
Appendix C:
Version Control using

Git

RISC-V
System-on-Chip Design
Harris, Stine, Thompson, & Harris

RISC-V System-on-Chip Design Appendix B: Git2

C.1 Gitting Started
C.2 Setting up a Repository
C.3 Basic Git Flow
C.4 Merge Conflicts
C.5 Branching & Merging
C.6 Tags
C.7 Staging & Undo
C.8 Submodules
C.9 Other Git Capabilities

Appendix C :: Topics

RISC-V System-on-Chip Design Appendix B: Git3

• Version control: Method for keeping track of
changes to a set of files
– Example:

• paper_old.docx → paper_final.docx → paper_final_ah.docx →
paper_final_notkiddingthistime.docx

• These can be confusing (which was the older version?) and you
may overwrite each other’s work

– Instead, use Git.

Intro to Version Control & Git

Git more capable than what’s covered here. Learn more about Git from the freely
available Pro Git: https://git-scm.com/book/en/v2

Git was developed by Linus Torvalds in 2005. (And, yes, he
was also the main developer of Linux.)

RISC-V System-on-Chip Design Appendix B: Git4

• Git generally functions like this:
– Maintains a repository (also called simply “repo”) of all

files in a project.
– Each user clones entire repository to own working copy.
– Users can modify repository and test changes locally.
– Then users can push changes to the main repository to

create a new snapshot.
– Git maintains a snapshot of repository each time user

checks in files.
– Git can revert to a previous snapshot if needed.

Repository and Versions

Do not place executables in a Git repository –
instead, include Makefile and sourcefiles

Appendix C: Git

Gitting Started

RISC-V System-on-Chip Design Appendix B: Git6

• After logging into your server, set up username &
email:

$ git config --global user.name ʺBen Bitdiddleʺ
$ git config --global user.email ʺben_bitdiddle@wally.eduʺ

Note: the username need not be the same as what you
use at github.com. But the email must be the same.

• Configure Git to merge:
$ git config --global pull.rebase false

Set Up Username & Email

RISC-V System-on-Chip Design Appendix B: Git7

• To use GitHub, sign up for an account at: github.com
• Set up key-based authentication (instead of a

password):
– SSH key pair: public & private key
– Private key remains on client (never share this!)
– If it’s first time using ssh, generate a public-private key pair:

 $ ssh-keygen -t ed25519 -C "ben_bitdiddle@wally.edu"

– Use default file location and add passphrase (if desired)

Set Up GitHub Account

RISC-V System-on-Chip Design Appendix B: Git8

• Add key to ssh-agent by:
– Creating ~/.ssh/config file with contents:

Host *
 AddKeysToAgent yes
 UseKeychain yes
 IdentityFile ~/.ssh/id_ed25519

– Adding SSH key:
$ ssh-agent /bin/sh
$ ssh-add -k ~/.ssh/id_ed25519
$ exit
– Printing public key to screen:
$ cat ~/.ssh/id_ed25519.pub
ssh-ed25519
AAAAC3NzaC1lZDP1NTE5AAAAIMpSWKpfQ7DI3l3yywr8VdXvE+Jj/RS
xngyKgIc4MwVL
ben_bitdiddle@wally.edu

Set Up GitHub Account, cont’d

RISC-V System-on-Chip Design Appendix B: Git9

• Add key to ssh-agent by (cont’d):
– Uploading your public key to remote host:

• At github.com, click on user icon (upper right of webpage)
• Select Settings
• Click on SSH and GPG tab
• Select New SSH Key, then copy/paste public key (both lines) into

Github key field:
ssh-ed25519 AAAAC3NzaC1lZDP1NTE5AAAAIMpSWKpfQ7DI3l3yywr8VdXvE+Jj/RSxngyKgIc4MwVL
ben_bitdiddle@wally.edu

• Set title to name of your server (tera.eng.hmc.edu)
• Click Add SSH key

Set Up GitHub Account, cont’d

If you encounter issues, see GitHub documentation for SSH key-based authentication:
docs.github.com/en/authentication/connecting-to-github-with-ssh

https://docs.github.com/en/authentication/connecting-to-github-with-ssh

Appendix C: Git

Setting Up a
Repository

RISC-V System-on-Chip Design Appendix B: Git11

$ mkdir ~/my_project
$ cd ~/my_project
$ git init
$ git remote add origin https://github.com/benbitdiddle/my_project

Start New Repository

A GitHub repository can be private or public. Typically, a team
starts with a private repository and adds collaborators manually.
Later, the repository may be made public.

