

Musical Shoes

Final Report

December 7, 2006

Nathaniel Schlossberg and John Parker

Abstract

To encourage toddlers to practice walking and develop rhythm, the team developed a pair
of musical shoes to play a song, note-by-note on each step. Embedded pressure sensors
in the shoes provide data to a PIC microcontroller to determine when a shoe step has
occurred. At each step, the PIC outputs the next note of the song for a set duration to the
FPGA. The FPGA decodes the note and outputs an oscillating signal corresponding to
the note’s frequency. The oscillating signal is passed through an audio amplifier before
reaching the speakers in the shoes; the shoe that steps plays the note. The system
successfully identifies a shoe step and plays the corresponding note greater than 95% of
the time. The notes can be heard clearly in a quiet room at approximately 4 meters away.

 1

Introduction
Following the trend of toys designed to help children grow and develop, the team has

designed a product to encourage toddlers to practice walking and develop rhythm:

musical shoes. While wearing these shoes, users will be able to play music as they walk

or tap their feet. With each step, the shoes will play the next note in the song, so that the

user can hear cheerful music as s/he walks, while reinforcing rhythm. The user can

choose from among 4 different songs, in case one particular song gets too repetitive.

 The entire device was constructed at Harvey Mudd College in the Fall of 2006. It

consists of a pressure sensor and speaker in each shoe (2 in total), an audio amplifier, 2

toggle switches, and the Harrisboard PIC microcontroller and FPGA. A block diagram of

the entire system can be found in Figure 1.

Figure 1: System Block Diagram

The two toggle switches allow the user to select from 4 different songs, which are

encoded in the PIC. The pressure sensors act as resistors that change in value when the

user steps down. The pressure sensors are used in a voltage divider circuit that feeds into

an A/D port in the PIC. The PIC reads the voltage from the pressure sensor. When it

Pressure
Sensors

(2)

PIC

(Master)

FPGA
(Slave)

Speakers

(2)

Switches

(2)

Audio
Amps

(2)

Shoes

 2

recognizes a rising edge in pressure, signifying a step, it serially sends the next encoded

note of the current song to the FPGA. The FPGA receives the encoded note and drives

the shoe speakers to oscillate at the necessary frequency. Before reaching the speakers,

the output runs through an audio amplifier to provide more power to the speakers than the

FPGA could by itself.

New Devices

Two Motorola MC31119P audio amps were used to amplify the signals from the FPGA

before they reached the speakers. As Figure 2 shows, the audio signal from the FPGA

board is fed into the “Audio input,” and the speakers are attached to 1OV and 2OV .

Figure 2: Differential Audio Amplifier Schematic MC34119P
The manufacturer’s schematic for the standard layout of the low-power audio
amplifiers.[1]

 3

External Hardware

As shown in Figure 3, the two sensors are connected in a pull-up network such that when

sufficient pressure occurs, the sensor resistance will decrease and the voltage at the input

channel will increase. Two PIC ports are used as digital inputs for the song switch values

(RA2, RA4). The figure illustrates that the FPGA has two output pins for the left (P5)

and right speaker (P6), and a reset pin (P1). The FPGA is attached to an audio amplifier

to boost the power to speaker.

WK1

WK1W1.,8W

V3.3
Fm5

Fm1

W= KRf 68

W= KRi 47

W1.,8W

V3.3
Fm5

Fm1

W= KRf 68

W= KRi 47

V3.3

V3.3

V3.3

V3.3

WK1

WK1

Figure 3: External Hardware
The external hardware shoes the schematic of the external hardware for the musical
shoes. The audio amplifier was set with a differential gain of ~3. The speakers are
located within the outer heel padding on each shoe. The pressure sensors are
situated underneath the removable sole near the ball of the foot.

 4

One sensor and one speaker is placed in each shoe, with their wires channeled through

the shoe’s padding and out a side air-hole. The speakers draw up to 100 mW and have a

resistance of 8 W . The amplifier outputs a voltage of
2

7.0-Vcc
, this means Vcc has a

maximum of 3.8 V, so we conveniently used the 3.3V output from our board to power the

amplifier.

PIC Microprocessor

The PIC program, “MusicShoes.c,” was coded in C and compiled with MPLAB C18.[2-4]

The program outputs the next note of the selected song to the FPGA on each sensor press.

The notes are read from one of four arrays at each sensor trigger. Each array has two

eight-bit columns: the first stores the encoded note and the second stores its play

duration. The arrays are stored in data memory, creating a limit of 127 notes per song (to

keep the size below the 256 byte page size). When the PIC reads a null (0x00) value for

the note, the song is restarted.

