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Abstract

In digital signal processing (DSP), the fast fourier transform (FFT) is one of the most fundamental and useful
system building block available to the designer. Whereas the software version of the FFT is readily implemented,
the FFT in hardware (i.e. in digital logic, field programmable gate arrays, etc.) is useful for high-speed real-
time processing, but is somewhat less straightforward in its implementation. The software version is generally
constrained to execute instructions serially (one at a time) and is therefore severely constrained by the processor
instruction throughput. The hardware FFT performs many of its processing tasks in parallel, hence can achieve
order-of-magnitude throughput improvements over software FFTs executed in DSP microprocessors. However
straightforward the FFT algorithm, when implementing the FFT in hardware, one needs to make use of a number
of not-so-obvious tricks to keep the size and speed of the logic on a useful, practical scale. We do not present
this document as an exhaustive study of the hardware fourier transform. On the other hand, we hope thet reader
comes away with an understanding on how to construct a basic, but useful FFT calculator that can be the basis
for deeper study as well as future improvements and optimization.

In this article, we focus on the Cooley-Tukey Radix-2 FFT algorithm [6], which is highly efficient, is the
easiest to implement and is widely used in practice. We review the mathematical basis of the algorithm and its
software implementation before launching into the description of the various system blocks needed to implement
the hardware version of the FFT. We then describe how the FFT is instantiated in a field programmable gate
array (FPGA) and used in a real system. It is hoped that by reading this document, the reader will have a good
grasp on how to implement a hardware FFT of any power-of-two size and can add his own custom improvements
and modifications.

I. INTRODUCTION

A. The DFT: Discrete Fourier Transform

The DFT is a linear transformation of the vector xn (the time domain signal samples) to the vector Xm (the

set of coefficients of component sinusoids of time domain signal) using

Xm =
N−1
∑

n=0

xnw
nm, (1)

where N is the size of the vectors, w = e2iπ/N are the “roots-of-unity” (twiddle factors), and 0 ≤ m < N . A

brute-force summation requires on the order of N2 operations to compute. This rapidly becomes intractible as

the number of samples becomes large. A very useful strategy is to recursively split the summation like this:

Xm =

N/2−1
∑

n=0

xnw
nm + wmN/2

N/2−1
∑

n=0

xn+N/2w
nm, (2)
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or, like this:

Xm =

N/2−1
∑

n=0

x2nw
2nm + wm

N/2−1
∑

n=0

x2n+1w
2nm. (3)

We see immediately that in both cases, that any DFT can be constructed from the sum of two smaller DFTs.

This implies that we can attack the problem using the “divide and conquer” approach. The summation is applied

recursively to ever-smaller groups of sample data providing us with an algorithm whose computational cost is

proportional to N log2 N ; a substantial savings in effort! As a result, we must work with vector sizes that are

powers-of-two. (In reality, it is not much of a drawback if we “pad” unused samples with zeros.)

We note that there are different ways to partition the summations. We have shown two of the most popular

methods in (2) and (3). The expression in (2) represents the so-called decimation-in-frequency (DIF) split,

whereas (3) is the decimation in time (DIT) split. It is the DIT form of the FFT that we concentrate on in this

paper.

It is worth mentioning that other splits and ordering methods exist. The Winograd algorithm, for example,

uses a special ordering to reduce the need for complex multiplications [1], [2]. Other algorithms rely on the

Chinese Remainder Theorem (Prime-factor algorithm [4]). The Cyclic Convolution Method [3] can also handle

prime or nearly prime vector sizes. Yet another elegant trick for carrying out the Fourier transform if the

Chirp-z algorithm [5]. These methods each have their advantages and disadvantages. The mathematical basis

of these alternative methods is often very elegant, but the ordering methods are usually not so obvious to the

beginner wishing to implement a Fourier transform on his/her FPGA demo board. Moreover, it is difficult to

beat the simplicity and speed of the power-of-two divide-and-conquer methods. For this reason, we focus on

the Cooley-Tukey method and refer any interested readers to the papers in the list of references.

Let us consider the DFT acting on a vector of size 8 to illustrate how the algorithm is formed. We write out

the summations for Xm expanding the powers of w in matrix form:
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(4)

Now, let us reorder the matrix according to the DIT split in (3), separating the even and odd index samples,
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viz.:
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Let us do the same reordering confined to each 4x4 block to yield:
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We are now closing in on the point where the FFT “magic” begins to happen. We now invoke the symmetries

in the powers of w, the roots-of-unity. Namely,

wn = wn+Nk, N = 8, k = 0, 1, 2, · · · (7)

wn = −wn+N/2 (8)

wNk = 1. (9)

We now rewrite (6) as
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After this rearrangement, we notice that we do not need all the powers of w up to 7. We need store only
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TABLE I

ILLUSTRATION OF THE BIT-REVERSED INDICES.

Index binary Bit reversed index binary

0 000 0 000

1 001 4 100

2 010 2 010

3 011 6 110

4 100 1 001

5 101 5 101

6 110 3 011

7 111 7 111

those up to 3, because of the sign symmetry of w. Furthermore, the DFT of a two point data set is simply
⎛

⎝

X0

X1

⎞

⎠ =

⎡
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1 1

1 −1
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⎛
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⎞

⎠ . (11)

Taking a close look at the ordering if the x vector, we notice that if we represent the indices as binary

numbers, they correspond to the bit reversed representation of the original indices. Table I shows how this

works for our 8 sample example.

