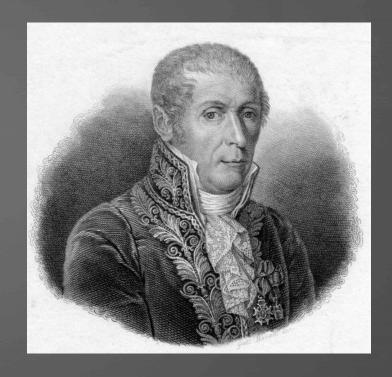


E11 Lecture 9-10: Circuits

Prof. David Money Harris Fall 2014

Outline


- Voltage, Current, Resistance
- Ohm's Law
- Kirchoff's Current Law
- Resistor Combinations
- Power
- Multimeters
- Ideal and Real Power Supplies

Voltage

- The electric force to drive electricity between two points
- Units: Volts (V)
- Technically:
 - energy / unit charge (Volt = Joule / Coulomb; V = J/C)
- Informally:
 - how hard the circuit wants to push electrons...
- Voltage is always measured between two points
 - Meaningless without a reference point
 - We typically call the reference point ground
 - If the ground is connected well across the system, we can treat it as OV

Allesandro Volta

- **1745-1827**
- Invented the first battery
- Granted title as Count by
 Napoleon in 1810 in honor of
 his work

en.wikipedia.org/wiki/File:Volta_A.jpg

Current

- The amount of electric charge flowing through a circuit per time.
- Unit: Amperes
 - (Amperes = Coulombs / Sec, A = C/s)
- Technically:
 - I = dQ/dt

Andre-Marie Ampere

- **1775-183**6
- French physicist and mathematician
- A main discoverer of electromagnetism

Resistance

- A measure of the opposition to the flow of electric current
- Units: Ohm (Ω)
 - $\Omega = V/A$
- A material with high resistance is called an *insulαtor*
- A material with low resistance is called a conductor

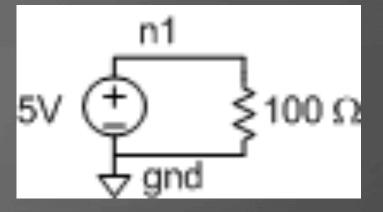
Georg Ohm

- 1789 1854
- German high school teacher
- Later joined Jesuit College in Colonge
- Determined relationship between voltage and current in a conductor
- College unsatisfied with his research and he resigned

en.wikipedia.org/wiki/File:Ohm3.gif

"Resistance is Useless"

Prostetnic Vogon Jeltz, Hitchhiker's Guide to the Galaxy

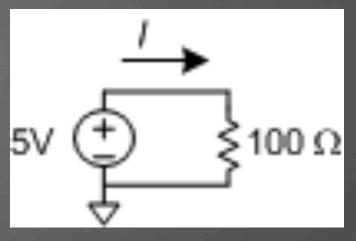


Circuits

- Circuits consist of nodes and elements
- Nodes:
 - Wires, at a particular voltage relative to ground
- Elements
 - Voltage sources
 - Resistors, capacitors, inductors
 - Diodes, transistors
 - Motors
 - Other sensors ...

Example

- This circuit has two nodes
 - n1, gnd
- Two elements
 - A 5V voltage source
 - A 100 Ω resistor

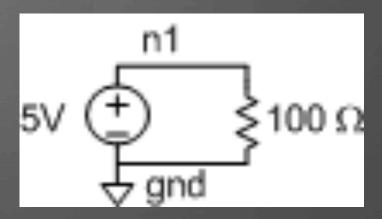


Ohm's Law

- Voltage = Current × Resistance (V = IR)
 - or I = V/R

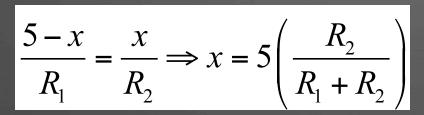
Example

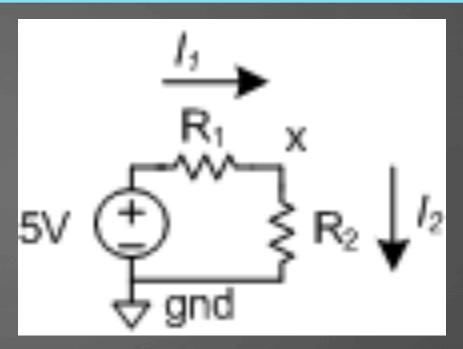
- A 5 V power supply is connected to a 100 Ω resistor. How much current flows?
- A) 500 A
- B) 20 A
- C) 50 mA
- D) 5 mA