To determine when a shoe trigger occurs, the microprocessor converts two analog

signals from the shoe sensors to digital signals, using empirically determined threshold

values. Each of the sensors has a tailored threshold due to small differences between the

shoe placements. The song is selected via two digitally input switches.

 The program operates using two interrupts, one high priority for timer overflow,

and one low priority for A/D conversion completion. The sixteen-bit timer is set to run

for 16.67 ms (corresponding to 60 Hz polling) by presetting the timer register to 0xFEBA

and using a scale factor of 1/256 at the 20 MHz external clock speed. The timer allows

the program to check the triggers status at 60 Hz, which debounces the triggers. The high

 5

priority interrupt function updates the status of each shoe’s present and previous pressure

to determine whether a shoe step has occurred. In addition, the high priority interrupt

function restarts the A/D process. The low priority interrupt function, called at the end of

each A/D completion, records the current value of the A/D register and restarts the A/D

process after switching the input channel.

 The code for the PIC can be found in Appendix A. The PIC outputs the notes, via

SPI, to the FPGA with an encoding to designate the shoe speaker on which to play.

Note Encoding

Each musical note has its own distinct sound frequency. When a speaker is driven to

oscillate high and low at a note’s particular frequency, it will play that note. In order to

drive the speakers at the correct oscillation, the FPGA slows down its internal clock by

the necessary amount, running a counter to a certain period and oscillating the output bit

with each reset of the counter. The period is calculated from the 20 MHz clock speed,

divided by twice the frequency of the note (since one cycle consists of a high and low).

Frequencies and counter periods for each note can be found in Appendix C.

 Most songs contain notes that span over multiple octaves. Our device plays notes

spanning over three octaves. Increasing the octave of a note corresponds to doubling its

frequency. Therefore, the FPGA encodes periods for the highest octave, and left-shifts if

necessary to multiply the note’s period by two or four (to decrease the octave by one or

two).

There are twelve notes in an octave, which require 4 bits to express. Since typical

octaves in music begin with C (middle C beginning octave 4), the notes are encoded in

 6

numbers 0000 (C) through 1011 (B). Any other 4-bit numbers (1100-1111) default to C.

Since there are three octaves, two bits describe the octave of the note. The lowest octave

(highest period) is encoded as 00, 01 corresponds to the middle octave, and 10 and 11

correspond to the high octave. Finally, one play bit encodes whether to play a note or to

rest, and one bit determines which shoe speaker to play (left or right). This totals 8-bits

of information, which made the serial port an easy medium to transfer note encodings.

FPGA

The FPGA accepts the 8-bit note encoding from the PIC and oscillates the speakers at the

corresponding frequency. It consists of four main modules: a serial-to-parallel shift

register, a note decoder, octave left-shifters and multiplexer, and a speaker driver. The

shift register allows the FPGA to receive the 8-bit encoding sent from the PIC and send it

to the other modules. The note decoder accepts bits [3:0], which contain the encoded

note, and reads the proper 17-bit period from a lookup table, sending it to the octave

modules. The two octave left-shifters multiply the period by 2 and 4 respectively,

creating the two additional octaves. The 3-way multiplexer inputs the 2 octave bits, [5:4],

and decides which period to input into the driver. The driver uses the 20 MHz clock to

count up to the given period value and invert the speaker’s output bit at each reset. Two

3-input AND gates accept this output bit, the “play” bit (bit 6), and either the “shoe bit”

(bit 7) or the inverse of the shoe bit, so that only one shoe plays at a time. Verilog Code

for the FPGA and a top- level schematic can be found in Appendix B.

 7

Results

The most difficult aspect of the project arose when trying to capture foot presses from a

wide range of movements. Three different settings similarly influence the capture of the

shoe steps:

1. The polling frequency determines how often the shoe’s pressure data is

analyzed for presses and releases. A polling frequency set too high causes

bounce on each foot step, and when set too low the system misses rapid

foot steps.

2. The trigger threshold set on the Analog to Digital Converter determines

the voltage values for the analog signal that would correspond to high and

to low. The trigger needs to be set lower than the voltage at a shoe step,

and higher than the non-step voltage when a user raises their foot or sits in

a chair with their feet at rest.

3. The sensor placement determines the voltage range for the pressure values

and the non-step pressure value when the user rests their foot. The ideal

sensor configuration provides the widest range of pressure values between

non-step to step and where ambient foot movement has little effect.

The voltage ranges were calculated for several types of foot movement, including tapping

while sitting, stepping on tip-toes, walking, and hopping. At the optimal setting, all of

these foot steps were accommodated for, except hopping where the pressure on the sensor

remains at a high voltage for the duration of the hop; this is due to the foot pressing

against the sole of the shoe mid-air, rather than solely when in contact with the floor.

