

System-on-Chip Design Harris, Stine, Thompson & Harris

Chapter 1 A Brief History of Computer Design

RISC-V SoC Design Table of Contents

	1-2.	Intro: Computer Design & RISC-V
Intro &		Appendix B. Hitchhikers Guide to Linux Appendix C. Git
Tools	3.	Tool Flow
IUUIS		
	4.	HDL Design Practices
	5 -6.	Design Verification, Logic Synthesis
7 .		Wally: RISC-V Pipelined Processor
	8.	Privileged Operations
Wally	9.	Buses
RISC-V	10.	Caches
Processor	11.	Memory Management Unit (MMU)
	12.	Load/Store Unit (LSU)
	_ 13.	Instruction Fetch Unit (IFU)
Extensions	1 4.	Compressed Extension
	15.	Multiply/Divide Extension
	16.	Floating-Point Extension
	17.	Atomic Extension
	18.	Bit manipulation & Cryptography Extension
	19 .	Other Extensions

RISC-V SoC Design Table of Contents

Peripherals, Benchmarking, Linux & FPGA	20. 21. 22. 23.	Peripherals Benchmarking Linux FPGA Implementation
Other Appendices	A. C. F. I.	Wally Synopsis Tcl Floating-Point Implementation Instruction Summary

Course & Textbook Overview

- System-on-Chip (SoC)
- RISC-V
- RISC-V SoC

Systems-on-Chip

• System-on-Chip (SoC)

- Integrates microprocessors, memories, peripherals
- More than 10 billion transistors/cm² in 2025
- Transistors switch between 0 and 1 in picoseconds
- Consume < 1 femtojoule each time
- Modern integrated circuits are usually called SoCs

Applications

- Low-cost battery-powered mobile devices
- Medical devices
- Consumer gadgets
- Education
- Warfare

• Central to prosperity and national security

RISC-V

First major non-proprietary computer architecture

- 5th generation Reduced Instruction Set Computer (RISC)
- Developed at Berkeley in 2010
- Simple instructions
 - Avoids many "cute tricks" that proved overly clever in older architectures
- No patents or licensing agreements required
- Driven by non-profit **RISC-V International**

Huge momentum

- Likely to displace all architectures besides x86 and ARM
- **12 billion cores shipped by 2022**, with expected 40% annual compound growth through 2030

RISC-V SoC Design

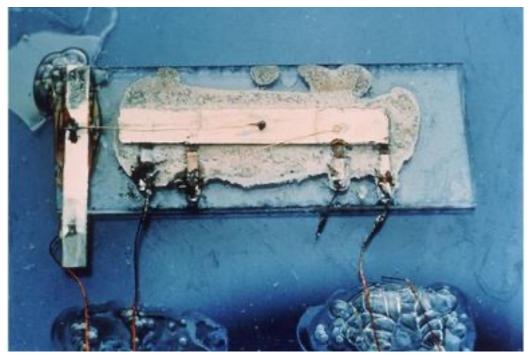
This course will take you through building a **real full-featured SoC** containing a RISC-V processor, memories, and peripherals.

- Most architecture courses focus on high-level principles
- This course will show you both principles and detailed implementation

Wally configurable SoC

- 32 or 64 bit
- Bus, cache, memory management, branch prediction
- Floating-point unit
- Other standard extensions
- Peripherals
- Boots Linux on an FPGA