So, now we know that the DIT algorithm consists of a bit-reversal permutation of the input data indices

followed by a recursive transformation. The recursive sum in (3) can be represented as a sequence of matrix

transformations, viz.:

(X) = [A2][A1][A0][P ](x), (12)

where [P ] is matrix representation of the bit-reversal permutation of the original data vector (x). It is easy to

see that [A0] is the first transformation:
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If we use the same atomic two-point transform prototype on each two-by-two matrix and apply the necessary
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delay of w2, we can get the four-by-four transform blocks using [A1]:

[A1] =
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Now, the same technique to the four-by-four blocks to generate the 8 by 8 matrix:
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In fact, at any level l (from 0 to 2 in our present case), we can define a 2l+1 × 2l+1 matrix template:

[T ]l =

⎡

⎣

[I] [Ω]

[I] [−Ω]

⎤

⎦ (16)

where [Ω] = diag(w0, wN/2l+1

, w2·N/2l+1

, w3·N/2l+1

, · · ·) and [I] is a 2l × 2l identity matrix block. With this

template, we can explicitly generate each level of the transform. Interestingly, this approach demonstrates that

the FFT is nothing more than a special form of matrix factorization.

Each of the partial transforms corresponds to a level with 2N complex multiply-adds. The full transform

requires 2N log2 N multiply-add cycles. The graph in Fig. 1 illustrates the data flow; moving toward each vertex

indicating the fetch-multiply-add-store operations. The graph provides us with a processing template. The input

data must be in bit-reversed order. Output data will appear in natural order. The full transform requires

1) an address generator,

2) a “butterfly” operator to do the complex multiply/add,

3) a memory and

4) roots-of-unity (twiddle factor) generator.

The address generator provides the locations for the fetch and store operations to and from memory. The

butterfly operator is the heart of the FFT. It provides the recursive two-point transforms (the multiply-adds)

that are built up to construct the complete transform. The memory is needed to store the intermediate results

as the transform runs. The twiddle factor generator can be based on a simple look-up table (used here) or, to

save memory, computed on the fly using CORDIC [9].

March 21, 2013 DRAFT



5

−1

−1

−1

−1

w

w

−1

−1

−1

−1

−1

−1w

w

w

2

2

2

3

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

v(7)

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

Fig. 1. Signal flow graph for 8 point FFT.

II. SOFTWARE TRANSFORM

The software transform is constructed in a straightforward manner by first doing the permutation of the input

data and then carrying out the butterfly operations.

Most normal CPUs and high level computer languages have no way to directly perform the bit-swapped

reordering of the data, so a fairly cumbersome integer arithmetic sorting trick is used (from [6]) to do the

permutation.

Require: xn ← data, N ← # data points ◃ Initialize variables

procedure PERMUTE(N , x)

i← 1

for n = 1→ N do ◃ Step through each data index.

if n > i then

Swap xn ↔ xi ◃ Use swaps to sort data into bit-reversed address order.

end if

m← N/2

while m ≥ 2 && i > m do ◃ Compute the new offset for the swap.

i← i−m

m← m/2

end while

i← i+m

end for

end procedure

Many digital signal processors simplify the reordering by either having an explicit bit-reversal instruction or
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a bit-reversed addressing mode that is specifically included to facilitate the construction of FFT algorithms. Of

course, a hardware FFT constructed in an FPGA easily permits bit reversed addressing by just reversing the

physical connections of the data address bus lines.

After the input data is properly ordered, the butterfly operations are executed on pairs of data samples,

stepping sequentially through each of the log2 N levels. This is the Danielson-Lanczos algorithm [6]. The

twiddle-factors wm contain half of the N “roots of unity”.

procedure DANIELSONLANCZOS(x, w, N )

M = 1 ◃ Set first level of “butterflies.”

while N > M do

Istep←M ≪ 1 ◃ The “stride” of the butterfly computations.

for m = 1→M do ◃ Step through each block of butterflies and do twiddle factor m.

for i = m→ N step Istep do

j ← i+M ◃ Index i = sum “wing”, j = difference “wing.”

Temp ← wm ∗ xj ◃ The start of the butterfly operation; twiddle factor multiplication.

xj ← xi − Temp ◃ Difference wing of butterfly

xi ← xi + Temp ◃ Sum wing of butterfly

end for

end for

M ← Istep ◃ Onto next level!

end while

end procedure

We test this algorithm by performing the FFT on a square wave signal of magnitude 1 and two full periods,

as shown in Figure 2.