RISC-V System-on-Chip Design Appendix B: Git12

Work with Existing Repository
• Clone it from existing repository.
• Example: Create clone (working copy) of Wally

repository in riscv-wally within current working
directory (in this case, home directory):

$ cd
$ git clone --recurse-submodules https://github.com/davidharrishmc/riscv-wally

Directions throughout the textbook assume you cloned Wally in
your home directory (~).

The --recurse-submodules flag recursively checks out
any other GitHub repositories that are submodules within the
main repo.

Appendix C: Git

Basic Git Flow

RISC-V System-on-Chip Design Appendix B: Git14

Basic Git Flow: First Steps
• Get latest version of repo (good idea to do before each

work session):
 $ git pull

• Check that you don’t have local modified files from
previous session:

 $ git status

• Modify files (test before pushing them back into repo).

RISC-V System-on-Chip Design Appendix B: Git15

Basic Git Flow: Modifying Files
• Move file:
 $ git mv <old name> <new name>

• Check history of file:
 $ git log or $ git diff or $ git log –follow <new name>

git log/git diff only show history up till last move. git log -follow… gives full history

• After happy with changes:
– Check status again (modified files listed under “Changes not

for staged commit”; new files under “Untracked files”):
 $ git status

– If any file changes are bad, revert to one from repository:
 $ git checkout -- <file>

RISC-V System-on-Chip Design Appendix B: Git16

Basic Git Flow: Committing Files
• Committing & Pushing Files to Repository:

– If added/deleted files (deleted files remain in prior versions):
 $ git add <file> (for added files)
 $ git rm <file> (for deleted files)

– Check status again (all files should be listed under “Changes to
be commited”):

 $ git status
– Commit (use –m to add meaningful message):

 $ git commit -m ″Fixed undeclared mmu/PhysAdr signal
causing X in simulation″
 or adds all the tracked files and then commit at the same time:
 $ git commit -a -m ″message″

– Push to remote repository (make sure all code is tested before
pushing):

 $ git push

RISC-V System-on-Chip Design Appendix B: Git17

Basic Git Flow: Check Commits
• Check log of commits (a commit is identified by a hash

(unique 40-digit hexadecimal number):
$ git log
commit 14d3059433e212205ebf30b64ffe71d467dabb94
Author: David Harris <david_harris@hmc.edu>
Date: Fri Jan 21 00:12:14 2022 +0000

 Fixed path to riscvOVPsimPlus

commit 55e4d09084caa95cebfc36b778de16f5b8e051b3
Author: Ross Thompson <ross1728@gmail.com>
Date: Thu Jan 20 16:39:54 2022 -0600

 Factored out InstrValidNotFlushedM from each csr*.sv
to csr.sv
...

Appendix C: Git

Merge Conflicts

RISC-V System-on-Chip Design Appendix B: Git19

• Suppose Ben and Alyssa both modified hello.c
– After Alyssa pushes changes and then Ben pulls, Git reports conflict:

CONFLICT (content): Merge conflict in hello.c
Automatic merge failed; fix conflicts and then commit the result.

– Ben opens conflicting file, hello.c, which shows conflict between Ben’s
HEAD and Alyssa’s …925 snapshot:

<<<<<<< HEAD
printf(“Hello WORLD!”);
=======
printf(“Hello World!!!!!”);
>>>>>>> 0b2d6c97f4265819281bf1a8d77698eb9ff30925

– To fix the merge conflict, Ben must delete these 5 lines and replace
them with desired code, for example:

printf(“Hello Alyssa!!!!!”);
– Then Ben pushes to remote repo.

Resolving Merge Conflicts

Appendix C: Git

Branching & Merging

RISC-V System-on-Chip Design Appendix B: Git21

• By default, Git keeps your work in the main branch
• When multiple groups working on different parts of repo,

often useful to branch repo and then merge back together
once the branch is stable.