A Brief History of Computer Design

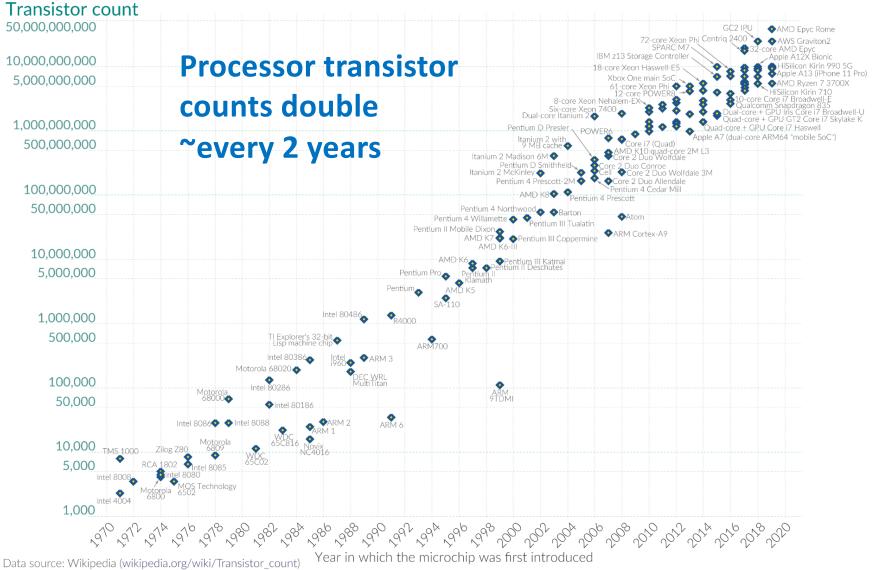

Chapter 1 :: Topics

A Brief History of Computer Design

- 1.1 Moore's Law & Beyond
- 1.2 System-on-Chip
- 1.3 Birth of Computing
- 1.4 Mainframes & Minicomputers
- **1.5 Microprocessors**
- 1.6 CISC & RISC
- 1.7 RISC-V
- 1.8 International Economic & Security Competition

Integrated Circuits

- Jack Kilby & Robert Noyce coinvented first integrated circuit in 1958.
- Moore's Law: Observation that the number of transistors on a chip grows exponentially.



First Integrated Circuit

https://en.wikipedia.org/wiki/Jack_Kilby

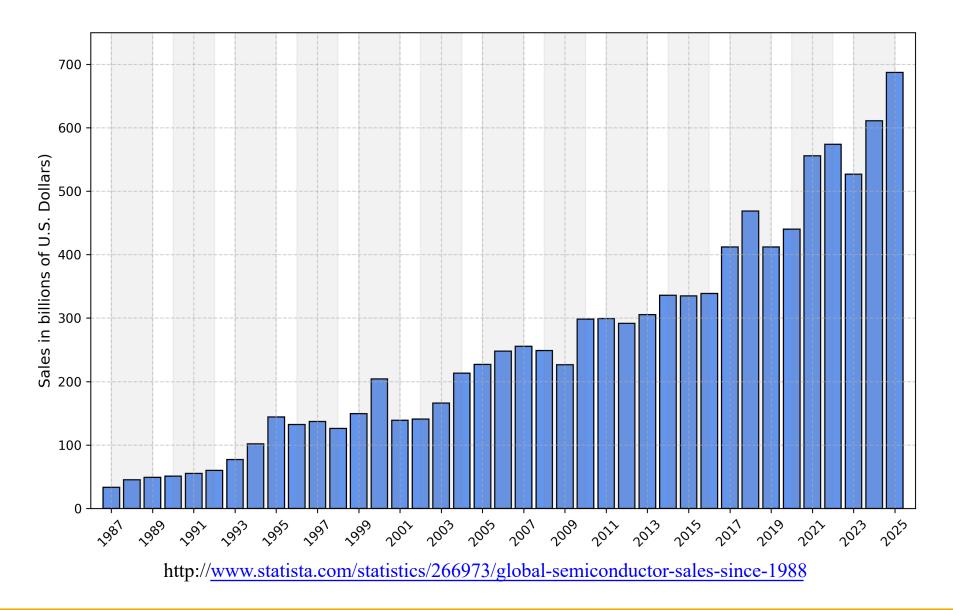
10 **RISC-V System-on-Chip Design** Chapter 1: Introduction

Moore's Law

OurWorldinData.org - Research and data to make progress against the world's largest problems.