The FFT is carried out on a 32-sample test case using 64-bit double precision and the real and imaginary

components are plotted in Figure 3. Since the input signal is real, the FFT output will have a a real component

that displays even symmetry and the imaginary component will be odd. Since the input signal exhibits nearly

odd symmetry, the imaginary component of the transform will dominate. However, the input signal has a tiny

bit of even symmetry (the sample X0 = 1, which is by definition even), so there will also be a small real

component to the fourier transform. The figure confirms this.
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Fig. 2. Input data to 32 point FFT.
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Fig. 3. 32 point FFT output data. Note that the proper symmetries are present and the coefficients are scaled by 32 in this example (using
Gnu Octave fft function [10]).
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III. THE FFT IN HARDWARE

When constructing the FFT in hardware, there are a number of significant differences to consider with respect

to the software FFT. First and foremost is the fact the a hardware FFT can have many processes going on in

parallel, whereas the software FFT (generally) steps through a single instruction at a time. For this reason,

hardware FFT processors can have throughputs orders of magnitudes above those of sequential CPUs. This

parallel activity means careful thought needs to go into pipelining and timing so data is processed in time for

the next stage to receive it. Other differences include the extensive use of integer arithmetic instead of the

usual double precision floating-point and being aware of the often limited resources available for mathematical

functions in FPGA hardware.

In this case study, we implement a 32 point FFT in hardware using 11 bit signed integer input data. Signed

integer arithmatic is used throughout the processor. This is in stark contrast to the use of double precision

floating point arithmetic in the software version of the FFT in the previous section. We choose a 32 point FFT

in order to show clearly the patterns that one would use to generate longer FFTs without having to cope with

long streams of data that would obscure what we wish to show. At the end, we show the results from a larger

working implementation in FPGA (a 1024 point FFT with 12 bit width).

A typical hardware FFT processor might be defined as in Figure 4.

Address 1A
Address 1B
BFU−>Mem Data A
BFU−>Mem Data B

BFU−>Mem Data A
BFU−>Mem Data B

Address 2A
Address 2B

Mem−>BFU Data B

Mem−>BFU Data A

Mem 1 WR

Mem 2 WR

Read Mem Select

0

1

0

1

Start

FFT Done
Address
Generation
Unit

2−port
RAM

2−port
RAM

M
U

X
M

U
X

Butterfly
Unit

Twiddle factor
ROM

Twiddle
Address

Twiddle
factors

Fig. 4. Top level block diagram of hardware FFT processor. Note the system blocks listed previously: address generator, butterfly unit,
memory and twiddle table.

The Address Generation Unit (AGU) controls the generation of addresses for reading and writing the memory

contents to and from the Butterfly Processing Unit (BFU). The AGU also generates signals that control writes

to memory as well as which memory bank is read. The reader will note that two blocks of two-port RAM are

used in this system. All data busses shown represent complex data transfer (double bit widths to accomodate

both real and imaginary values). We read from one RAM block, process through the BFU and write to the

other RAM block. The main reason for this lies in the fact that we have only two read and write ports on the
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FPGA RAM function. The practical need for pipelining the processing operations precludes the possibility of

doing simultaneous writes and reads for each butterfly operation. More will be presented on this later. This

“ping-pong” memory scheme is a simple way to keep track of the processing level of our data and given the

capacity of modern FPGAs, poses few resource problems for FFTs up to 210 − 214 in length. Larger FFTs

(length 220 or more) can always use large external memories, if needed. We need two memory banks to perform

“ping-pong” reads and writes, because of the pipeline delays and the inability to simultaneously read and write

to four different addresses in a single memory bank. The FPGA built in functions usually allow a dual port

RAM with ports shown in Figure 5.

Fig. 5. Synchronous dual port ram as instantiated in FPGA. Only two addresses at a time can be presented to the memory.

The BFU performs a special 2-point FFT on the data pairs specified by the AGU. The atomic operation is

schematically shown in Figure 6. A and B are the inputs from the previous level. A′ and B′ are the outputs

after performing the butterfly operation.

A

B

A’

B’

w

+

+

−

+

Σ

ΣΧ

Fig. 6. Description of the BFU operation.

Let us step through the transformation process, describing the action of the various hardware functions.

Memory 1 (the top block) is loaded with the data samples to be transformed (in bit-reversed address order) and

the Start signal is triggered. The FFT Done signal goes low and the AGU starts cycling through the Memory
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1 addresses and the twiddle factor addresses as the BFU processing pipeline begins to fill. After a number of

clock cycles, data begins to appear at the output of the BFU. The AGU begins to generate write cycles to

Memory 2 (the bottom block) and the processed data is written to Memory 2. When the AGU reaches the end

of the data buffer, the read address counter stops while the write address counter continues until the BFU pipeline

has completely flushed out. Once the output data is completely written, the “level counter” increments and the

read address counter and twiddle factor address counter begins to increment in an appropriately permuted order

that depends on the level counter value. With this, the whole process repeats until the level counter indicates

that we have completed the full transform. When this happens, the FFT Done signal is asserted, the BFU

pipeline is flushed and the whole FFT processor goes into a wait state. The results of the transform can now

be read out and new data samples can be written into the memory. The Start line is triggered and the next

batch of data is transformed.

