Microprocessor-Based Systems (E155)

Lab 1: Utility Board Assembly

Introduction

In this lab you will assemble and test your pMudd Mark V.1 utility board containing an Altera Cyclone
IV FPGA, Atmel SAM4S ARM Cortex-M4 microcontroller (MCU), Flash configuration memory,
LEDs, switches, and a clock oscillator. You will be using the board for the remainder of the semester,
so it is very important to assemble it properly. But don’t panic! You’ll quickly learn to troubleshoot
and repair issues, and you are provided an automated test system to check that the microcontroller and
FPGA are functional. If you totally cook your board, you may obtain parts for another one from the
stock room.

Learning Objectives
By the end of this lab you will have...

= Learned how to solder

= Assembled and tested your pMudd Mark V.1 utility board

= Written a Verilog module to control LEDs and a 7-segment display

* Programed the FPGA with your Verilog code

= Gained confidence in building, assembling, testing, and debugging circuits
» Interfaced the 7-segment display to the utility board

Requirements

Follow the steps in this guide to test and assemble your uMudd Mark V.1 utility board. Write some
Verilog code to exercise the FPGA using the switches, LEDs, and a 7-segment display to ensure your
board is operational. Simulate and synthesize your code, then burn it onto the Flash memory and re-
test the board. Hook up a 7-segment display and demonstrate that it works.

Background

In the 1980’s and 1990’s, digital design projects were built from a truckload of chips, each containing
a few logic gates such as 74xx series logic gates or simple programmable array logic chips (PALSs).
Such projects involve placing and wiring together dozens of chips on a breadboard. It was easy to
make a wiring mistake or burn out a chip and spend hours tracking down the problem. Now you can
perform all of your digital logic on a single field-programmable gate array (FPGA) to greatly reduce
the necessary wiring and number of chips. Later in the course, you will use the onboard Cortex-M4

1-1

microcontroller to write programs in assembly language and C that can interface with external
hardware and the FPGA.

You will need to connect your FPGA to the real world to get inputs and outputs. In particular, you will
often find it useful to have a clock oscillator, switches, and LEDs. Moreover, the FPGA comes in a
144-pin thin quad flatpack (TQFP) package. This is a surface mount (SMT) part so the pins of the chip
do not go through the printed circuit board (as with the other through-hole parts you’ll be working
with). SMT components are mounted on pads on top of the PCB. Their pins are so small that special
soldering skills and tools are needed to reliably attach them to the board. Your board comes with the
FPGA, Flash memory, and the microcontroller already attached, but you will get to solder the rest,
including a few easier SMT components.

The FPGA you will use in this course is the Altera Cyclone EP4CEG6, which contains 6,272 Logic
Elements. You can find the datasheet on the class web page. You will need to become familiar with
the internals as you progress in this class.

The board was designed to maximize your access to the capabilities of the FPGA and MCU from a
breadboard. Therefore, as you will notice, the board has a single row of 58 header pins (on one of the
long sides of the board) that give you access to many of the FPGA and MCU pins. The other pins of
the microcontroller and FPGA are power, ground, unused, or internally wired. Furthermore, the pins
are labeled for your convenience. The other characteristics of the utility board will be explained later,
in the Discussion section of this guide.

The pMudd Mark V.1 board schematic is at the end of this manual. Study this schematic to understand
what goes on in the board because you will need this information to use and debug your board and are
likely to be asked about some subsystem during your checkoff. The parts in the schematics are labeled
using R for resistors, C for capacitors, and U for units (chips and other large parts).

To maximize your chances of building a functional board, we’ve created a test board which interfaces
with the pMudd Mark V.1 through its edge card connector (the wide and exposed traces on the bottom
of the board). The test board provides power and ground, programming interfaces, and a few LEDs
for debugging. Aside from a few simple components, the test board allows you to test the FPGA and
MCU with minimal assembly.

Component Discussion

The figures at the end of this document include both the bill of materials (BOM) and the utility board
schematic. Major components include the power supply, header pins, clock generator, reset
pushbuttons, the JTAG programmer connector, DIP switches, and LEDs. What follows is more
information about several key components on the board.

Read through and understand this section that describes each of the board components. Identify the
components in the schematic and think about how they operate. The subsequent section will guide you
through the assembly process.

Power Supply

The utility board is supplied power by the header pins Vin and GND. The input supply should be at
least 5 volts. The input is regulated down to 3.3 V, 2.5 V, and 1.2 V to serve various components on
the board. The 3.3 V regulated voltage is also available at another header pin to serve other components
you might want to connect to your board. Be sure not to connect this 3.3V output to another 3.3V
supply: the two voltages will be subtly different and will cause contention and likely board damage.
Also, as with any supply voltage lines, don’t short the 3.3 V output to ground.

In the lab, the easiest way to supply power is from a 5 V benchtop power supply to the Vin header pin.
If you do not have a power supply available, a DC transformer is an inexpensive alternative. For
untethered applications such as robotics, you can also use a battery pack providing at least 5 V.

The FPGA 1/0’s will operate at 3.3 V, which we will call Vcc. The FPGA contains tiny logic
transistors that would burn out at 3.3 V, so the 1.2 and 2.5 V supplies are needed to operate the digital
logic and the analog circuitry within the FPGA.

Header Pins

The board provides one 58-pin row of male header pins that tap out signals from the FPGA, MCU,
LEDs, switches, and power and ground. The header pins will be installed along the left side of the
utility board.

Additionally, the board has a 18-pin edge card connector at the bottom of the board for debugging.
This exposes power supplies as well as configuration interfaces, status pins, and some I/O for the
MCU and FPGA. We’ve built test boards that interface through this connector and allow you to test
that your microcontroller and FPGA are functional with minimal board assembly.

Clock Generation

In digital electronics, the term clock refers to a square wave that oscillates between GND and Vcc.
Typically, clocks are used to sequence the action of a circuit. For instance, a flip-flop samples its input
every time the controlling clock rises from logic 0 to logic 1. The clock signal is sent to the FPGA and
MCU. The utility board has a 40 MHz clock signal provided by a crystal oscillator.

Reset Pushbutton

There is one reset pushbutton switch on the board which resets the FPGA. Upon reset, the FPGA, will
have its memory cleared. If the PROM is programmed, the FPGA will immediately reprogram itself
from the PROM. You will notice that these pushbuttons actually have 4 pins. However, only two pins
are used, while the other two are left unconnected (and simply provide mechanical stability).