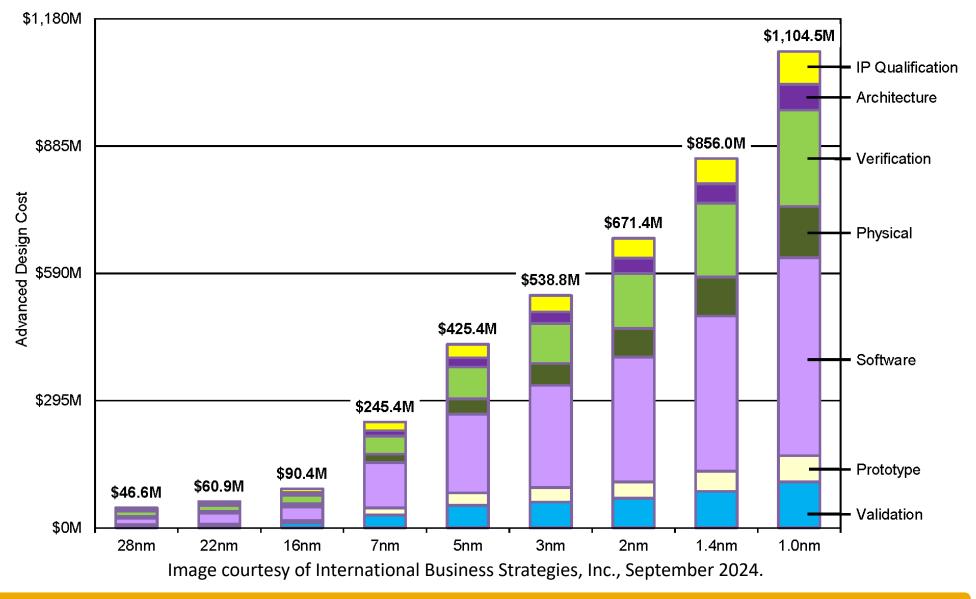
Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

Transistor/Chip Evolution


Process Node	16 nm	10 nm	7 nm	5 nm	3 nm
Initial production	2014	2016	2018	2020	2022
Chip area (mm ²)	125	88	83	85	85
Billions of transistors	3.3	4.3	6.9	10.5	14.1
Gross dice / wafer	478	686	721	707	707
Net dice / wafer	360	512	546	530	510
Wafer cost (\$)	5912	8389	9965	12500	15500
Die cost (\$)	16.43	16.37	18.26	23.57	30.45
Transistor cost (nanobucks)	4.98	3.81	2.65	2.25	2.16

Dennard's Law and Scaling

- **Dennard's Law:** Transistor speed and power consumption improve as transistors shrink.
- Dennard Scaling:
 - If new process node reduces these by 30%:
 - Transistor dimensions
 - Supply voltage
 - Threshold voltage
 - Then it results in:
 - 1.4x the speed
 - ¹/₂ the power per transistor


Dennard scaling tapered off around 2004. Now transistor power and performance gradually improve due to innovation (i.e., strained silicon, high-k metal gates, FinFETs, gate-all-around transistors, etc.)

Global Semiconductor Sales

14 **RISC-V System-on-Chip Design** Chapter 1: Introduction

Design Cost

15 **RISC-V System-on-Chip Design**

Chapter 1: Introduction

Processor Timeline

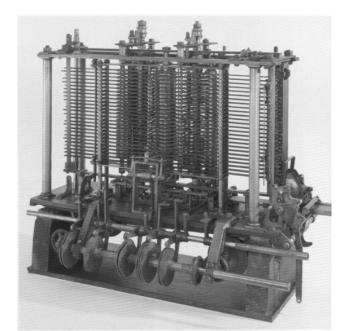
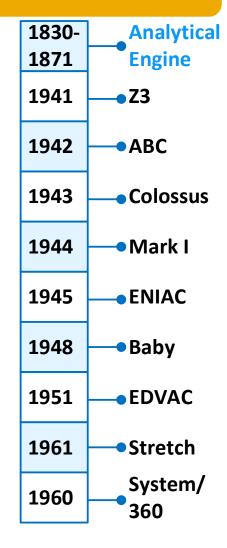
1830-	Analytical	First digital computer
1871	Engine	(Charles Babbage)
1941	Z3	First general-purpose
1941	2	computer (<i>Conrad Zuse</i>)
1942		First electronic computer
		(Atanasoff, Berry)
1943		First programmable
1343		computer (<i>Bletchley Park</i>)
1944	•Mark I	Separate program and
1944		data (<i>Harvard</i>)
1945		Digital electronic, gp &
1945		programmable (U. Penn)
1948	Baby	First to have a stored
1940	Daby	program (<i>Manchester U</i> .)
1951	EDVAC	Follow on to ENIAC, added
1921		a stored program (U. Penn)
1961	Stretch	First to use transistors
	Strettin	(Gene Amdahl)
1960	System/	First commercial success
1300	360	(IBM)