A. The butterfly processor

The BFU is a straightforward implementation of the mathematical operation seen in Figure 6. Its block

diagram is seen in Figure 7

4−clock latency
Complex multiplier

Complex adder
1−clock latency

A

B

A’

B’

+
+

+
−

w
(twiddle factor)

Complex adder
1−clock latency

2x[31..0]

2x[15..0]

2x[15..0]

2x[15..0]

2x[30..15]

2x[30..15]

2x[15..0]

2x[15..0]

Σ

X Σ

Delay pipeline: 4 clock cycles

Fig. 7. Block diagram of the hardware implementation of the BFU. Note the timing latencies that are present in the practical implementation
that the conceptual version does not include. Output data appears 5 clock cycles after data is presented on the input busses.

In the practical implementation of the BFU, we need to include the effects of finite time latencies needed to

perform the multiplications and additions. The A arm contains no multiplication and needs a four clock delay

to align the data at the adders to properly generate the A′ and B′ sums. Notice that although we use 11 bit

signed real and imaginary data on the input, the BFU input and output data consist of two data busses (real and

imaginary) that are 16 bits wide. The BFU needs 5 extra bits to accommodate “bit growth” that occurs as

the FFT processor cycles through the butterfly levels! This is critical to preserving precision, since we are

doing all computations using signed integer arithmetic. At the end of the FFT, we can always prune the lowest

order bits to reduce the bit width on the output. (An alternative method would be to perform bit truncation and

rounding after each FFT level, but the loss of precision is slightly worse than accomodating growth with extra

bits and a bit of extra latency can be expected as well.)
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Note also that the multiplication of 16 bit numbers produces 32 bit products. Signed integer multiplication

also has the interesting property of producing redundant sign bits in the product ([7] as long as we are not

multiplying two maximum magnitude negative numbers). Hence, we route bits [30..15] from the multiplier to

the adders, in effect performing a left-shift on the data bits, otherwise the magnitude will not be correct.

Making the full FFT system work requires properly accounting for the inherent pipeline latency of the BFU.

Pipelining is an indispensible tool that permits high speed digital processing at the cost of adding latency to

the output. By breaking up complicated tasks (like complex multiplication) into smaller chunks, we avoid the

problem of uneven delays in combinatorial logic potentially spoiling the data. All data is guaranteed to be

present on the output after a well defined number of clock cycles regardless of the input conditions.

B. Review of integer number system

All high level microprocessors found in personal computers have built in floating point processing units

that greatly facilitate arithmetic operations on 32 and 64 bit wide floating point numbers. This simplifies the

implementation of fast numerical methods, rescaling is automatice and the data is in a “human friendly” form

(scientific notation). When implementing fast digital signal processing algorithms in hardware, floating point

numbers have several disadvantages.

• Large word width occupies many memory cells.

• Arithmetic operations on floating point numbers are much more complex than on fixed point or integer

numbers. Many logic cells are required.

• Speed and or latency is degraded because of extra complexity.

• Since digitized signals have fixed word width, floating point offers no processing advantage other than

being easy for humans to recognize.

In this paper, we use 16-bit fixed point signed fractional arithmetic. Numbers are represented as

x = s.d14d13d12d11d10d9d8d7d6d5d4d3d2d1d0 (17)

where s is the sign bit and d represents the mantissa bits for each power of 2 using the usual 2s complement

signed number system.

Unlike the usual floating point system, there is no rescaling that takes place after performing an operation.

Adding two 16 bit numbers produces a 17 bit result, whereas multiplication of two 16 bit numbers yields a 32

bit result. The designer must take care that overflows or underflows do not occur during processing. This means

that word widths must be appropriately chosen and scaling (rounding, word truncation) must be appropriately

used to keep numbers within the required limits so that numerical significance is maximized.

C. The address generation unit

This is the most challenging part of the FFT processor. We need to generate addresses for the reading and

writing of data RAM, retrieve twiddle factors and generate write signals for the data RAM. Furthermore, we

need to keep track of which butterfly we are executing as well as which FFT level we are working on. Let us

start with the sweep through the butterfly operations.
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A classic short early paper on hardware FFT implementation [8] shows us an elegant strategy for generating

the addresses of the pairs of data points for the butterfly operation. A straightforward stepping through the

butterfly pairs is hinted at by the software FFT. They go as such:

Iteration level i ↓ Butterfly address pairs j −→

Level 0: {0, 1} {2, 3} {4, 5} {6, 7} {8, 9} · · ·

Level 1: {0, 2} {1, 3} {4, 6} {5, 7} {8, 10} · · ·

Level 2: {0, 4} {1, 5} {2, 6} {3, 7} {8, 12} · · ·

Level 3: {0, 8} {1, 9} {2, 10} {3, 11} {4, 12} · · ·

...

for implementing a radix-2 DIT FFT.

It turns out that by reordering the butterfly pairs, as such:

Iteration level i ↓ Butterfly address pairs j −→

Level 0: {0, 1} {2, 3} {4, 5} {6, 7} {8, 9} · · ·

Level 1: {0, 2} {4, 6} {8, 10} {12, 14} {16, 18} · · ·

Level 2: {0, 4} {8, 12} {16, 20} {24, 28} {1, 3} · · ·

Level 3: {0, 8} {1, 9} {2, 10} {3, 11} {4, 12} · · ·

...

produces a simple function between the pair indices i, j and the pair addresses {m,n} and does not change

the final result. It is a simple process to verify that each address pair is given in terms of the indices by

m = Rotate5(2j, i) (18)

n = Rotate5(2j + 1, i) (19)

where RotateN (x, y) indicates a circular left shift of N bit word x by y bits.