There are an additional two pushbuttons which reset and erase the MCU. When the reset pushbutton
is pressed, the microcontroller resets its internal state, and begins executing program code from the
base of its program memory. The erase pushbutton, however, erases all internal microcontroller
memory - this includes any code which you’ve uploaded.

JTAG Programmer Jack
In the top right corner, the double row of header pins (marked JTAG) is for programming the FPGA.

The small 10-pin connector in the bottom right corner provides another JTAG interface for
programming the MCU.

DIP Switches

The DIP switches provide a convenient source of inputs to circuits in your FPGA. When the switch is
closed, it delivers a high output. When the switch is open, a pull-down resistor produces a low output.

LED array

There is a 10-segment, red light-emitting diode (LED) array on the board. The ‘ON’ LED (far left
LED, with the pin header towards you) simply tells that the board is powered ON and receiving 3.3
V. The LED immediately to the right of the ON LED is used by the JTAG programmer. The other 8
red LEDs can be driven by the FPGA or MCU. Notice that there are 8 header pins labeled LEDO —
LED7. These can be used in case you want the outputs of the LEDs for an external device. If a voltage
is applied at one of the LED pins, the corresponding light is off for ground (GND) and on for voltage
3.3V (Veo).

There are a few concerns that must be addressed whenever using LEDs. One is that LEDs glow nicely
when given about 5 mA of current but may burn out when given more than about 20 mA. Therefore,
it is important to include a current-limiting resistor to prevent LEDs from burning out, overheating the

driver, or simply wasting power. A 330 Q[Iresistor does the job nicely, allowing ~ % =10 mA of
current to flow. (In actuality, the current is about half of this. There is a voltage drop across the diode

(about 1.7V for red), which makes the actual current % = 4.8 mA. This is still around the

desired 5-20 mA range and so still works).
FPGA

The FPGA contains a large array of configurable logic blocks (CLBs) and programmable
interconnections. The configuration information is stored in static random-access memory (SRAM)
within the FPGA. Therefore, the information is lost when power is removed, and the device must be
reconfigured each time it is powered up.

The FPGA can be configured via the Programmable Read Only Memory (PROM) on board. On
powerup, the FPGA will serially configure itself from the PROM if the PROM has been programmed.
It will also reprogram itself from the PROM when you push the reset button. Alternatively, designs
can be programmed directly onto the FPGA in the Quartus software via the JTAG connection. This
will overwrite the design already loaded from the PROM but will only last until the FPGA is reset or
the power is disconnected.

Microcontroller

The board includes an Atmel SAM4S4B Cortex-M4 microcontroller. This is similar to the Cortex-MO
in the E85 Nucleo boards, albeit faster, with more powerful instruction set extensions, and with a
larger peripheral set.

This microcontroller can be programmed through the small JTAG connection in the bottom-right
corner of the board. As with the Cortex-MO0, code will automatically execute when power is supplied.
A reset after uploading new code ensures the most recently uploaded code is executing.

Assembling the Board

This section will give you tips on how to assemble the utility board. Following these tips will help
you complete this lab quickly and in a logical way that places the flattest components first to make
soldering easier.

0 Identify the Component Side of the Utility Board

The utility board has two sides. The component side, with the white silk screen markings indicating
component placement, should go up. All components except the 58-pin header are placed on the
component side. The through-hole parts (except the 58-pin header) are soldered on the reverse
solder side. The surface-mount components are soldered using solder paste on the component side.

Using a multimeter, measure the resistance between the pins labeled Vin and GND on the board,
and verify that the resistance is nearly infinite. If the resistance is low, you have a short circuit on
your bare board and should get a new one. As you assemble your board, occasionally check the
resistance between Vin and GND. If it is ever less than 10 Q, you’ve introduced a short and should
debug it before continuing.

The FPGA should already be soldered to your board. | note: cMOS components such as the
These is a fine-pitch SMT component that requires | FPGA are sensitive to static electricity.
practice to attach without creating solder bridges | Before you touch your board or solder
between pins. If your board malfunctions and you | anything, discharge your body by
suspect a bridged or bad connection on one of the SMT | touching alarge metal object. This is
chips, check the connections under a microscope. On the | 800¢ practice when handling

bottom side of the FPGA is a large ground pad that electronic components in any [ab.
should be soldered to the ground plane of the board.

There is a hole in the board underneath the FPGA for this purpose. Check that the pad on the back
of the FPGA is soldered to the metal ring of the hole and add solder if the assembler neglected to
make this joint. Make sure the iron is touching both the component and ring so the solder adheres
to both.

Similarly, the MCU should already be soldered to the board. While the MCU has less than half of
the pins of the FPGA, it is similarly fine-pitch, and may be the cause of board malfunctions. As
with the FPGA, a good first debugging step is checking the MCU pin solder joints under a
microscope.

When you begin soldering, moisten the sponge. When the iron first heats up, tin the tip by applying
a generous amount of solder all over the tip, then wiping off the excess on the sponge. Periodically
repeat as you work to keep the tip looking silvery rather than black and blistered.

For through-hole components, touch the tip of the iron to the pad on the board at the same time it
touches the lead of the component. Apply the solder to the joint, not the tip of the iron. The solder
should smoothly adhere to both the pad and the component pin rather than balling up on the
component. The connection should appear shiny; a gray color indicates a possible unreliable “cold
solder” joint.

For surface-mount components, apply a small drop of solder paste to each pad. Use tweezers to
place the component into the desired placement. Use the tweezers to hold the component in place
while you touch the tip of the iron to each pad.

If you are in doubt about the quality of your solder joints, ask early on rather than doing all of them
first and discovering that your connections are intermittent or unreliable. Some of the components
will be soldered close to vias (the small holes through the board used to connect between wiring
layers on the printed circuit board). Be sure excess solder does not bridge to the via, creating a
short circuit. When you are done, tin the iron one last time to protect the tip before turning it off.

A Safety Note: You may wish to use safety goggles while soldering, especially if you don’t wear
glasses. Also, be sure to hold the ends of leads as you cut them after soldering so they don’t fly
into the eye of the person working across the room. Solder contains lead, so wash your hands
afterward.