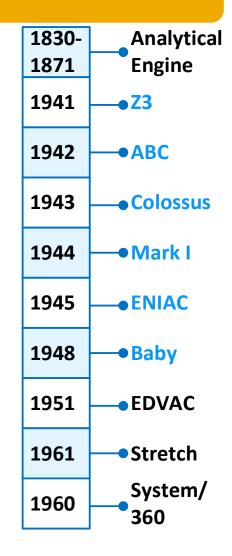
	First 4-bit microprocessor,			
•+00+	on a single chip (<i>Intel</i>)			
	Leading minicomputer			
	(DEC: Digital Equip. Corp.)			
	Low-cost 6502 makes			
Apple II	computers widely available			
	Competitor to Apple II,			
	based on Intel's 8088			
	RISC-I (Berkeley), MIPS I			
- NISC	(Stanford), ARM I, SPARC			
Alpha	200 MHz RISC processor 3x			
21064	speed of Pentium (DEC)			
Dontium	66 MHz CISC: RISC wins			
Pentium	RISC vs. CISC debate (Intel)			
MHz	Super-pipelining, high			
Wars	power			
Core	Multi-core (<i>Intel</i>)			
RISC-V	First popular open-source			
	architecture (Berkeley)			
	21064 Pentium MHz			

The Analytical Engine

- Designed by Charles Babbage from 1834-1871
- Considered to be the first digital computer
- Built from mechanical gears, where each gear represented a discrete value (0-9)
- Babbage died before finishing it

Image courtesy Wellcome Collection: Stipple engraving by R. Roffe, 1833.


Image courtesy of Science Museum / Science and Society Picture Library.

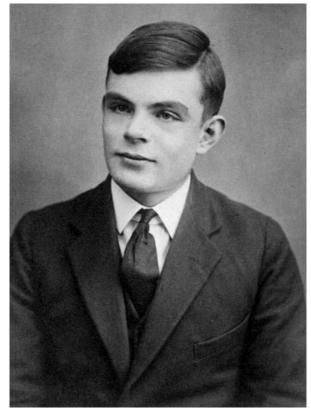
1940s

- Spurred on by need for computation in World War II
 - 1941: Z3 computer (Zuse, Berlin) first generalpurpose computer
 - 1942: ABC computer first electronic computer
 - Etc.

Harvard Mark I

http://www.cs.kent.edu/~rothstei/10051/HistoryPt3.htm

18 **RISC-V System-on-Chip Design** Chapter 1: Introduction


John Von Neumann, 1903-1957

- By age 8, was learning calculus and spoke six languages
- Faculty member at Princeton
- One of founding figures of computer architecture
- Published idea of a stored program architecture
- His other contributions include:
 - Establishing mathematical framework for quantum mechanics
 - Founding the field of game theory

Alan Turing, 1912 - 1954

- British mathematician and computer scientist
- Founder of computer science and AI
- Developed the Turing machine: a universal computing machine capable of carrying out any algorithm
- Published seminal proof that not all problems are computable
- In 1952, was prosecuted for homosexual acts. Two years later, he died of cyanide poisoning.

https://commons.wikimedia.org/wiki/File: Alan_Turing_Aged_16.jpg

• The Turing Award was named in his honor, which is the highest honor in computing.