The twiddle factor addresses are found by masking out the N − 1 − i least significant bits of j. For the

length 32 FFT, the twiddle factor table is given Table II.

We can get an idea of how the FFT processor works by implementing the AGU and BFU as a C program

snippet using integer arithmetic.

On entering this program, the arrays Datar and Datai contain the real and imaginary parts of the samples

in bit-reversed order. The arrays Twr and Twi contain the lookup table of twiddle factors. Since this code is

run on a personal computer, the integer bit size is 32 bits (instead of the 16 bits we use in our example). This

causes no problems because we just limit our input data to the 11 bit size and use the required sign extension

on the bits we choose to ignore.

The outer for loop steps through the levels i and the second for loop steps through each butterfly index pair

within the level. Lines 6-9 generate the addresses by first using a left-shift to perform an integer multiply-by-2
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TABLE II

TABLE OF TWIDDLE FACTORS GIVEN AS FLOATING POINT DECIMAL AND 16-BIT HEXADECIMAL SIGNED INTEGERS.

Address k cos(2πk/32) cos(2πk/32) sin(2πk/32) sin(2πk/32)

float 16-bit integer float 16-bit integer

0 1.0000e+00 0x7fff 0 0

1 9.8079e-01 0x7d89 1.9509e-01 0x1859

2 9.2388e-01 0x7641 3.8268e-01 0x30fb

3 8.3147e-01 0x6a6d 5.5557e-01 0x471c

4 7.0711e-01 0x5a82 7.0711e-01 0x5a82

5 5.5557e-01 0x471c 8.3147e-01 0x6a6d

6 3.8268e-01 0x30fb 9.2388e-01 0x7641

7 1.9509e-01 0x18f9 9.8079e-01 0x7d89

8 0 0x0 1.0e+00 0x7fff

9 -1.9509e-01 0xe707 9.8079e-01 0x7d89

10 -3.8268e-01 0xcf05 9.2388e-01 0x7641

11 -5.5557e-01 0xb8e4 8.3147e-01 0x6a6d

12 -7.0711e-01 0xa57e 7.0711e-01 0x5a82

13 -8.3147e-01 0x9593 5.5557e-01 0x471c

14 -9.2388e-01 0x89bf 3.8268e-01 0x30fb

15 -9.8079e-01 0x8277 1.9509e-01 0x1859

to produce the first index. We then add ‘1’ to the first index result to get the second. To generate the actual

data addresses, we need to perform a circular shift. There is no C instruction for doing circular shifts explicitly,

so we need to invent a way to do this. Lines 8 and 9 use a combination of left and right logical shifts to

simulate the rotate operation over the 5 bit address. We then apply a masking operation to zero out bits [31:5]

in the integer word (otherwise we will generate segmentation faults). The variables ja and jb now contain the

addresses of the A and B butterfly values.

The twiddle factor address is computed using a right shift and masking operation on the j index as outlined

by [8]. This data is then used to perform the butterfly operation on the integer data set. Let us take a look at the

sequencing of the data addresses and the twiddle factor addresses generated with this code. We have verified

the method and Table IV gives us the address sequences that we expect from our hardware generator.

The full address generator unit (AGU) is shown in Figure 8.

Triggering the Start FFT line sets the synchronous SR latch (third flip-flop from the bottom left) and

asserts the ClearHold signal to reset all storage elements to a predictable “0” state for two clock cycles. After

two clock cycles ClearHold goes low and the address counter (top left blue block) begins to count at the

system clock rate. The output of the address counter is hard-wired to give the shift-left-by-1 so we have the

multiply-by-2 for the even indices and multiply-by-2 plus 1 for the odd ones. These values are fed through the

rotate-left blocks (where the amount of the rotate is determined by the level counter, now at zero). The red

clock delay blocks are needed to synchronize the data passing through the arms where no pipelined arithmetic

operation is needed; i.e., so all addresses are lined up properly to send to the data RAM blocks.

The twiddle factor look-up table address is computed directly from the memory counter output. The value
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TABLE III

LISTING OF AGU AND BFU IN C WITH INTEGER ARITHMETIC

1 f o r ( i = 0 ; i < 5 ; i ++) / / L eve l o f FFT

2 {

3 f o r ( j = 0 ; j < 16 ; j ++) / / B u t t e r f l y i ndex

4 {

5 /∗ Genera te a d d r e s s e s f o r da ta and t w i d d l e s . ∗ /

6 j a = j << 1 ; / / Mu l t i p l y by 2 u s i ng l e f t s h i f t .

