o Vo

Appendix C:

Version Control using

< Git 4




2

C.1 Gitting Started

C.2 Setting up a Repository
C.3 Basic Git Flow

C.4 Merge Conflicts

C.5 Branching & Merging
C.6 Tags

C.7 Staging & Undo

C.8 Submodules

C.9 Other Git Capabilities

RISC-V System-on-Chip Design

Appendix B: Git



* Version control: Method for keeping track of

changes to a set of files

— Example:
e paper_old.docx - paper_final.docx - paper_final _ah.docx -
paper_final _notkiddingthistime.docx
* These can be confusing (which was the older version?) and you
may overwrite each other’s work

— Instead, use Git.

Git more capable than what’s covered here. Learn more about Git from the freely
available Pro Git: https://git-scm.com/book/en/v2

Git was developed by Linus Torvalds in 2005. (And, yes, he
was also the main developer of Linux.)

3 RISC-V System-on-Chip Design Appendix B: Git




* Git generally functions like this:

— Maintains a repository (also called simply “repo”) of all
files in a project.

— Each user clones entire repository to own working copy.

— Users can modify repository and test changes locally.

— Then users can push changes to the main repository to
create a new snapshot.

— Git maintains a snapshot of repository each time user
checks in files.

— Git can revert to a previous snapshot if needed.

Do not place executables in a Git repository —
instead, include Makefile and sourcefiles

4 RISC-V System-on-Chip Design Appendix B: Git



Appendix C: Git




Set Up Username & Email

* After logging into your server, set up username &
email:

$ git config ——global user.name "Ben Bitdiddle”
$ git config ——global user.email "ben_bitdiddle@wally.edu”

Note: the username need not be the same as what you
use at github.com. But the email must be the same.

* Configure Git to merge:
$ git config ——global pull.rebase false



Set Up GitHub Account

* To use GitHub, sign up for an account at: github.com
e Set up key-based authentication (instead of a

password):

— SSH key pair: public & private key

— Private key remains on client (never share this!)

— If it’s first time using ssh, generate a public-private key pair:

$ ssh—-keygen -t ed25519 -C "ben_bitdiddle@wally.edu"

— Use default file location and add passphrase (if desired)



Set Up GitHub Account, cont’d

* Add key to ssh-agent by:

— Creating ~/.ssh/config file with contents:

Host x
AddKeysToAgent yes
UseKeychain yes
IdentityFile ~/.ssh/id_ed25519

— Adding SSH key:

$ ssh—-agent /bin/sh

$ ssh-add -k ~/.ssh/id_ed25519

$ exit

— Printing public key to screen:

$ cat ~/.ssh/id_ed25519.pub

ssh—-ed25519
AAAAC3NzaCl1ZDPINTE5AAAAIMpSWKpTQ7DI313yywr8VdXvE+Jj /RS
xngyKgIc4MwVL

ben_bitdiddle@wally.edu



* Add key to ssh-agent by (cont’d):

— Uploading your public key to remote host:
» At github.com, click on user icon (upper right of webpage)
* Select Settings
* Click on SSH and GPG tab

» Select New SSH Key, then copy/paste public key (both lines) into

Github key field:

ssh—-ed25519 AAAAC3NzaCll1ZDPINTES5AAAAIMpSWKpfQ7DI313yywr8VdXvE+]j/RSxngyKgIc4MwVL
ben_bitdiddle@wally.edu

« Set title to name of your server (tera.eng.hmc.edu)
* Click Add SSH key

If you encounter issues, see GitHub documentation for SSH key-based authentication:
docs.github.com/en/authentication/connecting-to-github-with-ssh

9 RISC-V System-on-Chip Design Appendix B: Git



https://docs.github.com/en/authentication/connecting-to-github-with-ssh

Appendix C: Git




Start New Repository

$ mkdir ~/my_project

$ cd ~/my_project

$ git init

$ git remote add origin https://github.com/benbitdiddle/my_project

A GitHub repository can be private or public. Typically, a team
starts with a private repository and adds collaborators manually.
Later, the repository may be made public.




* Clone it from existing repository.
* Example: Create clone (working copy) of Wally

repository in riscv-wally within current working

directory (in this case, home directory):
$ cd
$ git clone —-recurse-submodules https://github.com/davidharrishmc/riscv-wally

The ——recurse—-submodules flag recursively checks out

any other GitHub repositories that are submodules within the
main repo.

Directions throughout the textbook assume you cloned Wally in
your home directory (™).

12 RISC-V System-on-Chip Design Appendix B: Git



Appendix C: Git




Basic Git Flow: First Steps

* Get latest version of repo (good idea to do before each

work session):
$ git pull

* Check that you don’t have local modified files from

previous session:
$ git status

* Modify files (test before pushing them back into repo).



Basic Git Flow: Modifying Files

* Move file:
$ git mv <old name> <new name>

* Check history of file:
$ git log or $ git diff or $ git log —follow <new name>

git log/git diff only show history up till last move. git log -follow... gives full history

* After happy with changes:

— Check status again (modified files listed under “Changes not

for staged commit”; new files under “Untracked files”):
$ git status

— If any file changes are bad, revert to one from repository:
$ git checkout — <file>



 Committing & Pushing Files to Repository:

— If added/deleted files (deleted files remain in prior versions):
$ git add <file> (for added files)
$ git rm <file> (for deleted files)

— Check status again (all files should be listed under “Changes to

be commited”):
$ git status

— Commit (use —M to add meaningful message):

$ git commit -m “Fixed undeclared mmu/PhysAdr signal
causing X in simulation”
or adds all the tracked files and then commit at the same time:
$ git commit —a —-m “message”