Grace Hopper, 1906 - 1992

- Graduated from Yale University with a Ph.D. in mathematics
- Programmed Mark I computer
- Helped develop the COBOL programming language & compiler
- Highly awarded naval officer
- Received World War II Victory Medal and National Defense Service Medal, among others

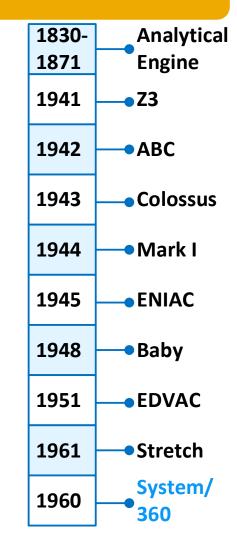
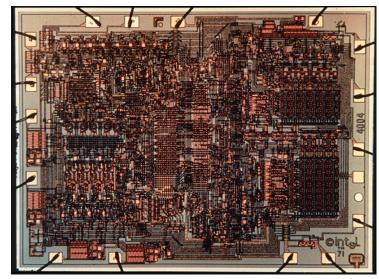


Image courtesy United States Navy DN-SC-84-05971.

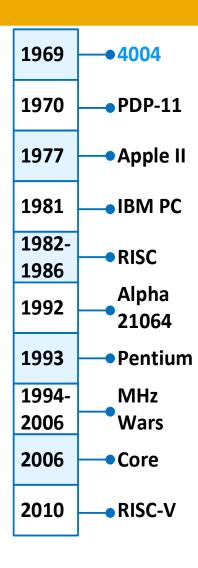
IBM's System 360

- First commercial success
 - IBM invested \$5B in its development
 - Production delays nearly bankrupted IBM
 - Spanned wide range of performances
 - Model 30: 8 KiB memory, 34.5 Kinstructions/second
 - Model 91: 6 MiB memory, 16.6 Minstructions/second



https://www.ibm.com/history/system-360

22 **RISC-V System-on-Chip Design** Chapter 1: Introduction


Intel's 4004

- First commercial microprocessor (processor built on a single chip):
 - 4-bit
 - Programmable
 - 2300 transistors
 - 10 μ m silicon gate pMOS process
 - Layout done by hand

https://www.intel.com/content/www/us/en/history/ virtual-vault/articles/the-intel-4004.html

https://spectrum.ieee.org/the-surprisingstory-of-the-first-microprocessors

Chapter 1: Introduction

Wider Availability of Computers

- Apple II (1977, cost: \$1300): Low-cost 6502 makes computers widely available
- IBM's Personal Computer (PC) (1981, cost: \$1565): Based on Intel's 8088, competitor to Apple II

Apple II

https://www.ibm.com/history/ personal-computer

IBM PC

Chapter 1: Introduction

1969

1970

1977

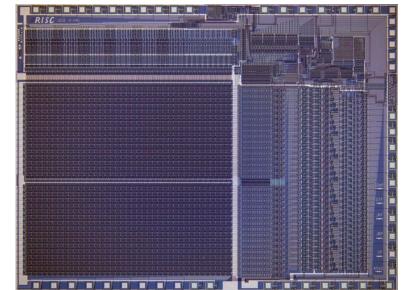
1981

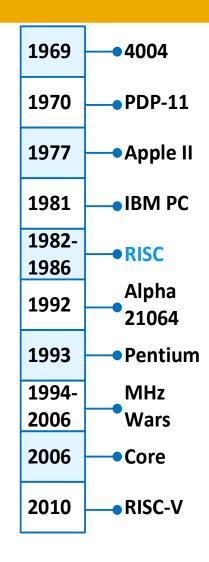
2010

•4004

• PDP-11

Apple II


IBM PC


RISC-V

RISC

Reduced Instruction Set Computer (RISC):

- Co-invented by David Patterson and John Hennessy
- MIPS, SPARC, ARM

MIPS I die Photo courtesy of David Patterson.