O Insert the Microcontroller Clock Inductor

Before you can test the microcontroller and FPGA with the test board, you need to build the
minimum-viable microcontroller support circuity. For the uMudd Mark V.1 this is the 10 pH
inductor L1. This is a simple through-hole component with no polarity.

o Solder the Oscillator

Next, install the oscillator. This part is a surface mount (SMT) part. Soldering a surface mount
device would be easiest if you had three hands: one to hold the part with tweezers, a second to
hold the soldering iron, and a third to apply the solder. If you do not have three hands, solder paste
is handy. Apply some paste to the pads, then place the part on the board and hold it with tweezers
in one hand while using the soldering iron or hot air tool in the other hand to melt the paste., while
a silvery appearance covering the pad and pin usually means a good connection. If you don’t have
solder paste, another option is to apply a blob of solder to one of the pads, then place the part on
the pad, hold it with tweezers, and re-melt the solder with the iron.

Be mindful of how much solder you use while connecting surface mount parts. Using too much
solder can bridge between pins, causing shorts. Use solder wick to remove the bridge. Excess
solder can also bridge to nearby vias. Finally, extra solder will exert forces on your part as it cools,
which makes it harder to position precisely.

Also be sure the notch on the crystal oscillator chip aligns with the notch on the board’s silkscreen.
O Test the oscillator
Insert the pMudd Mark V.1 into the test board edge card socket, such that the component side of

the board faces the power plugs on the test board. Make sure you insert the uMudd completely
into the test board socket: you should not be able to see traces outside the connector housing.

Once the board is inserted, connect the test board to 5V supplied from a lab power supply through
the two banana plug sockets. Verify that the oscillator was installed correctly by using the
oscilloscope to view the oscillator signal. You should use the analog side of the scope. The probes
should be in the top right drawer of your lab station. Be sure your probe is in the 10x mode to have
the bandwidth to view the fast signal. Make sure to attach the probe ground wire to your circuit
ground. The clock signal is pin 3 of the oscillator chip (not P3 of the headers). Adjust the voltage
and time scales so you can see a nice signal. Use either the cursors or the Quick Measure feature
to verify that the correct frequency clock (40 MHz, which corresponds to a 25 ns period) is being
produced.

O Test the Microcontroller and FPGA

Once the board is inserted and oscillator tested, open projects fpga boardtest and mcu_boardtest
in Quartus Prime and Keil uVision. These are available from the course website in the
Board Testing.zip archive.

Begin by programming the MCU. Connect the Segger J-Link Mini programming adapter such that
pin 1 on the programmer and pin 1 on the test board align, and in the Keil project mcu_boardtest,
press the Load button, and then cycle power to the board. At this point the microcontroller will be
executing test code.

Next, connect the FPGA JTAG programming cable, such that the ribbon points outward from the
test board. Go to Tools -> Programmer, and if necessary, add the file ‘fpga boardtest.sof’. Press
‘program’ and wait for the progress bar in the upper right-hand corner of the window to reach
100%.

The LED marked ‘blink good’ on the test board should be flashing. This illustrates that both the
microcontroller and FPGA are functional. If the light is solid, then the microcontroller is not
functioning. Check that the inductor is properly installed and the crystal oscillator is generating a
40 MHz square wave signal. If the light is completely off, then the FPGA is not functioning.

If you are unable to program the microcontroller or FPGA or find that the pMudd Mark V.1 fails
the ‘blink good’ test, then swap your pMudd with one from the stockroom.

O Insert the Resistor Networks

Next you should install the resistor networks at R7, R8, and R9.

R7 and RS are isolated resistor networks for the LEDs. ‘Isolated’ means that it contains a set of
totally independent resistors. These particular resistor networks are sets of 5, 330 Q resistors. Pins
1 & 2 are one resistor, pins 3 & 4 are another, and so on. Polarity does not matter. You may find

it helpful to bend one pin at each end of the resistor network to hold it in place while soldering.

R9 is a Single-In-Line (SIL) resistor network. ‘SIL’ means that it contains resistors that are all
connected to a single common pin. This particular one is a 5-pin component that has 4, 2.2 kQ

1-8

resistors. Pins 2, 3, 4, and 5 are terminals of the four resistors. Pin 1 is the common pin. On the
board, this is connected to ground. Since R9 is not symmetric, polarity matters. Pin 1 is marked
on the component with a square marking. Similarly, pin 1 on the board is marked with a square
terminal instead of a round terminal. Make sure these are aligned or you may short circuit your
board.

O Insert the Resistors and Bypass Capacitors

Now install the resistors and bypass capacitors. For this board, all of these components are 0805
SMT components. The polarity of these components does not matter so you can insert them
whichever way you’d like. However, some of the components have labels, and it is good practice
to install labeled components in the same direction, making it easy to read them. See Table 1 for
resistor and capacitor values.

The bypass capacitors are important to reduce noise on various voltage lines. Large capacitors near
the voltage regulators are there to supplement the voltage regulator for spikes of current draw.
Though the voltage regulators can supply current sufficient to meet the average demand of the
circuits on the board, they cannot respond quickly enough to deliver high frequency spikes in
current demand. Such spikes would cause the voltage to briefly droop, if the bypass capacitors
were not there to supply the current.

A typical digital system uses several sizes of bypass capacitors. Larger capacitors store more
charge and can deliver more current but react more slowly. Smaller capacitors can rapidly deliver
charge to handle short spikes of demand. Large 10 pF capacitors are placed near the voltage
regulators to supplement their current supply. Smaller 0.1 and 0.01 pF capacitors are placed near
the digital components for the highest effectiveness at reducing noise at their voltage inputs.
Overall, the bypass capacitors reduce the noise on the voltage supplies.

Note that the chips and board have some inherent capacitance as well, so the voltage might be
stable enough even without bypass capacitors. However, noise-related problems are so difficult to
reproduce and fix that it is always better practice to put a generous number of inexpensive bypass
capacitors on the board than to skimp on bypassing and hope the board works anyway.

Part Reference Designations

1 Q resistor R10

1 kQ resistor R2-3

10 kQ resistor R1, R4-6

100 kQ resistor R11-13

0.01 pF capacitor Cl1,C2,C3,C10

0.1 uF capacitor C4,Ce6,C8,Cl11,C12,C13,C15,C17!
2.2 uF capacitor Cl4

4.7 uF capacitor Cl16

10 pF capacitor Cs5,C7,C9

Table 1: Resistor and capacitor component values.

! Note that C17 from the parts list and schematics is mislabeled on the actual board as C18.