The hopping was accommodated in one test by raising the threshold value; however,

 8

proper capture of the other foot steps was lost. Therefore we decided not to incorporate

hopping into the normal use of the device.

For the main shoe movements (tapping while sitting, stepping on tip-toes, and

walking), the PIC trigger-sensing system on average receives one false foot press for each

song, corresponding to successful note play of greater than 95% of the time. The speaker

can be heard clearly up to 4 meters away. The hardware in the shoe does not obstruct the

user’s movement or stepping comfort. Future work will seek to embed the PIC, audio

amps, FPGA, switches, and a battery within the shoes, with wireless communication to

make the shoes more versatile.

 9

References
[1] Motorola. Low Power Audio Amplifier: MC34119,

http://www.datasheetcatalog.com/datasheets_pdf/M/C/3/4/MC34119.shtml

[2] Microchip. MPLAB C18 C Compiler: User’s Guide. 15 November 2006.

http://ww1.microchip.com/downloads/en/DeviceDoc/MPLAB_C18_Users_Guide_51288j.pdf

[3] Microchip. MPLAB C18 C Compiler: Libraries. 15 November 2006.

http://ww1.microchip.com/downloads/en/DeviceDoc/MPLAB_C18_Libraries_51297f.pdf

[4] Microchip. MPLAB C18 C Compiler: Getting Started. 15 November 2006.

http://ww1.microchip.com/downloads/en/DeviceDoc/MPLAB_C18_Getting_Started_51295f.

pdf

Parts List

Part Source Vendor Part # Price Quantity
Speaker Radio Shack 273-093 $2.59 2
Wire (22 gauge
stranded)

Radio Shack 2781218 $4.99 1

Used Shoes Goodwill $10 1 pair

 10

Appendix A: PIC Shoe Triggering Code in C

#include<p18f452.h>
#include<timers.h>

/*Function Prototypes*/
void main(void);
void AtoD(void);
void CheckShoes(void);

/*Global Variables*/
char duration; //time for note to be played
char shoeRprev; //prior value from A/D
char shoeLprev; //prior value from A/D
char shoeLpres; //current value from A/D
char shoeRpres; //current value from A/D
char note; //note encoding
char shoeLtrigger; //0xff is trigger-on (send note), 0x00 is trigger off (do not send
note)
char shoeRtrigger; //shoe right trigger

#pragma udata song1 = 0x100 //defines 256 byte uninitialized data memory block for song1
char song1[0x7F][0x2]; //arrays are declared to be less than max banksize 256 bytes
 //2*127 bytes = 254 bytes
 //errors occur when, array size equals max banksize

#pragma udata song2 = 0x200 //defines 256 byte uninitialized data memory block for song2
char song2[0x7F][0x2];

#pragma udata song3 = 0x300 //song3
char song3[0x7F][0x2];

#pragma udata song4 = 0x400 //song4
char song4[0x7F][0x2];

char r; //song [r][c]
char shold; //Holds Select value to determine when select is
changed

//MPLAB C compiler provides the jump command at 0x00 to main
#pragma code low_vector = 0x18 //insert jump to low interrupt at program memory 0x18
void low_interrupt(void) {
 _asm
 goto AtoD
 _endasm
}
#pragma code high_vector = 0x08 //insert jump to high interrupt at program memory 0x08
void interrupt(void) {
 _asm
 goto CheckShoes
 _endasm
}
#pragma code start = 0x100
void main(void) {
 int temp = 0x00; //initialize variables
 unsigned int i; //variable for loop
 unsigned char d; //variable for loop
 note = 0x0f; //default note value (no note playing)

 //initial values
 shoeLprev = 0x01; //no previous shoe values at start
 shoeRprev = 0x01; //no previous shoe values at start
 shoeLtrigger = 0x00; //no trigger have been recorded
 shoeRtrigger = 0x00; //no trigger have been recorded
 shoeLpres = 0x00; //default value 0x00 until a note is played
 shoeRpres = 0x00; //default value 0x00 until a note is played