• Example:
– Create branch called muldiv:

 $ git branch muldiv
– Move HEAD (points to working branch) to point to muldiv –

HEAD points to main branch until it is changed:
 $ git checkout muldiv

• The first time pushing to a new branch, must also set origin:
 $ git commit -a -m “New muldiv branch changes”
 $ git push -u origin muldiv

Branching

RISC-V System-on-Chip Design Appendix B: Git22

• While working on a branch, if you want to return to work on
the main branch:

 $ git checkout main
• Now, to merge changes from muldiv branch back into main

branch:
 $ git merge muldiv

Switching Branches & Merging

RISC-V System-on-Chip Design Appendix B: Git23

• List branches that exist:
 $ git branch
• Delete muldiv branch after it is merged into main:
 $ git branch -d muldiv
• If commits in branch have not been merged, but want to force
delete, use -D.
 $ git push -d origin <branch name>

Other Branch-Related Commands

Appendix C: Git

Tags

RISC-V System-on-Chip Design Appendix B: Git25

• Tags: Name snapshots for easy (human-readable) access in
the future.

• Example: name current snapshot as v2.0:
 $ git tag -a v2.0 -m ″Version 2.0 Released by Ben

Bitdiddle 30 November 2021″
• List available tags:
 $ git tag
 v0.1
 v1.0
 v2.0
• By default, tags are local to user. To push tag to repository:
 $ git push v2.0
• Check out a tagged snapshot:
 $ git checkout v2.0

Tags

Appendix C: Git

Staging & Undo

RISC-V System-on-Chip Design Appendix B: Git27

• Each file in git repository is in one of three states:
– Committed: when repo first cloned (no changes made)
– Modified: when changed files or metadata (permissions,

etc.)
– Staged: git add moves file’s state from modified to

stage

File States

RISC-V System-on-Chip Design Appendix B: Git28

• Undo file changes (revert to main branch version of file):
– State goes from modified to committed.
– Local changes are discarded.

 $ git checkout <file>
• Unstage file:

– State goes from staged to modified.
– Local changes are not discarded.

 $ git reset <file>
• Uncommit file:

– State goes from committed to modified.
– Local changes are not discarded.
– Completed for entire repo (otherwise use git checkout

<file>)
 $ git reset --hard hash#

Undoing Changes

RISC-V System-on-Chip Design Appendix B: Git29

• To roll back a recent change that you pushed:
 $ git revert <hash>

– <hash> is the snapshot to undo

Revert to Previous Version of Repo

IMPORTANT: Never perform git reset if commits are
already pushed. Rewriting published history creates problems
for other users.

Appendix C: Git

Submodules

RISC-V System-on-Chip Design Appendix B: Git31

• Repositories often use code from other repositories.
• For example, Wally uses test cases from the riscv-

arch-test repository.
– If simply copied code from that repository into riscv-wally, it would

soon be out of date.
– Instead, Git supports using other Git repositories (called

submodules) within another repository

Submodules: Other Repositories

Submodules are usually owned by somebody else, and you
should not modify it or attempt to push commits back into it.

RISC-V System-on-Chip Design Appendix B: Git32

Incorporate one repository within another:
 $ git submodule add <URL>

Update to the latest version of a submodule:
 $ git submodule update --remote

Pull your main repository and automatically update any
submodules
• When submodules are added to a repository, git pull does not fetch the

new submodules. Force the fetch using --recurse-submodules):
 $ git pull --recurse-submodules

To clone a repository with submodules:
• Be sure to include the --recurse-submodules flag so you don’t

have to initialize and update each submodule manually.
 $ git clone --recurse-submodules <URL>

Submodules: Other Repositories

Appendix C: Git

Other Git Capabilities

RISC-V System-on-Chip Design Appendix B: Git34

• Temporarily save (stash) changes in current branch (so can
change to other branch but without discarding existing
work):

 $ git stash

• Then change to other branch & do work. When done,
restore work in progress:

 $ git stash apply

Moving Between Branches

RISC-V System-on-Chip Design Appendix B: Git35

• Don’t want to put all files in repo (i.e., executables, object
files, etc.).
– Add them to .gitignore file
– .gitignore usually in repo’s root directory (but subdirectories may

also have their own .gitignore)
– Example .gitignore

 *.o
 *.objdump
 examples/C/sum/sum
 examples/C/fir/fir

Ignoring Files in Repository

RISC-V System-on-Chip Design Appendix B: Git36

• By default, compares snapshot with HEAD:
 $ git diff c30

Compare Snapshots

RISC-V System-on-Chip Design Appendix B: Git37

RISC-V System-on-Chip Design Lecture Notes
© 2025 D. Harris, J. Stine, R. Thompson, and S. Harris

These notes may be used and modified for educational and/or
non-commercial purposes so long as the source is attributed.

About these Notes