25 **RISC-V System-on-Chip Design** Chapter 1: Introduction

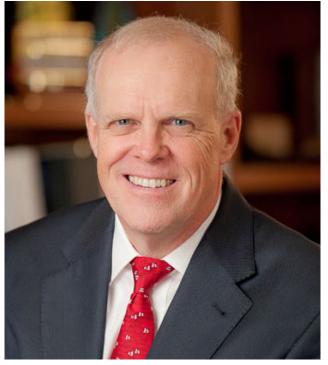
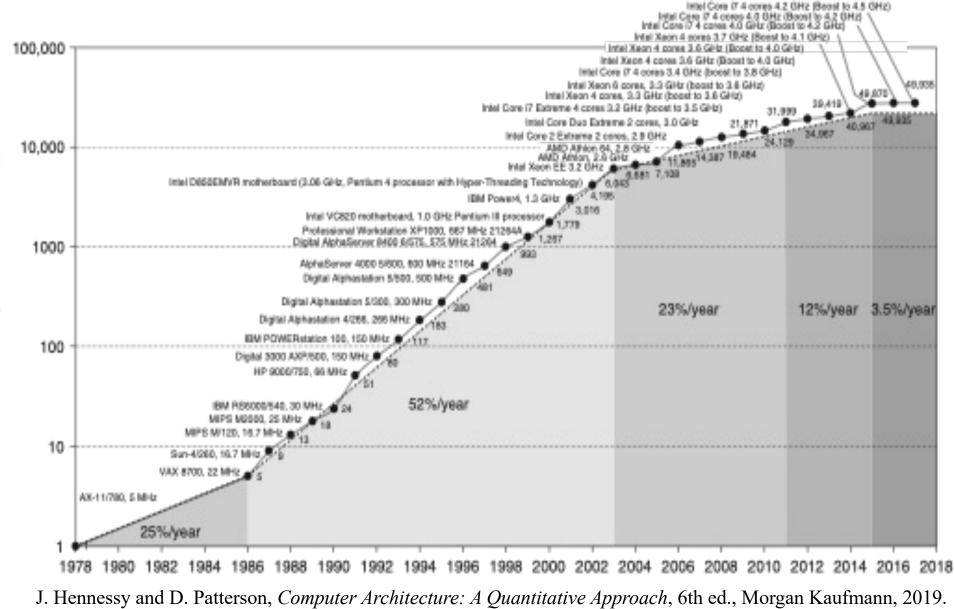
David Patterson

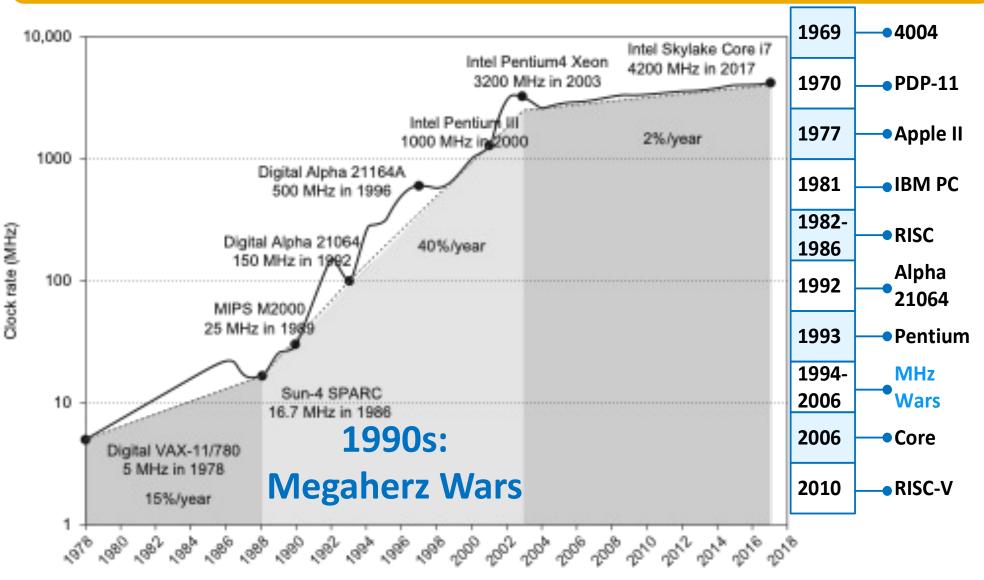
- Professor of Computer Science at the University of California, Berkeley since 1976
- Coinvented the Reduced Instruction Set Computer (RISC) with John Hennessy in the 1980s
- Founding member of RISC-V team.
- Was given the Turing Award (with John Hennessy) for pioneering a quantitative approach to the design and evaluation of computer architectures.