1-9

o Install the Pushbutton Switches

There are three small pushbutton switches that come with your kit, to be installed at
FPGA RESET, SAM RESET, and SAM_ERASE. When installing these, you will have to align
it in its holes and push until it snaps into location. Do not put your finger directly underneath the
board because the sudden popping into position could stab your finger. A thin pair of pliers helps
push the legs through. The switch will only align in two positions on the board; either alignment
will work.

O Insert the DIP Switches and LED array

The DIP switches are to be placed in the middle of the board above the LED array. Align the
writing on the DIP switches with the silk screen writing on the board. When installing the LED
array, make sure you align the notch on the part with the square solder pad on the board for correct
alignment.

o Install the JTAG connector

Install the JTAG connectors at JTAGFPGA and JTAGSAM. The connectors are symmetrical, so
rotation does not matter. JTAGSAM is a relatively fine-pitch through-hole part: double check your
solder joints to ensure no bridges have been formed.

O Install the 58-pin Row of Header Pins

This is the only part that is installed on the bottom and soldered on the top (it will be inserted into
the breadboard). Place the part so that the long pins extend below the board, with the black bumper
up against the bottom of the board. The short pins go through the board and are soldered on top.
You’ll be sad if you install it differently and have to chop it out and remove it one pin at a time.
Watch carefully that you do not use too much solder because it may bridge to one of the vias.
When you place the header pins, try to keep all of them perpendicularly aligned so that placing the
utility board in your breadboard isn’t too much of a headache. As the header pins come in strips,
you will need to use one long strip and cut one shorter strip.

Now hopefully you should be done with assembling your board. Before proceeding with the lab,
you should check all of your solder joints. They should look reliable, filling their specific holes in
the board. If some of your soldering looks more like a bubble on the top of the pin, you probably
have a bad connection there. Also look for solder jumping across pins or to vias (solder bridges)
and cold solder joints (gray, dull joints).

After you’ve checked your soldering and verified with a multimeter that there is no power to
ground short on the board, your board is done!

1-10

O Place the Utility Board on the Breadboard

Now you have to place your board on the breadboard. It should fit in the right-most side of the
breadboard.

O Test the Power Supply

After you’ve placed the utility board, connect a red wire from the red Vin banana plug connector
to the upper power row. Then, from this row, connect a wire to the row of pins next to the Vin pin
on the utility board. Then connect a black wire from the GND banana plug connector of the
breadboard to the second power row (below the red wire). Connect this row to the Gnd pin of the
utility board. Make sure these wires do not touch each other.

Without connecting the benchtop supply to your breadboard, turn it on and check that the 0-6 V
scale indicates 5 V. Adjust it if necessary. Please keep the supply set to 5 V. It is good practice to
check the supply before connecting it to your board because the knobs occasionally get bumped
and you don’t want to connect an incorrect voltage that damages your board or causes erratic
operation.

When the power supply is set correctly, turn it off. Get a red and a black pair of banana plugs and
connect the power supply to your breadboard (never connect power circuits while the supply is
turned on). Turn the supply back on. The power LED should turn on. Feel your FPGA and make
sure it does not get very warm. Also check your other components, especially the voltage
regulators. The current from the supply should be around 100 mA. Check the 3.3 V output pin and
confirm that the voltage regulator is producing the correct value. Also check that the capacitors C3
and C6 next to the 1.2 and 2.5 V regulators have 1.2 and 2.5 V on one of their leads.

o Clean Up

Clean up your lab station. Discard the refuse you accumulated while soldering. Tin the iron and
turn it off. Please keep the lab clean and neat as you work because you share it with many others.

1-11

FPGA Design

Your next goal is to write some Verilog modules to test the hardware on your board and operate a
7-segment display. By writing a module to control the LEDs based on the switches and clock, you
will show that these components work and also that the FPGA, PROM, and power supply are
functional. The system should have the following inputs and outputs:

clk input the 40 MHz clock

s[3:0] input the four DIP switches

led[7:0] output the 8 lights on the LED bar

seg[6:0] output the segments of a common-anode 7-segment display

The following tables define the relationship of the LEDs to the switches and clock:

0 | OFF | ON
I | ON | OFF
0 | OFF | ON
I | ON | OFF
0 | OFF | ON

1 ON OFF

S3 S2 | LED6

0 0 OFF
0 1 OFF
1 0 OFF
1 1 ON

Blink at ~2.4 Hz

Table 3 — I/0O Requirements

1-12

The 7-segment display should display a single hexadecimal digit specified by s[3:0]. Be sure
each digit can be distinguished from other digits (e.g. b and 8 should look different). Remember
that you will be using a common anode display. The anode (positive terminal) of all of the LEDs
is tied to 3.3 V through a single (“common”) pin. Each segment’s cathode (negative terminal) is
connected to a pin. Therefore, you will need 7 separate control signals. Remember that a logic 0
applied to the cathode will turn on the segment. The segments are defined as shown below. Let
seg[0] be A and seg[6] be G.

A
F B
G
E C
D

Figure 2 — Seven Segment Display layout
Launch the Quartus Prime software and start New Project Wizard from the File or startup menu.

Your first decision is where to keep your files. Ideally, they would go on your Charlie home
directory. However, Quartus can be painfully slow accessing files on the file server over the
network. An alternative is to keep your files on the local C drive while you are working and then
to copy them back to your Charlie account before you log out. Please clean up after yourself by
deleting the project from the C file when you are done, and remember that it is an honor code
violation to refer to somebody else’s code that was left on a computer. Note that some CAD tools
have trouble with filenames having spaces and other special characters, exceeding 8 characters,
or in paths not starting with a letter drive. The best way to avoid these problems is to choose
short alphanumeric filenames.

Create a working directory for the project such as c:\e155\xx\labl xx where ‘xx’ area your
initials. Name the project labl xx and click Next.

Click Next at the Add Files page, since we will not be adding any existing files to the new
project. Now we will tell Quartus which FPGA we are using. Under Family, select Cyclone IV.
Under Available Devices, select EP4CE6E22C8. If you ever forget which device to use, the part
number is written on the FPGA.

On the next page, select Pick ModelSim-Altera as the Simulation tool and SystemVerilog HDL as

the format. Click Next and verify the settings for the project. When you are satisfied, click
Finish.

1-13

Choose File -> New and create a SystemVerilog HDL file. Save the file as labl_xx.sv in your
project directory and check the box to add the file to the current project. Create modules to
perform the functions described above. The 7-segment display decoder should be combinational
logic. Use a reasonable amount of hierarchy. Name the top-level module labl xx. The 7-segment
display code, for example, will be reused in future labs, so it should be a module of its own.
Every module should begin with a comment section that includes your name and email address,
the date of creation, and a brief summary of its purpose, so that somebody else can understand
what the module does and get ahold of you if they need help. Comment the modules as
appropriate.