7 jb = j a + 1 ;
8 j a = ( ( j a << i ) | ( j a >> (5 − i ) ) ) & 0 x1f ; / / Addres s A ; 5 b i t c i r c u l a r l e f t s h i f t

9 jb = ( ( j b << i ) | ( j b >> (5 − i ) ) ) & 0 x1f ; / / Addres s B ; implemented u s i ng C s t a t em e n t s

10
11 TwAddr = ( ( 0 x f f f f f f f 0 >> i ) & 0 xf ) & j ; / / Twidd le a d d r e s s e s

12
13 /∗ Do t h e b u t t e r f l y o p e r a t i o n on t h e da ta . ∗ /

14 t emp r = ( ( D a t a r [ j b ] ∗ Tw r [ TwAddr ] ) / 32768) / / D i v i d e by 32768 ( 2 ˆ 1 5 )

15 − ( ( D a t a i [ j b ] ∗ Tw i [ TwAddr ] ) / 3 2 7 68 ) ; / / does a 16− b i t r i g h t a r i t h m e t i c s h i f t

16 t emp i = ( ( D a t a r [ j b ] ∗ Tw i [ TwAddr ] ) / 32768) / / on t h e p roduc t

17 + ( ( D a t a i [ j b ] ∗ Tw r [ TwAddr ] ) / 32768 ) ; / / da ta .

18 Da t a r [ j b ] = Da t a r [ j a ] − t emp r ;
19 Da t a i [ j b ] = Da t a i [ j a ] − t emp i ;
20 Da t a r [ j a ] += t emp r ;

21 Da t a i [ j a ] += t emp i ;
22 }

23 }

TABLE IV

THE SEQUENCE OF ADDRESSES GENERATED USING THE COUNT AND ROTATE TECHNIQUE.

Index j Level 0 Level 1 Level 2 Level 3 Level 4

i ja jb ja jb ja jb ja jb ja jb

0 0 1 0 2 0 4 0 8 0 16

1 2 3 4 6 8 12 16 24 1 17

2 4 5 8 10 16 20 1 9 2 18

3 6 7 12 14 24 28 17 25 3 19

4 8 9 16 18 1 5 2 10 4 20

5 10 11 20 22 9 13 18 26 5 21

6 12 13 24 26 17 21 3 11 6 22

7 14 15 28 30 25 29 19 27 7 23

8 16 17 1 3 2 6 4 12 8 24

9 18 19 5 7 10 14 20 28 9 25

10 20 21 9 11 18 22 5 13 10 26

11 22 23 13 15 26 30 21 29 11 27

12 24 25 17 19 3 7 6 14 12 28

13 26 27 21 23 11 15 22 30 13 29

14 28 29 25 27 19 23 7 15 14 30

15 30 31 29 31 27 31 23 31 15 31
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is the logical AND of the 4-bit counter output and the twiddle mask generator. (The twiddle mask generator is

a right-shift register that fills up with “1”s as the level counter is incremented.)

When the address counter overflows at 15, it triggers a delayed increment of the level counter and sets the

hold-counter trigger flip-flop. This holds the address counter in a cleared state until the hold counter times out.

The purpose of this is to allow the BFU and RAM write pipelines to flush out before we go to the next level in

the FFT. In this way we prevent data reads on the next level before all data from the previous level is properly

written to data RAM.

When both the address counter and the level counter overflow, we know we have finished the FFT and we

can stop. The FFT Done line is asserted and the processing stops. At this point we can read in new data and

read out the FFT data. We then retrigger the Start FFT line and the whole process repeats itself.

Simulations (to be presented in detail later) verify the address pattern is correct.

D. The data memory structure

In order to do anything useful, we need to be able to store the data we wish to transform and hold the

intermediate values as we step through the FFT levels. To do this we design a random access memory block.

In reality, there are four blocks, as seen in Figure 9.

Perhaps it is easiest to step through the various input and output variables as a list.

• Inputs:

LoadDataWrite

This signal, when pulled high, enables writing of new data to the memory as well as reading out

the results of the previously executed transform.

Bank0WriteEN

Enable writes to Bank 0 memory block. Note that reads are always possible from any memory

block.

Bank1WriteEN

Enable writes to Bank 1 memory block.

Data real in[15..0]

Real part of input data. Data is 16 bits wide.

Data imag in[15..0]

Real part of input data.

RWAddrEN

This signal to the address MUXs switches between ReadAddr[4..0] andWriteAddr[15..0] inputs.

BankReadSelect

Select line that controls source of data reads to be fed to the BFU. Memory blocks toggle back-

and-forth between levels and this line is needed to allow the toggling to take place.

LoadDataAddr[4..0]

When memory is filled with new data, the data is written to the addresses given on these 5 lines.

Data at the addresses presented on these lines is also output on H real and Himag.
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ReadAddr[4..0]

Addresses for data reads of G and H .

WriteAddr[4..0]

Addresses for data writes. Must be appropriately delayed for proper data alignment.

Xr[15..0]

Real part of data to be written to A data block (from BFU-¿Mem).

Xi[15..0]

Imaginary part of data to be written to A block.

Y r[15..0]

Real part of data to be written to B block.

Y i[15..0]

Imaginary part of data to be written to B block.

• Outputs:

G real

A block real output to BFU.

G imag

A block imaginary output.

H real

B block real output.

H imag

B block imaginary output.

Note that the total latency of the memory system is 4 clock cycles from the time that addresses/data are

presented on the inputs until the data appears on the outputs. This structure is completely scalable by changing

the address and data widths (and memory sizes) as required.

The top level system block diagram is visible in Figure 10.