 //write song to array => Why do you build me up, buttercup baby

 11

 //page length is 256 bytes so array (song) max length is 127 notes
 song1[0x0][0]=0x60;//note
 song1[0x0][1]=0x10;//duration: 0x10 is 1/8th note, 0x20 is quarter note, 0x40 half
note etc
 song1[0x1][0]=0x59;
 song1[0x1][1]=0x10;
 song1[0x2][0]=0x57;
 song1[0x2][1]=0x10;
 song1[0x3][0]=0x55;
 song1[0x3][1]=0x10;
 song1[0x4][0]=0x54;
 song1[0x4][1]=0x10;
 song1[0x5][0]=0x54;
 song1[0x5][1]=0x10;
 song1[0x6][0]=0x55;
 song1[0x6][1]=0x10;
 song1[0x7][0]=0x54;
 song1[0x7][1]=0x10;
 song1[0x8][0]=0x54;
 song1[0x8][1]=0x10;
 song1[0x9][0]=0x52;
 song1[0x9][1]=0x10;
 song1[0xa][0]=0x54;
 song1[0xa][1]=0x10;
 song1[0xb][0]=0x54;
 song1[0xb][1]=0x10;
 song1[0xc][0]=0x52;
 song1[0xc][1]=0x10;
 song1[0xd][0]=0x50;
 song1[0xd][1]=0x10;
 song1[0xe][0]=0x50;
 song1[0xe][1]=0x10;
 song1[0xf][0]=0x47;
 song1[0xf][1]=0x10;
 song1[0x10][0]=0x55;
 song1[0x10][1]=0x10;
 song1[0x11][0]=0x55;
 song1[0x11][1]=0x10;
 song1[0x12][0]=0x55;
 song1[0x12][1]=0x10;
 song1[0x13][0]=0x54;
 song1[0x13][1]=0x10;
 song1[0x14][0]=0x52;
 song1[0x14][1]=0x10;
 song1[0x15][0]=0x50;
 song1[0x15][1]=0x10;
 song1[0x16][0]=0x55;
 song1[0x16][1]=0x10;
 song1[0x17][0]=0x54;
 song1[0x17][1]=0x10;
 song1[0x18][0]=0x54;
 song1[0x18][1]=0x10;
 song1[0x19][0]=0x47;
 song1[0x19][1]=0x10;
 song1[0x1A][0]=0x55;
 song1[0x1A][1]=0x10;
 song1[0x1B][0]=0x54;
 song1[0x1B][1]=0x10;
 song1[0x1C][0]=0x54;
 song1[0x1C][1]=0x10;
 song1[0x1D][0]=0x52;
 song1[0x1D][1]=0x10;
 song1[0x1E][0]=0x52;
 song1[0x1E][1]=0x10;
 song1[0x1F][0]=0x54;
 song1[0x1F][1]=0x10;
 song1[0x20][0]=0x52;
 song1[0x20][1]=0x10;
 song1[0x21][0]=0x50;
 song1[0x21][1]=0x10;
 song1[0x22][0]=0x50;

 12

 song1[0x22][1]=0x10;
 song1[0x23][0]=0x47;
 song1[0x23][1]=0x10;
 song1[0x24][0]=0x55;
 song1[0x24][1]=0x10;
 song1[0x25][0]=0x55;
 song1[0x25][1]=0x10;
 song1[0x26][0]=0x55;
 song1[0x26][1]=0x10;
 song1[0x27][0]=0x54;
 song1[0x27][1]=0x10;
 song1[0x28][0]=0x54;
 song1[0x28][1]=0x10;
 song1[0x29][0]=0x55;
 song1[0x29][1]=0x10;
 song1[0x2A][0]=0x57;
 song1[0x2A][1]=0x10;
 song1[0x2B][0]=0x54;
 song1[0x2B][1]=0x10;
 song1[0x2C][0]=0x55;
 song1[0x2C][1]=0x10;
 song1[0x2D][0]=0x57;
 song1[0x2D][1]=0x10;
 song1[0x2E][0]=0x54;
 song1[0x2E][1]=0x10;
 song1[0x2F][0]=0x55;
 song1[0x2F][1]=0x10;
 song1[0x30][0]=0x57;
 song1[0x30][1]=0x10;
 song1[0x31][0]=0x59;
 song1[0x31][1]=0x10;
 song1[0x32][0]=0x57;
 song1[0x32][1]=0x10;
 song1[0x33][0]=0x55;
 song1[0x33][1]=0x10;
 song1[0x34][0]=0x54;
 song1[0x34][1]=0x10;
 song1[0x35][0]=0x55;
 song1[0x35][1]=0x10;
 song1[0x36][0]=0x55;
 song1[0x36][1]=0x10;
 song1[0x37][0]=0x55;
 song1[0x37][1]=0x10;
 song1[0x38][0]=0x54;
 song1[0x38][1]=0x10;
 song1[0x39][0]=0x52;
 song1[0x39][1]=0x10;
 song1[0x3A][0]=0x50;
 song1[0x3A][1]=0x20;
 song1[0x3B][0]=0x47;
 song1[0x3B][1]=0x10;
 song1[0x3C][0]=0x55;
 song1[0x3C][1]=0x10;
 song1[0x3D][0]=0x54;
 song1[0x3D][1]=0x10;
 song1[0x3E][0]=0x54;
 song1[0x3E][1]=0x10;
 song1[0x3F][0]=0x54;
 song1[0x3F][1]=0x10;
 song1[0x40][0]=0x52;
 song1[0x40][1]=0x10;
 song1[0x41][0]=0x52;
 song1[0x41][1]=0x10;
 song1[0x42][0]=0x52;
 song1[0x42][1]=0x10;
 song1[0x43][0]=0x50;
 song1[0x43][1]=0x10;
 song1[0x44][0]=0x4B;
 song1[0x44][1]=0x10;
 song1[0x45][0]=0x50;
 song1[0x45][1]=0x20;