— Push to remote repository (make sure all code is tested before

pushing):
$ git push

16 RISC-V System-on-Chip Design Appendix B: Git



* Check log of commits (a commit is identified by a hash

(unique 40-digit hexadecimal number):

$ git log

commit 14d3059433e212205ebf30b64ffe71d467dabb94
Author: David Harris <david_harris@hmc.edu>
Date: Fri Jan 21 00:12:14 2022 +0000

Fixed path to riscvOVPsimPlus

commit 55e4d09084caa95cebfc36b778del6f5b8e051b3
Author: Ross Thompson <rossl728@gmail.com>
Date: Thu Jan 20 16:39:54 2022 -0600

Factored out InstrValidNotFlushedM from each csrx.sv
to Ccsr.sv

17 RISC-V System-on-Chip Design Appendix B: Git



Appendix C: Git




Resolving Merge Conflicts

e Suppose Ben and Alyssa both modified hello.c

— After Alyssa pushes changes and then Ben pulls, Git reports conflict:

CONFLICT (content): Merge conflict in hello.c
Automatic merge failed; fix conflicts and then commit the result.

— Ben opens conflicting file, hello.c, which shows conflict between Ben’s
HEAD and Alyssa’s ...925 snapshot:

<<<<<<< HEAD
printf(“Hello WORLD!");

>>>>>>> 0b2d6c9714265819281bf1a8d77698eb9f130925
— To fix the merge conflict, Ben must delete these 5 lines and replace
them with desired code, for example:

— Then Ben pushes to remote repo.



Appendix C: Git




21

By default, Git keeps your work in the main branch

When multiple groups working on different parts of repo,
often useful to branch repo and then merge back together
once the branch is stable.

Example:

— Create branch called muldiv:
$ git branch muldiv
— Move HEAD (points to working branch) to point to muldiv —

HEAD points to main branch until it is changed:
$ git checkout muldiv

The first time pushing to a new branch, must also set origin:
$ git commit —-a -m “New muldiv branch changes”
$ git push —-u origin muldiv

RISC-V System-on-Chip Design Appendix B: Git



Switching Branches & Merging

 While working on a branch, if you want to return to work on
the main branch:
$ git checkout main
* Now, to merge changes from muldiv branch back into main

branch:
$ git merge muldiv



Other Branch-Related Commands

e List branches that exist:
$ git branch

 Delete muldiv branch after it is merged into main:
$ git branch —-d muldiv

* |f commitsin branch have not been merged, but want to force
delete, use -D.
$ git push —-d origin <branch name>



Appendix C: Git




Tags: Name snapshots for easy (human-readable) access in
the future.

Example: name current snapshot as v2.0:

$ git tag —a v2.0 —-m “Version 2.0 Released by Ben
Bitdiddle 30 November 2021~

List available tags:

$ git tag
vo.1
v1.0
v2.0

By default, tags are local to user. To push tag to repository:
$ git push v2.0

Check out a tagged snapshot:
$ git checkout v2.0



Appendix C: Git




File States

* Each file in git repository is in one of three states:
— Committed: when repo first cloned (no changes made)
— Modified: when changed files or metadata (permissions,
etc.)
— Staged: g1t add moves file’s state from modified to
stage



28

Undo file changes (revert to main branch version of file):
— State goes from modified to committed.

— Local changes are discarded.
$ git checkout <file>

Unstage file:
— State goes from staged to modified.

— Local changes are not discarded.
$ git reset <file>

Uncommit file:

— State goes from committed to modified.

— Local changes are not discarded.

— Completed for entire repo (otherwise use git checkout

<file>)
$ git reset ——hard hash#

RISC-V System-on-Chip Design Appendix B: Git



Revert to Previous Version of Repo

* To roll back a recent change that you pushed:

$ git revert <hash>
— <hash>is the snapshot to undo

IMPORTANT: Never perform g1t reset if commits are
already pushed. Rewriting published history creates problems
for other users.




Appendix C: Git




* Repositories often use code from other repositories.
* For example, Wally uses test cases from the riscv-

arch-test repository.
— If simply copied code from that repository into riscv-wally, it would
soon be out of date.
— Instead, Git supports using other Git repositories (called
submodules) within another repository

Submodules are usually owned by somebody else, and you
should not modify it or attempt to push commits back into it.

31 RISC-V System-on-Chip Design Appendix B: Git



Incorporate one repository within another:
$ git submodule add <URL>

Update to the latest version of a submodule:
$ git submodule update —-remote

Pull your main repository and automatically update any

submodules
* When submodules are added to a repository, git pull does not fetch the

new submodules. Force the fetch using ——recurse—submodules):
$ git pull ——recurse-submodules

To clone a repository with submodules:

* Be suretoinclude the ——recurse—submodu les flag so you don’t
have to initialize and update each submodule manually.
$ git clone ——recurse-submodules <URL>

32 RISC-V System-on-Chip Design Appendix B: Git



Appendix C: Git




Moving Between Branches

 Temporarily save (stash) changes in current branch (so can
change to other branch but without discarding existing

work):
$ git stash

* Then change to other branch & do work. When done,

restore work in progress:
$ git stash apply



lgnoring Files in Repository

 Don’t want to put all files in repo (i.e., executables, object

files, etc.).
— Add them to .gitignore file
— .gitignore usually in repo’s root directory (but subdirectories may
also have their own .gitignore)
— Example .gitignore
*.0
*.0bjdump

examples/C/sum/sum
examples/C/fir/fir



Compare Snapshots

* By default, compares snapshot with HEAD:
$ git diff c30



About these Notes

RISC-V System-on-Chip Design Lecture Notes
© 2025 D. Harris, J. Stine, R. Thompson, and S. Harris

These notes may be used and modified for educational and/or
non-commercial purposes so long as the source is attributed.