Starting from the left of the figure, the twiddle factor ROM contains the look-up table of real and imaginary

values of the required “roots of unity” that are passed to the BFU. The AGU, as described earlier, generates

all twiddle factor and data memory addresses in the proper sequence and indicates when the outputs of the

BFU are written to memory. Some delay blocks are needed to ensure that memory reads and writes occur at

the correct time. We also see a block indicating the bit reversal operation on the data address input (when new

data is written to data RAM, it is always stored in bit-reversed order). The two flip-flops at the top right control

the memory bank select. The left flip flop is a delay/edge detector, whereas the right flip-flop is toggles the

memory bank on each memory write assertion. We will have a closer look at this action in the next section.
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IV. EXAMPLE FFT CALCULATION

In order to demonstrate the correctness of the hardware implementation, we use the input data set shown

in Figure 2. The floating point data set is converted to a fixed point integer representation where 1.0 → 1023

(or 0x3ff in 16 bit representation) and -1 → -1023 (0xfc01 in 16 bit two’s complement hexidecimal notation).

Thus we get the waveforms in Figure 11

Fig. 11. Waveforms showing sequence of input data.

The signal labeled DataAddr is aligned with the data signals RealData and ImagData. The signals

Bank0Addr and Bank1Addr are the bitswapped and non-bitswapped addresses that appear at the input to the

memory blocks. Notice the 1-clock delay with respect to the input addresses. This delay is the latency of the

input address multiplexer.

The imaginary component of the input data is set to zero; only the real component is non zero, as in the

initial example.

The next figure shows how the FFT is initiated once the all the input data is entered. We first trigger the

CLR input to ensure that the AGU is in a cleared state (although it generally already will be waiting because

any spurious running state will time out quickly on power-up or by an initial triggering of a general system

clear just after start up). We then trigger the StartT ransform line, as seen in Figure 12.

The memory read process starts 9 clock cycles after the start trigger is issued. This is the amount of time

needed for the address pipeline to fill.

Once the read process starts, we need to wait until the data pipeline fills before we start writing to memory.

Hence the delay in the memory addresses and write enable signal in Figure 13

Bank 1 write is active indicating that the reads are taking place from Bank 0, being processed by the BFU

and are being written to Bank 1. This continues until all 16 pairs are written to Bank 1. The Bank 1 write

enable MemBankWr1 goes low and writes are disabled until the next write cycle is initiated for the next

level.
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Fig. 12. Illustration of the transform initiation sequence.

Fig. 13. Illustration of the first level of computations for the FFT.

The second level of FFT computations starts with the read addresses following the correct modified progres-

sion {0, 2}, {4, 6}, {8, a}, · · ·, seen in Figure 14.

Notice the positioning of the data (output data from the BFU) with respect to the write addresses and the

write-enable signal. We see that the timing is correct. Also, we see the “ping-pong” memory addressing in

action. We are now reading data from Bank 1 and writing to Bank 0.

This pattern repeats until we reach the last level (level 5). When the read address counter times out, FFTDone

goes high indicated that the computation is complete and the BFU pipeline is permitted to flush out (writing

the final results to memory. Figure 15 shows the final results as they are written to memory, listed in Table V

in fixed point and compared to the floating point result. The comparison with the data generated using floating
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Fig. 14. Illustration of the second level of computations for the FFT.

point arithmetic in Octave shows a good preservation of precision in the fixed point results.

Fig. 15. Final data as it is written to Bank 1 is present in the bottom four waveforms. This data is reproduced ans compared to Octave
FFT result in V.
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TABLE V

RESULTS OF HARDWARE FFT. DATA IS PRESENTED IN FIXED-POINT REPRESENTATION AND THE EQUIVALENT FLOATING POINT

REPRESENTATION SCALED TO UNITY.

Index HW FFT (fixed-point) HW FFT (equiv. float) FFT (Octave-float)

