the next note

}
el se { /1 shoe was al ready triggered

shoelLtri gger = 0xO0;
shoeLprev = 0x01; //sets the current state to on
{ /I shoeLpres <= 0x90

shoeLtri gger = 0x00;
shoelLprev = 0x00;

Can only accept one trigger at a tinme.
The right shoe has priority, and if the user junps with both feet

18

only a note on the right shoe will play

*/

if (note == 0x00) {//if the end of the song has been reached
r=0x00; //repeat song

Pl Rlbits. ADIF = 0x0;//clear A’'Dinterrupt flag
ADCONObi ts. GO = 0x1;//Run A/D for shoeR

19

Appendix B: FPGA Code and Schematics for Note Decoder/Speaker
Driver

(SEE NEXT PAGE)

20

Appendix C: Musical Note Encoding

Note Frequency (Hz) Divider index = 20 MHz / Freq / 2
Cs 523.25 19111
Cs/D" 554.37 18038
Ds 587.33 17026
D*s/E 622.25 16070
Es 659.26 15168
Fs 698.46 14317
F'eIG" 739.99 13513
Gs 783.99 12755
G*5/APs 830.61 12039
As 880 11363
A*B" 932.33 10725
Bs 987.77 10123

*For lower octaves (3 and 4), divider indices are shifted by 1 and 2 in hardware