 13

 song1[0x46][0]=0x00;//end of song, null value for note
 song1[0x46][1]=0x00;//end of song

 //write song => Tetris Music
 song2[0x0][0]=0x64;//note
 song2[0x0][1]=0x10;//duration
 song2[0x1][0]=0x5B;
 song2[0x1][1]=0x10;
 song2[0x2][0]=0x60;
 song2[0x2][1]=0x10;
 song2[0x3][0]=0x62;
 song2[0x3][1]=0x10;
 song2[0x4][0]=0x60;
 song2[0x4][1]=0x10;
 song2[0x5][0]=0x5B;
 song2[0x5][1]=0x10;
 song2[0x6][0]=0x59;
 song2[0x6][1]=0x10;
 song2[0x7][0]=0x59;
 song2[0x7][1]=0x10;
 song2[0x8][0]=0x60;
 song2[0x8][1]=0x10;
 song2[0x9][0]=0x64;
 song2[0x9][1]=0x10;
 song2[0xa][0]=0x62;
 song2[0xa][1]=0x10;
 song2[0xb][0]=0x60;
 song2[0xb][1]=0x10;
 song2[0xc][0]=0x5B;
 song2[0xc][1]=0x10;
 song2[0xd][0]=0x5B;
 song2[0xd][1]=0x10;
 song2[0xe][0]=0x60;
 song2[0xe][1]=0x10;
 song2[0xf][0]=0x62;
 song2[0xf][1]=0x10;
 song2[0x10][0]=0x64;
 song2[0x10][1]=0x10;
 song2[0x11][0]=0x60;
 song2[0x11][1]=0x10;
 song2[0x12][0]=0x59;
 song2[0x12][1]=0x10;
 song2[0x13][0]=0x59;
 song2[0x13][1]=0x10;
 song2[0x14][0]=0x62;
 song2[0x14][1]=0x10;
 song2[0x15][0]=0x62;
 song2[0x15][1]=0x10;
 song2[0x16][0]=0x65;
 song2[0x16][1]=0x10;
 song2[0x17][0]=0x69;
 song2[0x17][1]=0x10;
 song2[0x18][0]=0x67;
 song2[0x18][1]=0x10;
 song2[0x19][0]=0x65;
 song2[0x19][1]=0x10;
 song2[0x1A][0]=0x64;
 song2[0x1A][1]=0x10;
 song2[0x1B][0]=0x64;
 song2[0x1B][1]=0x10;
 song2[0x1C][0]=0x60;
 song2[0x1C][1]=0x10;
 song2[0x1D][0]=0x64;
 song2[0x1D][1]=0x10;
 song2[0x1E][0]=0x62;
 song2[0x1E][1]=0x10;
 song2[0x1F][0]=0x60;
 song2[0x1F][1]=0x10;
 song2[0x20][0]=0x5B;
 song2[0x20][1]=0x10;

 14

 song2[0x21][0]=0x5B;
 song2[0x21][1]=0x10;
 song2[0x22][0]=0x60;
 song2[0x22][1]=0x10;
 song2[0x23][0]=0x62;
 song2[0x23][1]=0x10;
 song2[0x24][0]=0x64;
 song2[0x24][1]=0x10;
 song2[0x25][0]=0x60;
 song2[0x25][1]=0x10;
 song2[0x26][0]=0x59;
 song2[0x26][1]=0x10;
 song2[0x27][0]=0x59;
 song2[0x27][1]=0x10;
 song2[0x28][0]=0x00;//end of song, null value for note
 song2[0x28][1]=0x00;//end of song