Photo used with permission.

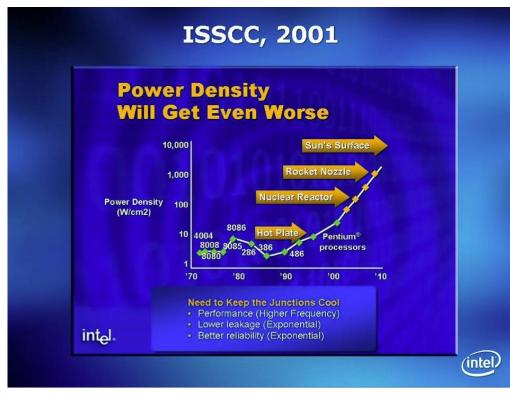
John Hennessy

- President of Stanford University from 2000 - 2016
- Professor of Electrical Engineering and Computer Science at Stanford since 1977
- Coinvented the Reduced Instruction Set Computer (RISC) with David Patterson in the 1980s
- Was given the Turing Award (with David Patterson) for pioneering a quantitative approach to the design and evaluation of computer architectures.

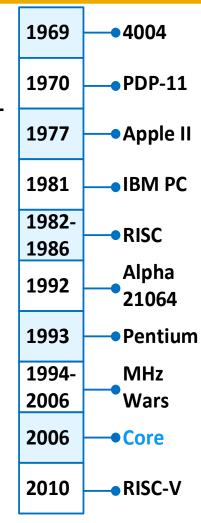




Photo used with permission.

Processor Performance


28 **RISC-V System-on-Chip Design** Chapter 1: Introduction

Processor Clock Speed


J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach, 6th ed., Morgan Kaufmann, 2019.

Power Density a Problem

https://web.stanford.edu/class/ee380/Abstracts/060607-EE380-Gelsinger.pdf In 2006, Intel abandoned powerhungry Netburst µarchitecture

- Switched to **Core** µarchitecture
- **Multiple** powerefficient cores
- Attempts to increase performance from parallelism

Contemporary Processors (2022)

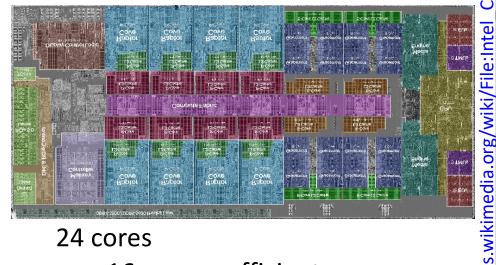
6 cores

4 energy efficient 2 GHz 2 high performance 3.2 GHz 32 MiB system cache Neural engine 15.8 TOP/s GPU, video, ISP 15 billion transistors TSMC 5 nm process

Intel Raptor Lake Core i9 (Laptop/Desktop)

ġ

e le


Shot.jpg

 $\overline{\Box}$

abe

13900K

https://common

24 cores

16 energy efficient 8 high performance to 5.7 GHz 30 MiB L3\$ Graphics & video accelerators Memory, display, PCI controllers

257 mm² die

Intel 10 nm process

About these Notes

RISC-V System-on-Chip Design Lecture Notes © 2025 D. Harris, J. Stine, R. Thompson, and S. Harris

These notes may be used and modified for educational and/or non-commercial purposes so long as the source is attributed.