Logic Simulation
The next step is to simulate your logic with ModelSim.

Check that Altera has the correct path for ModelSim by invoking Tools — Options. Under EDA
Tool Options, check that the ModelSim-Altera path is

f:\altera\13.0sp1\modelsim_ase\win32aloem

and set it if necessary. EDA stands for Electronic Design Automation and is the industry name
for computer-aided design (CAD) tools for electronic design.

For unknown reasons, Quartus wants you to compile your code before simulating. To do this,
select Processing — Start Compilation to compile your design. Ignore warnings about missing
pin assignments or timing violations.

Invoke ModelSim by choosing Tools — Run Simulation Tool — RTL Simulation. RTL stands for
Register Transfer Level code (your SystemVerilog code). The ModelSim window will open. Get
in the habit of watching the transcript window to look for errors and to familiarize yourself with
what a good run looks like. If you see errors, close ModelSim, correct your Verilog code in
Quartus, and reopen ModelSim.

At this point it is possible that you will see the error “** Error: (vlog-19) Failed to access library
‘work’ at “work”. In that case, open your SystemVerilog file in ModelSim, click the “Compile”
button, find your file in the resulting dialog box, click compile, and click “yes” when prompted
to create the library “work”.

In ModelSim, simulate your design by choosing Simulate — Start Simulation. Click on the +
symbol next to the work library and select your code (labl xx).

If the wave pane isn’t open, open it by choosing View — Wave. View all of the inputs and
outputs of your design by selecting them in the Objects window and dragging them to the Waves

window. In a more complicated design, you may wish to examine internal signals as well.

Manually test your design by forcing the inputs to specific values. In the transcript window, type:

1-14

force s 0000
run 100
force s 0001
run 100
force s 0010
run 100

You should see the led and seg outputs displaying appropriate values. Note that the clock is not
driven and you have not reset any registers so led[7] will be an x.

Check the outputs against your expectations. If you find any discrepancies, fix the code and
resimulate. A helpful shortcut to avoid restarting ModelSim is that you can edit the module by
finding it in under “work” in the library pane, right clicking, and choosing Edit. Make your fixes,
then right click again and choose Recompile. Then type restart -f in the transcript window to
restart simulation without having to set up the waveforms window again. When you return to
Quartus, you’ll find your corrected code.

Pin Assignment

Next, assign pins to relate the signal names in your Verilog code to physical pin numbers on the
FPGA. Launch Assignments — Pin Planner. A table listing all inputs and outputs for the project
should appear. Under Location, type the pin number to associate with the given signal. For
example, SWO is mapped to pin P76, so enter PIN_76 as the value for s[0].

The FPGA pinouts are shown in the Utility Board Schematic. Most of the user input/output (I/O)
pins are tapped out to the headers and labeled on the board silk screen. Some have special
functions; for example, FPGA pin P68 is connected to LEDO. The clock is connected to pin P88
and not to a header pin because a 40 MHz clock would be degraded by the parasitic capacitance
and inductance of the breadboard.

The pin numbers for the LEDs and switches are marked on the board’s silkscreen. For the
outputs for the 7-segment display, you may select any I/O pins you’d like. For example, you
could use pins 51, 52, 53, 54, 55, 58, and 59 since they are contiguous on the board.

Note that the Pin Planner defaults to assuming that each bank of I/O pins receives 2.5 V and uses
2.5 V outputs. However, our system uses a 3.3 V I/O. Fortunately, leaving the voltages at their
default value in Pin Planner works and generates 3.3 V outputs.

7-Segment Display Circuit

The 7-segment display will be used throughout the class for general output of numbers. In this

lab assignment, though, it will be used to output the hexadecimal number entered by the user
through the DIP switches.

1-15

Each segment of the display works as an independent LED. Therefore, the same current-limiting
concern with the LEDs applies to the display as to the on-board bank of LEDs. You can limit the
current into each segment of the display the same way you did for the LEDs on board, adding a
suitable resistor to provide roughly 5-20 mA of current. You can find resistors and other such
components in the supply cabinet or in the stockroom.

Consult the data sheet for the pinout of the common anode dual seven segment display. All seven
segments share the same anode, which should be connected to VCC (3.3 V). Each of the
segments has its own cathode, which can be pulled to 0 to turn on the segments.

Be sure to turn power off before wiring circuits on your board. You can choose either side of the
display to use in this lab. After deciding on which side to use, you will need to connect the Vpp
pin of that side (either Vppl or Vpp2) to 3.3 V. Then connect the input pins of the same side of
the display to the header pins you chose. Remember to add suitable resistor between each of the
inputs to the display and the header pins. These LEDs are common anode LEDs. That is, all the
anodes from the LEDs are connected to a single Vpp (Vppl or Vpp2). You are driving the
cathode of each LED. Given this information, you might need to modify your Verilog file. Do so
in the simplest way possible.

Generating the FPGA Configuration Files

Now you will synthesize your HDL into a programming file to be transferred onto the FPGA.
This outputs an SRAM Object File (.sof) in your project directory that can be used to program
the FPGA directly over JTAG. Be sure your SystemVerilog files are saved, and choose
Processing — Start Compilation. To help sort the many messages that the compilation process
generates, click a tab under the Message area to see only that type of message. If compilation is
successful but generates warnings, check the Warning and Critical Warning tabs for errors
relevant to your design. Warnings about incomplete I/O assignments may be ignored if you have
in fact assigned all relevant I/O pins. Missing Synopsis Design Constraints file warnings and
timing analysis violations may also be ignored.

Note that Quartus seems to crash from time to time while compiling. If it does, restart and try
again. If you find a consistent pattern of what causes the crashes, please let the instructor know.

Launch Tools — Netlist Viewers — RTL Viewer and examine the RTL schematic of your design.
This shows the logic synthesized from your Verilog design. Ensure the hardware matches your
expectations.

Look at the Compilation Report tab. In the Flow Summary, you should see a total number of
registers and pins that match your expectations. Under Analysis & Synthesis, you can see how
the logic blocks and registers are broken down in each module. Under Fitter, the Pin-Out File
should match the pin assignments you intended.