 //write song => Darth Vader Music
 song3[0x0][0]=0x47;//note
 song3[0x0][1]=0x10;//duration
 song3[0x1][0]=0x47;
 song3[0x1][1]=0x10;
 song3[0x2][0]=0x47;
 song3[0x2][1]=0x10;
 song3[0x3][0]=0x43;
 song3[0x3][1]=0x10;
 song3[0x4][0]=0x4A;
 song3[0x4][1]=0x10;
 song3[0x5][0]=0x47;
 song3[0x5][1]=0x10;
 song3[0x6][0]=0x43;
 song3[0x6][1]=0x10;
 song3[0x7][0]=0x4A;
 song3[0x7][1]=0x10;
 song3[0x8][0]=0x47;
 song3[0x8][1]=0x10;
 song3[0x9][0]=0x52;
 song3[0x9][1]=0x10;
 song3[0xa][0]=0x52;
 song3[0xa][1]=0x10;
 song3[0xb][0]=0x52;
 song3[0xb][1]=0x10;
 song3[0xc][0]=0x53;
 song3[0xc][1]=0x10;
 song3[0xd][0]=0x4A;
 song3[0xd][1]=0x10;
 song3[0xe][0]=0x46;
 song3[0xe][1]=0x10;
 song3[0xf][0]=0x43;
 song3[0xf][1]=0x10;
 song3[0x10][0]=0x4A;
 song3[0x10][1]=0x10;
 song3[0x11][0]=0x47;
 song3[0x11][1]=0x10;
 song3[0x12][0]=0x57;
 song3[0x12][1]=0x10;
 song3[0x13][0]=0x47;
 song3[0x13][1]=0x10;
 song3[0x14][0]=0x57;
 song3[0x14][1]=0x10;
 song3[0x15][0]=0x56;
 song3[0x15][1]=0x10;
 song3[0x16][0]=0x55;
 song3[0x16][1]=0x10;
 song3[0x17][0]=0x54;
 song3[0x17][1]=0x10;
 song3[0x18][0]=0x53;
 song3[0x18][1]=0x10;
 song3[0x19][0]=0x54;
 song3[0x19][1]=0x10;
 song3[0x1A][0]=0x48;

 15

 song3[0x1A][1]=0x10;
 song3[0x1B][0]=0x51;
 song3[0x1B][1]=0x10;
 song3[0x1C][0]=0x50;
 song3[0x1C][1]=0x10;
 song3[0x1D][0]=0x4B;
 song3[0x1D][1]=0x10;
 song3[0x1E][0]=0x4A;
 song3[0x1E][1]=0x10;
 song3[0x1F][0]=0x49;
 song3[0x1F][1]=0x10;
 song3[0x20][0]=0x4A;
 song3[0x20][1]=0x10;
 song3[0x21][0]=0x43;
 song3[0x21][1]=0x10;
 song3[0x22][0]=0x46;
 song3[0x22][1]=0x10;
 song3[0x23][0]=0x43;
 song3[0x23][1]=0x10;
 song3[0x24][0]=0x4A;
 song3[0x24][1]=0x10;
 song3[0x25][0]=0x47;
 song3[0x25][1]=0x10;
 song3[0x26][0]=0x43;
 song3[0x26][1]=0x10;
 song3[0x27][0]=0x4A;
 song3[0x27][1]=0x10;
 song3[0x28][0]=0x47;
 song3[0x28][1]=0x10;
 song3[0x29][0]=0x00;//end of song, null value for note
 song3[0x29][1]=0x00;//end of song

 //write song => Hall of the Mountain King
 song4[0x0][0]=0x4B;//note
 song4[0x0][1]=0x10;//duration
 song4[0x1][0]=0x51;
 song4[0x1][1]=0x10;
 song4[0x2][0]=0x52;
 song4[0x2][1]=0x10;
 song4[0x3][0]=0x54;
 song4[0x3][1]=0x10;
 song4[0x4][0]=0x56;
 song4[0x4][1]=0x10;
 song4[0x5][0]=0x52;
 song4[0x5][1]=0x10;
 song4[0x6][0]=0x56;
 song4[0x6][1]=0x10;
 song4[0x7][0]=0x55;
 song4[0x7][1]=0x10;
 song4[0x8][0]=0x51;
 song4[0x8][1]=0x10;
 song4[0x9][0]=0x55;
 song4[0x9][1]=0x10;
 song4[0xa][0]=0x54;
 song4[0xa][1]=0x10;
 song4[0xb][0]=0x50;
 song4[0xb][1]=0x10;
 song4[0xc][0]=0x54;
 song4[0xc][1]=0x10;
 song4[0xd][0]=0x4B;
 song4[0xd][1]=0x10;
 song4[0xe][0]=0x51;
 song4[0xe][1]=0x10;
 song4[0xf][0]=0x52;
 song4[0xf][1]=0x10;
 song4[0x10][0]=0x54;
 song4[0x10][1]=0x10;
 song4[0x11][0]=0x56;
 song4[0x11][1]=0x10;
 song4[0x12][0]=0x52;
 song4[0x12][1]=0x10;