real imag real imag real imag

0 0x0 0x0 0 0 0 0

1 0x0800 0x511b 6.25× 10−2 6.34× 10−1 6.25× 10−2 6.35× 10−1

2 0x0 0x0 0 0 0 0

3 0x07fd 0x1a54 6.24× 10−2 2.05× 10−1 6.25× 10−2 2.06× 10−1

4 0x0 0x0 0 0 0 0

5 0x07fc 0x0ef2 6.24× 10−2 1.17× 10−1 6.25× 10−2 1.17× 10−1

6 0x0 0x0 0 0 0 0

7 0x07fc 0x09bc 6.24× 10−2 7.60× 10−2 6.25× 10−2 7.61× 10−2

8 0x0 0x0 0 0 0 0

9 0x07fd 0x068e 6.24× 10−2 5.12× 10−2 6.25× 10−2 5.13× 10−2

10 0x0 0x0 0 0 0 0

11 0x07fc 0x0445 6.24× 10−2 3.34× 10−2 6.25× 10−2 3.34× 10−2

12 0x0 0x0 0 0 0 0

13 0x07fd 0x026d 6.24× 10−2 1.90× 10−2 6.25× 10−2 1.90× 10−2

14 0x0 0x0 0 0 0 0

15 0x07fd 0x00c9 6.24× 10−2 6.13× 10−3 6.25× 10−2 6.16× 10−3

16 0x0 0x0 0 0 0 0

17 0x07fe 0xff37 6.24× 10−2 −6.13× 10−3 6.25× 10−2 −6.16 × 10−3

18 0x0 0x0 0 0 0 0

19 0x07fd 0xfd94 6.24× 10−2 −1.90× 10−2 6.25× 10−2 −1.90 × 10−2

20 0x0 0x0 0 0 0 0

21 0x07fe 0xfbbc 6.24× 10−2 −3.33× 10−2 6.25× 10−2 −3.34 × 10−2

22 0x0 0x0 0 0 0 0

23 0x07fe 0xf972 6.24× 10−2 −5.12× 10−2 6.25× 10−2 −5.13 × 10−2

24 0x0 0x0 0 0 0 0

25 0x07fd 0xf644 6.24× 10−2 −7.60× 10−2 6.25× 10−2 −7.61 × 10−2

26 0x0 0x0 0 0 0 0

27 0x07fe 0xf10f 6.24× 10−2 −1.17× 10−1 6.25× 10−2 −1.17 × 10−1

28 0x0 0x0 0 0 0 0

29 0x0801 0xe5a9 6.25× 10−2 −2.06× 10−1 6.25× 10−2 −2.06 × 10−1

30 0x0 0x0 0 0 0 0

31 0x0805 0xaee5 6.26× 10−2 −6.34× 10−1 6.25× 10−2 −6.35 × 10−1

V. SUMMARY AND CONCLUSION

As is the case with many technical and scientific problems, it is often a good strategy to start off with first

principles and build up the edifice on a good foundation of understanding. Consistent with this philosophy,

we review the basics of the FFT starting from the DFT as a linear transformation of a vector containing a set

of sample data. From there, we show how exploiting the symmetries of the DFT linear transform produces

the FFT. It is then a short step to assemble a floating-point algorithm (like you might run on a PC). We then
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develop a fixed point (integer) algorithm to demonstrate the address generation method and to illustrate the

awareness one needs for scaling of the FFT result.

The construction of the FFT in hardware starts off from the same theoretical base as the software transform, but

requires a significantly different approach to its implementation. In most cases, the software transform is designed

to run on a microprocessor that typically steps through a set of instructions one by one. The processing is

organized in a serial fashion and is readily described using standard programming languages. The hardware FFT,

in contrast, is usually designed to perform its component tasks with at least some degree of parallelism. This leads

to a significantly different method of algorithm construction with respect to a microprocessor implementation.

In this document, we describe the construction of the Cooley-Tukey Decimation-In-Time algorithm for

implementation in an FPGA (See Figure 16). A high degree of parallelism is built into the transform such

that arithmetic processing, memory fetches and writes occur simultaneously, thereby speeding up throughput

and reducing processing latency over less parallelized versions. We do this by breaking all the operations up

into small “chunks” that each perform one small task in a clock cycle and pass the result onto the next stage

and retrieving the result of the previous stage. This “assembly line” or “pipelining” philosophy is indispensible

to processing data at high speed. Throughput can be orders of magnitude above that of serial instruction

microprocessors.

Fig. 16. Example FPGA platform for implementing FFT. Besides the large FPGA chip in the middle, there are two high speed ADCs

and a pair of high speed DACs for easy data conversion.

Despite all the simulations that we presented in the preceding section, there is no substitute for compiling

the design and loading it onto a real FPGA for testing. This we did for an expanded FFT (1024 points, 12

bit data). Using a 1221 Hz 3.0V peak-to-peak square wave generated by a signal generator, we performed a

50ksample/second digitization. 1221Hz is approximately 25× 50000/1024, hence will generate distinct peaks

at frequency points (bins) 25, 75, 125, 175, etc., i.e. the odd harmonics. This is beautifully illustrated in the
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results generated by our FPGA FFT in Figure 17.
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Fig. 17. 1221 Hz square wave spectrum generated by FPGA FFT of digitized signal. The main peak is at 1221Hz (the 20th bin) and the
harmonics roll off as 1/n, at the odd harmonic positions 3663, 6105, 8547,· · · Hz.

The specifications of the system used to generate this plot are enumerated below

• FPGA type: Cyclone II EP2C20

• Sample rate: 50ksps

• Number of points: 1024 (10 levels)

• Signal amplitude: 1.5V (3V p-p full scale)

• Signal frequency: 1221Hz (= 20 times 5000 / 1024, so signal appears periodic at boundaries)

• Analog to digital word: 12 bit, signed two’s complement

• FFT memory width 24 bit (22-bits needed to fully accomodate bit growth)

• System clock rate: 50 MHz

• Conversion speed: approx 100us for 1024 point complex transform and 50MHz clock rate.

A hardware FFT opens up a whole range of possibilities for real-time signal processing. Aside from spectral

estimation of real-time signals, complicated filtering tasks can be made as simple as “drawing the frequency

response.” Block convolution and correlation is greatly simplified (and speeded up) with respect to multiply-

and-shift type algorithms. Tasks like carrier acquisition and OFDM modulation/demodulation can be carried

out with ease. I leave it up to the reader to dream up other applications for this design.
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