1-16

Programming the FPGA via JTAG

Next, you will load your design onto the FPGA and PROM with an Altera USB Blaster
programming device and the chip’s JTAG? interface. Run Tools — Programmer to bring up the
Programmer window. In the top left corner, check that USB Blaster is selected and use
Hardware Setup to choose it if necessary. In the top-right corner, set Mode to JTAG. Your
labl_xx.sof file should appear already in the programmer window, and list EP3C5E144 as the
associated device. If it does not appear, click the Add File... button and find the file by hand in
your project directory. Be sure the Program/Configure box for your .sof file is checked.

You are now ready to program the FPGA. Connect the USB Blaster to the JTAG port with the
ribbon cable leading off to the right of the board. Turn on the power supply. In the programmer
window, press Start to begin the process. Check the Messages pane for programmer output, and
verify that there were no errors. Look for “Configuration succeeded” and “Successfully
performed operation(s)” messages.

At this point, with your design loaded, you should see the hexadecimal digit currently set on the
switches displayed on the 7-segment display. Debug your design until it is fully functional. Good
luck!

If you have problems, the following checklist may help:

1. Check the voltage outputs on each of the voltage regulators. Also check it on the adjacent
capacitors (C3, C6, C9) to detect a bad connection between the regulator output and the PCB.
This is one of the most common soldering problems.

2. Check that the power supply is hooked up correctly. Measure with the voltmeter that you
have 5 volts between the Vi, and GND pins on your FPGA board. Check that the current out
of the power supply is less than 200 mA. If the current is high, look for power/ground shorts
on your board. Otherwise, if the voltage is incorrect, adjust the power supply to produce the
correct output.

3. Ifthe JTAG programmer indicates “Program Failed,” first, make sure your board is powered,
close the Programmer window and try again. Sometimes programming fails if you power on
your board after you open the Programmer window. If programming still fails the problem
could be in your board or in the programmer. If programming works on a classmate’s board
using the same programmer, you may have a bad solder joint or other board error. If the
programmer doesn’t work on multiple boards, please report it to the instructor.

4. Ifyour power is good but the FPGA still refuses to respond, check the NCONFIG signal (on
the RESET button). It should be 1 when the button is not pressed.

5. If the LEDs flicker on and off when you tap on the board or toggle switches, you probably
have a loose connection or marginal solder joint somewhere. Two common problems in the
past are poor banana plugs that are too small for the receptacles and inadequate solder joints
on the voltage regulators.

2 JTAG stands for the Joint Test Access Group. The JTAG interface is a serial interface used to
communicate with chips on a board using a few pins during testing and configuration. JTAG is
also called Boundary Scan.

1-17

6. If the LEDs do something but do not function correctly, the problem is likely in your Quartus
schematics or implementation. Check the implementation report file that the pin mapping is
what you want. Check for any logic bugs.

7. When exiting the programmer window, don’t save anything. That way the design
programmed to the PROM or FPGA is always the most recent build.

Programming the PROM with the Serial Flash Loader

Programming over JTAG only changes the volatile SRAM of the FPGA itself and does not write
to the non-volatile PROM. The design will only stay on the FPGA until it is reset or power is
disconnected (try it!). Programming the PROM directly would require adding an additional
programmer port to the board, connected to the Active Serial (AS) interface between the PROM
and the FPGA. Instead, it can be programmed over JTAG through the FPGA, using the Serial
Flash Loader function in Quartus. JTAG is used to write a temporary design to the FPGA that
effectively bridges the JTAG and AS interfaces, allowing the USB Blaster to talk to the PROM
without being physically connected to it.

JTAG AS I I
- interface FPGA interface
usB Y A PROM

Blaster
Serial Flash Loader
program

Figure 3 — Serial Flash Loader block diagram. A program bridges the JTAG and
Active Serial interfaces to let the USB Blaster talk to the PROM.

When debugging your design, simple JTAG programming has advantages, namely that it is a
much faster process. Losing the contents of the FPGA with every reset is less important if your
design is being changed with every test. The Serial Flash Loader is much slower than JTAG
programming and requires extra steps to complete, but should be used whenever the design is
unlikely to be changed in the short term.

Always write your finished labs to the PROM before checkoff. Also remember that whatever
design you last programmed to the PROM will be loaded immediately when the FPGA turns on.
Forgetting this could cause you massive confusion when debugging, especially in Labs 5-7 when
old code on the FPGA might interfere with pins you are trying to use with your ATSAM.

Compile your project to generate an up-to-date .sof file. Next, you will convert the .sof to a
JTAG Indirect Configuration (.jic) file for use with the Serial Flash Loader. Choose File —
Convert Programming Files. Set the programming file type to JTAG Indirect Configuration File
and the configuration device to EPCQ16. Click Advanced and enable the “Disable EPCS ID
check” option. Pick a simple file name, such as labl_xx.jic.

1-18

Under Input Files to Convert, select SOF Data and click Add File. Find your labl_xx.sof. It is in
the output_files directory. Press OK. Now highlight Flash Loader and click Add Device. Select
Cyclone IV E in the left pane, then EP4CE6 in the right pane, and click OK. Click Generate and
verify the .jic was generated successfully, then close the window.

Launch the Programmer and remove your old lab1l_xx.sof from the programming file list. Now
add the lab1l_xx.jic file you just generated. Check both Program / Configure boxes and click
Start. Watch the Messages pane for any errors. When the process completes, your design is
loaded on the PROM. It will automatically be loaded onto the FPGA after reset or power-on until
the Serial Flash Loader is used again to replace it. If you choose Tools -> Options -> Initiate
Configuration after Programming, you won’t have to hit reset after the first programming.

If you want to erase the EPROM, change the EPCQ16 option from Program/Configure to Erase
and click Start again.

When you are finished, save you files somewhere (such as your network drive or a USB key) and
remove the files from the local machine. Good luck!

What to Turn In

For this lab and all subsequent ones, turn in a lab report. The report should not exceed one page of
text, plus schematics, code, and anything else appropriate, such as diagrams, simulation results, or
calculations. The report typically has the following sections:

e Introduction: Briefly explain what was done.
e Design and Testing Methodology: Explain how you approached the design of this
assignment from both a software and a hardware standpoint (as appropriate). Include
how you tested your design. These tests should convince the reader that the
requirements of the assignment have been met.
e Technical Documentation: Include your Verilog code and schematics of your circuits.
= Quality and clarity of your code is important. Make sure it is adequately
commented. Succinct code using standard idioms is best.