 16

 song4[0x13][0]=0x56;
 song4[0x13][1]=0x10;
 song4[0x14][0]=0x5B;
 song4[0x14][1]=0x10;
 song4[0x15][0]=0x59;
 song4[0x15][1]=0x10;
 song4[0x16][0]=0x56;
 song4[0x16][1]=0x10;
 song4[0x17][0]=0x52;
 song4[0x17][1]=0x10;
 song4[0x18][0]=0x56;
 song4[0x18][1]=0x10;
 song4[0x19][0]=0x59;
 song4[0x19][1]=0x10;
 song4[0x1A][0]=0x00;//end of song, null value for note
 song4[0x1A][1]=0x00;//end of song

 TRISC = 0x00; //Port C is an output port to the FPGA
 TRISA = 0x17; //Port A has four input ports, 2 from A/D, 2 digital
for song select[1:0]
 //RA0, RA1 are set analog, and RA2, RA4 are
set digital

 ADCON1 = 0x04; //A/D with 3 analog, 5 digital and internal voltage
references
 ADCON0 = 0x81; //turns on A/D
 /*wait 33 cycles (12 microsecs) for A/D required acquisition time*/
 for(i=0x0; i < 0x21; i++) {//33 in decimal = 0x21
 temp += i; //delay variable
 }

 PIR1bits.ADIF = 0x0; //clears A/D interrupt flag
 PIE1bits.ADIE = 0x1; //set up A/D interrupt
 RCONbits.IPEN = 0x1; //enables priority levels on interrupts
 INTCONbits.GIE = 0x1; //set up interrupts
 INTCONbits.PEIE = 0x1;
 INTCONbits.TMR0IE = 0x1; //enable timer interrupt
 INTCON2bits.TMR0IP = 0x1; //set timer0 as high priority interrupt
 IPR1bits.ADIP = 0x0; //set A/D as low priority interrupt
 ADCON0bits.GO = 0x1; //Run A/D

 //start timer
 TMR0H = 0xFE;//set timer high value
 TMR0L = 0xBA;//set timer low
 //timer set to 65210 so that timer interrupts at 60hz
 T0CON = 0x87;//16bit counter with 1/256 prescale and start counter
 while(1) {//runs continuously except when interrupts occur
 r = 0x00;//restarts song
 while (note != 0x00) {//runs until table ends and then loops
 //set up SPI
 SSPCON1 = 0x22; //config sspcon
 SSPSTATbits.SMP = 0x1; //config sspstat
 SSPSTATbits.CKE = 0x1; //config sspstat
 if(shoeRtrigger || shoeLtrigger) {
 //set for loop time equal to duration
 for(d=0x00; d < duration; d++) {
 for(i=0x0000; i < 0x08ff; i++) {
 //scales-up each duration increment
 if (shoeRtrigger) {
 shoeRtrigger = 0x00;

//reset trigger
 shoeLtrigger = 0x00;
 //double triggers will result in music only played on the right shoe
 note = note | 0x80;
 //accesses the MSB makes it 1 (=rightshoe)
 SSPBUF = note;
 //output note data to FPGA
 SSPCON1 = 0x22;
 //config sspcon

 17

 SSPSTATbits.SMP = 0x1;
 //config sspstat
 SSPSTATbits.CKE = 0x1;
 //config sspstat
 d=0x00;
 //resets duration count if triggered again
 }
 else if(shoeLtrigger) {//shoe left trigger
 shoeLtrigger = 0x00;

//reset trigger
 SSPBUF = note;
 //output note data to FPGA
 SSPCON1 = 0x22;
 //config sspcon
 SSPSTATbits.SMP = 0x1;
 //config sspstat
 SSPSTATbits.CKE = 0x1;
 //config sspstat
 d = 0x00;
 //reset duration counter if triggered again
 }
 }
 }
 SSPBUF = 0x0F;//stop playing music after duration is met
 }
 }
 }
}
#pragma interruptlow AtoD //interrupt when A/D is finished
void AtoD(void) {
 char i;
 char temp;
 temp = 0x0;
 if (ADCON0bits.CHS0 == 0x0) { //if A/D right shoes was just run
 shoeRpres = ADRESH; //shoeR is assigned to A/D value
 ADCON0bits.ADON = 0x0; //turn A/D off
 ADCON0bits.CHS0 = 0x1; //change to channel 1
 ADCON0bits.ADON = 0x1; //resets turn on A/D
 PIR1bits.ADIF = 0x0; //clear A/D interrupt flag
 PIE1bits.ADIE = 0x1; //set up A/D interrupt
 INTCONbits.GIE = 0x1; //set up interrupts
 INTCONbits.PEIE = 0x1;
 temp = 0x0;
 for (i=0x0; i < 0x21; i++) {//waits for A/D to acquire channel
 temp = temp + 0x1;
 }
 ADCON0bits.GO = 0x1;//Run A/D left shoe
 }
 else {//if A/D left shoes was just run
 shoeLpres = ADRESH; //shoeL is assigned to A/D value
 //does not clear A/D interrupt flag until A/D is run again
 ADCON0bits.ADON = 0x0; //turn A/D off
 ADCON0bits.CHS0 = 0x0; //change to channel 0
 ADCON0bits.ADON = 0x1; //resets turn on A/D
 PIR1bits.ADIF = 0x0; //clear A/D interrupt flag
 PIE1bits.ADIE = 0x1; //set up A/D interrupt
 INTCONbits.GIE = 0x1; //set up interrupts
 INTCONbits.PEIE = 0x1;
 }
}

#pragma interrupt CheckShoes//timer interrupt
void CheckShoes(void) {
 char s; //select song bit
 s = PORTA & 0x14; //0x00 for "song 1", 0x04 for "song 2", 0x10 for "song 3", 0x14
for "song 4"
 if (s != shold) {
 r = 0x00;
 }
 shold = s;
 INTCONbits.TMR0IE = 0x1;//re-enable timer

 18

 TMR0H = 0xFE;//set timer high value
 TMR0L = 0xBA;//set timer low
 INTCONbits.TMR0IF = 0x0;//reset timer interrupt flag
 T0CON = 0x87;//16 bit counter go
 if (shoeRpres > 0xC0) {//threshold is 0xB0
 if (shoeRprev == 0x00) {//shoe was not already pressed
 shoeRtrigger = 0xff;
 if (s == 0x00) {
 note = song1[r][0x0];//note read
 duration = song1[r][0x1];//duration read
 }
 else if (s == 0x04) {
 note = song2[r][0x0]; //note read
 duration = song2[r][0x1]; //duration read
 }
 else if (s == 0x10) {
 note = song3[r][0x0]; //note read
 duration = song3[r][0x1]; //duration read
 }
 else {
 note = song4[r][0x0]; //note read
 duration = song4[r][0x1]; //duration read
 }
 r++; //moves to the next note
 }
 else { //shoe was already pressed
 shoeRtrigger = 0x00;
 }
 shoeRprev = 0x01;//sets the current state to on
 }
 else {
 shoeRtrigger = 0x00;
 shoeRprev = 0x00;
 }
 if (shoeLpres > 0x90) { //threshold was empirically determined and set
 if (shoeLprev == 0x00) { //shoe was not already trigger
 shoeLtrigger = 0xff;
 if (shoeRtrigger == 0x00) {
 //we check that right shoe was not trigger to avoid pulling two
notes at the same time
 if (s == 0x00) {
 note = song1[r][0x0];//note read
 duration = song1[r][0x1];//duration read
 }
 else if (s == 0x04) {
 note = song2[r][0x0];//note read
 duration = song2[r][0x1];//duration read
 }
 else if (s == 0x10) {
 note = song3[r][0x0];//note read
 duration = song3[r][0x1];//duration read
 }
 else {
 note = song4[r][0x0];//note read
 duration = song4[r][0x1];//duration read
 }
 r++;//moves to the next note
 }
 }
 else { //shoe was already triggered
 shoeLtrigger = 0x0;
 }
 shoeLprev = 0x01; //sets the current state to on
 }
 else { //shoeLpres <= 0x90
 shoeLtrigger = 0x00;
 shoeLprev = 0x00;
 }

 /* Can only accept one trigger at a time.
 The right shoe has priority, and if the user jumps with both feet

 19

 only a note on the right shoe will play
 */

 if (note == 0x00) {//if the end of the song has been reached
 r=0x00; //repeat song
 }
 PIR1bits.ADIF = 0x0;//clear A/D interrupt flag
 ADCON0bits.GO = 0x1;//Run A/D for shoeR
}

 20

Appendix B: FPGA Code and Schematics for Note Decoder/Speaker
Driver

(SEE NEXT PAGE)

 21

Appendix C: Musical Note Encoding

Note Frequency (Hz) Divider index = 20 MHz / Freq / 2

C5 523.25 19111

C
#
5/D

b
5 554.37 18038

D5 587.33 17026

D
#
5/E

b
5 622.25 16070

E5 659.26 15168

F5 698.46 14317

F
#
5/G

b
5 739.99 13513

G5 783.99 12755

G
#
5/A

b
5 830.61 12039

A5 880 11363

A
#
5/B

b
5 932.33 10725

B5 987.77 10123

*For lower octaves (3 and 4), divider indices are shifted by 1 and 2 in hardware