= Schematics of your breadboarded circuits should be sufficient for another engineer
to understand and reconstruct the circuit on the breadboard. Always use standard
symbols for standard components such as resistors, switches, transistors, diodes,
etc. Give the component name or part number such that the reader could order parts
and replicate your circuit, or look up components in a datasheet where necessary.
The reader shouldn’t have to open Quartus to relate your Verilog code to the
schematic, and shouldn’t need to refer to a data sheet to wire external components
or understand what the connections are. Don’t assume that the reader has
memorized the pinouts of any chips. Therefore, you’ll need to label both the pin
number and pin name for each pin you use from the FPGA board or other
component (e.g., 7-segment display). There is no need to draw any of the circuitry
on the board; just refer to it by the pins number and name.

e Results and Discussion: Did you accomplish all of the prescribed tasks? If not, what
are the shortcomings? How might you address them given more time? As appropriate,

1-19

how did the design perform (ex. How fast/accurate/reliable was it?). Is there anything
you would do differently if you were to redo the lab? Is there anything else interesting
worth mentioning?
e Conclusions: Briefly summarize what was done and how it performed.
= How many hours did you spend on the lab? Any comments, suggestions, or
complaints about the assignment? This will not count toward your grade, but will
help refine the lab for the future.

The report does not need to be long but should be complete. Some individual questions may not
apply to this particular lab but are listed to give you a general idea of what is desired. Future reports
will follow a similar format and the questions may be more applicable in these instances.

Have your lab checked off by the instructor. You will need to demonstrate that the board and 7-
segment display operate correctly. You will also be asked a question about some part of the lab or
your board. You should be thoroughly familiar with all of the lab and the components of your
board to be able to answer the question. The oral exam is typically in the form of a “Fault-Tolerance
Question.” What would happen if a particular wire is broken or a pin is shorted to Vcc or GND?
Be prepared for any other questions about your lab, however.

Acknowledgments:

This lab manual and previous utility boards have been developed by Profs. Matthew Watkins,
David Money Harris, and Sarah Harris, Alex Alves 16, Gourav Khadge ’15, Leo Altmann ’11,
Christian Jolivet *11, Elizabeth Reynolds *02, Marty Weiner 02, Fernando Mattos 00, and Eliot
Gerstner ’99.

Appendix: FPGA Initialization Sequence

If your FPGA board is assembled incorrectly or your PROM is programmed wrong, you may
find that your FPGA fails to initialize. This sheet documents the initialization process to help you
track down your problem. The initialization sequence is described in more detail in pages 8-6
through 8-10 of the Cyclone 4 Device Handbook (vol. 1).

The MSEL[2:0] pins on the FPGA are used to select a configuration scheme. They are connected
to GND, VCC and GND respectively to indicate Active Serial configuration at 3.3V levels.

When the FPGA powers on or you release the reset switch (pulling nCONFIG from low to high),
the device begins initialization, pulling nSTATUS and CONF_DONE low while clearing internal
memory and preparing for configuration. In <200ms, nSTATUS is then pulled high to indicate
the start of configuration.

During configuration, the FPGA generates a 40 MHz clock via an internal oscillator and
transmits the signal via DCLK to the EPCQ16 PROM. The PROM responds by sending serial
configuration data back over the DATA connection. The FPGA has 3,000,000 bits of internal
state, so serial configuration via PROM should complete in about 100ms. When configuration is

1-20

complete, CONF_DONE is pulled high again, and the device enters user mode < 0.5ms later. If
CONF_DONE is never asserted or nSTATUS is pulled low after initialization completes, a
configuration error has occurred. Check the soldering on the FPGA and PROM. CONF_DONE
is also output to the second LED on the 10LED array.

The configuration waveforms are shown below:

nCONFIG /
nSTATUS \ /
CONF_DONE \ /o
DATA SRR

1-21

98'LS $ 1ej01
660 S$[6€0 ST AaN-0€07-£88| A&xibig g-IvvIN000 0796 uonelodiod DXL LA J10}e|19S0 ZHIN 0
vee S|lwver ST AN-6068AVS| AexiBig M-Q-4-T0-SOT-HS14 EEERS WYSOVLr 10J02UU0D PEOJUMOP WY'S
0T0 S$|[oro S|t AN-Y109-41-¥00T42£] AexiBig JY-HI-MO00T4LL "0U| Suinog 17 Jopnpul 4l 0}
sv0 S|svo S|t AN-T-T9€CT-06%| AoIBIA| TETINGLPVABIETTLYD EOUSWY YUON SOIlU0109|T ejein|y 910 Joyoeded 4 /'y
o Ss|tvo st aN-T-TTSZT-8/%| Aoxbig V¥1VYZ5279575080 uonesodion XAV ¥10 Joyoeded 4l z'z
wo S$|vro $|¢ aN-T-95%9-9.¢T| Aaxbig ONNN4dN90TVIZ1D| Ou| ‘edudwy SOIUBYIBIN-01}08|3 Bunsweg 60 ‘10 ‘SO Joyoeded 4 o}
oro sf|oto $|v AN-T-799T-06%| AaMBIa| ATOVNEOTHTLYITTNYD EOUSWY YUON SOIlU0109|T ejein|y 010 ‘€020 ‘LD Joyoeded 4 10°0
080 S$|oto $|s8 aN-T-£00T-9/2T| Aaxbig ONNNDEZ¥0T4TZ1D| Ouj ‘eouswy solueyos|y-o13098|3 bunswes| 210 ‘G610 ‘€10 ‘21D ‘11D ‘80 ‘90 '¥0 Joyoeded 4 |°Q
0£0 S|oro s|e AN-1O¥X00Td| Aexbig AYOTIAID9-143 SjusUOdwo) d1U0I}09|] JUOSBUEH gL ‘Ziy L1y SJ0}sISaI UM 001
6€0 S$|[e6€0 |1 AN-104713004T-M4-508054D| Aaxbid| 473004T-M4-50805HD "oU| suinog 0Ly Joysisal §y |
oro S$|oto $|v aN-1OvX0Td| Aaxbig AE0TIAID9-143 sjusuodwo) 01uo}Od| dluoseued 9 ‘G ‘P ‘1Y Joysisal M 0L
0c0 S|oro s|c AN-1OW)0'Td| Aexbig ATOTIAID9-143 SjusUOdWOo) d1U0I}09|] JIUOSBUEH e ‘2 10381881 UM |
150 $|[1s0 S| AN-4122Z-T0T-XS09%| Aexbig 4122¢-T0T-XS09% "oU| suinog /M YOM}BU J0JsISal ¥ UM 2'2
59z S|lzer $e AN-9€-T0-300v626| AaMBig NY-9€-10-00v676 NE LN Jopeay uld-gg
9,0 $|9s0 ST aN-09TEEY| AaMibig T-60€€0TS 00A 1 vOd4OVIr| Joy8uuoco peojumop yod4
150 S$|ez0 S|t AN-41TE€E-T-X0T9%| AexiBig 41TEE-T-X0T9Y saunog 64 ‘8 Yomjeu Jojsisal G U 0€€
s8c $[ssr ST aN-0T0T-£9| Aexibig d1/49-MI0TaX1-VSS xawn oLN Aeue 37 yuswbes-0|
£80 S|e6r0 $|¢ AaN-58008d| Aexibig IN03Vd-OAI oluoseued £9d ‘z9d ‘19d yoyms uopnqysnd 1 SdS
9T'T S$|9rT S|t AN-T-SETT-L6%| Aaxiibig Y1D€ELALTTAN 1S ¢n| Jojeinbasnodoip-mol A €°¢
9aT'T S$|o9rT ST aN-T-€€2T-2L6%| Aaxibig ¥10521a/TTal 1S Zn| Joyeinbas ynodoip-moj A G2
9T'T Sf9r1 ST aN-T-TECT-L6%| Aaxibig 1M12T1A/TTAl 1S L[4o3enbal nodoip-mol A 271
60 S$|[zeo S|t AN-0LTLHO| Aexibig ¥0959L lluAess 6N youms d1a peno
€6 S|e6e ST AN-NY-VavSYINVSLY | AexiBig NY-vYaSrIAVSLY ABojouyos} diyoool 8N aYSYNVS [auy
seL s|ses S|t aN-0vvE-vvs| Aexibig N8ISY9TDId3 I8y SN usel} Yod4
S6TT S| S6TT ST aN-9v/T-vvS| Aedibiag N82¢¢3930%d3 ela)y 9N VOdd Al 8UopAD
€0'ST S|€0st ST SHN2UI) padueApY 90d
o1 [eroL | @d1d yun | Aauenp N/d 121jddns | 431jddng N/d 48inyoeynue iy lainlaejnuen layluap| yed uonduasag Med

1-22

Josh Brake
1-22

1

P127_PB1L
P126_PB10

/MOST
/MISO
/NPCSO

P113_PA14/SPCK
P112_PAI13
P111_PAI2
P110_PALY,

VEE33[D—f

= 'GOODCONNECTION
vcess 2l P83_PB3/SW3
GND =1 GND
P28 veess
vee2[o—55 <] p8o_pB2/SwW2
P30 GND
P31 veei2
P32 P77_PB1/SW1
P33 P76_PBO/SWO
P34 P75_PA7/LED7
<ﬁmNmmﬁ — P74_PAG/LED6
GND — P73_PAS/LEDS
P R ————— epaceseaacon
m mm m mm mm &D&,,,, 7
=| 72| | 5|53 @g| | |sme
R EEIEEE a2l |l582
s i 83]] 583
mm um mHm 0 A e
B8 3§31 ¥ ZQOEQID BES 85388
3888
35533
SEERZ
ge35y
|
g
gaaz
Bede
oees
EBER
epciesion
DIPSWITCH 4RESNET

IJTAGFPGA
HEADER-5X2POL

SAMTMS

JTAGSAM
HEADER-5X2POL SaTCK
veess 2
73
e e SAMIDO
G X
SAMTDI

NSTATUS
vees3
CONF_DONE

TeK GND

vees

VIN(S+)
GND
veess

P110_PA11/NPCSO
P111_PAI2/MISO
P112_PA13/MOSI
P113_PA14/SPCK

PA21/AD8/MOST1
PA22/AD9/MISOL
PA23/SCKL
PA24/NSSL

PB13/DACO
PB14/DACL

SBPINHEADER

vees3

P68_PAO/LEDO

P6O_PA1/LEDL

P70_PA2/LED2/SCKO _Hv|m>>\(f
P71_PA29/LED3 Hv|f<<<b

P72_PA30/LED4

P73_PAS/LEDS

P74_PAG/LEDG

P75_PAT/LED7

PB14/DACL

P68_PAO/LEDO
P69_PA1/LED1
GND.

VCC33

P72_PASO/LED4
P71_PA29/LED3
GND

SAMNRST

PA28
Bimuco
P73_PAS/LEDS
P74_PAG/LEDS
SAMIDI

PA2S
PA26
/MISO
PAS
PAS
//LED7

P110_PA11/NPCSO
PAL0

P75_PAT)

P111_PA12

CONNECTOR
PCIE-036-02-X-D-TH
A B1

'VDDPLL
VCC33
GND
P76_PBO/SWO
P77_PB1/SW1
P80_PB2/SW2
P83 PB3/SW3
VCC33
VDDOUT
PA17/ADO
PA18/AD1
PA21/AD8/MOSI1
VDDOUT
PA19/AD2
PA22/AD9/MISO1
PA23/SCK1
PA20/AD3
:]
SREagETE
Speagnye
88355243
~ 3238
58
TCK
DO
™S
TDI
VCCe2s
GND
VCC33
savs
SAMTCK
VCC12
CONF_DONE
‘GOODCONNECTION
NSTATUS
NCONFIG
SAMNRST
SAMTDO
Sy
SAMERASE
U6

R8-A

B1 SAMNRST
I|.E <

LEDIO

U

REVISION RECORD

ECO NO: APPROVED:

B0

VING+) 2]

VING+) 2]

111725

U3:vee33

o
<
5

5
8
S

2
10uH

L1
IND-MOLDED
1

VDDPLL

=4
4.70F
o
z
[}

VDDOUT
\m cua MH c12 u! c13

2.20F__ 100nF 100nF

GND m

VINGH) >3 TN

—S0 apy/anD

COMPANY:

HMC Engineering

TITLE:

DRAWN:
K. Pezeshki No

DATED:

lember 27th,

2018

uMudd Mark V.1

CHECKED:
K. Pezeshki

DATED:

QUALITY CONTROL:

DATED:

RELEASED:

DATED:

DRAWING NO:

SCALE:

sheer: lor 1

1-23

Josh Brake
1-23