Kirchoff's Current Law (KCL)

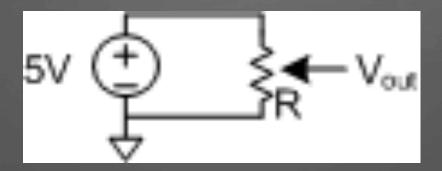
- Charge is conserved
- It doesn't accumulate on circuit nodes
- Hence, the current flowing into a circuit node equals the current out of the node.


KCL Example


- Current flowing out of 5V supply into n1: 50 mA
- Current flowing out of n1 into resistor: 50 mA
- KCL: 50 mA = 50 mA < </p>

Voltage Divider

- Compute voltage at x:
- Ohm's Law: $I_1 = \frac{5-x}{R_1}$ $I_2 = \frac{x-0}{R}$
- KCL: I₁ = I₂
- Solve for x:

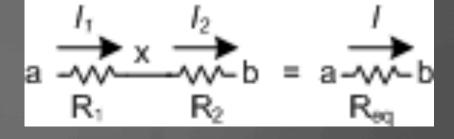


Example

- What is the voltage at x if $R_1 = R_2 = 100 \Omega$?
- A) 100 V
- B) 5 V
- C) 2.5 V
- O) 0.5 V

Ex: Potentiometer

- A potentiometer (pot) is a variable resistor with an adjustable tap
- Can be used as a voltage divider
 - As tap slides from top to bottom, Vout varies from 5V to oV.

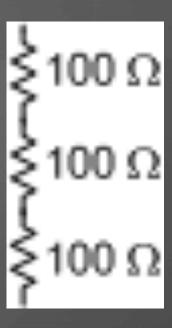

Series Resistors

- Two resistors in series are equivalent to one larger one

$$I_1 = \frac{a - x}{R_1}$$

Ohm's Law:
$$I_1 = \frac{a - x}{R_1}$$

$$I_2 = \frac{x - b}{R_2}$$
• KCL: $I = I = I$

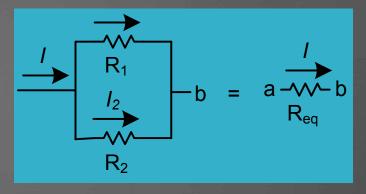

- KCL: I = I₁ = I₂
- Solve for I: $I = \frac{a b}{R_1 + R_2}$
- Hence, $R_{eq} = R_1 + R_2$

Series Resistors

 In general, any collection of resistors in series is equivalent to a single resistor with a value equal to the sum of the resistances.

Example

- What is the equivalent resistance of the circuit below?
- A) 300 Ω
- B) 200 Ω
- C) 100 Ω
- D) 33 Ω

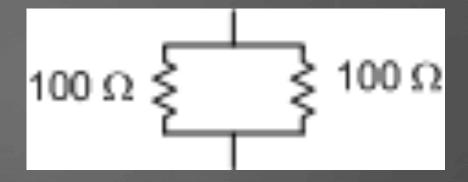

Parallel Resistors

Two resistors in parallel are equivalent to one smaller one

Ohm's Law:
$$I_1 = \frac{a-b}{R_1}$$

$$I_2 = \frac{a-b}{R_2}$$
• KCL: $I = I_1 + I_2$

• KCL: | = |₁ + |₂



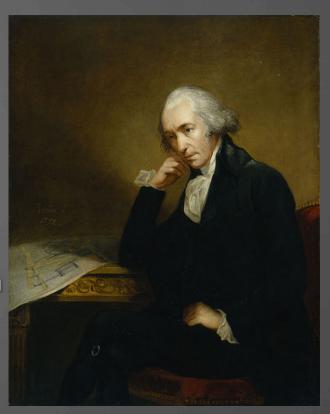
Solve for I:
$$I = \frac{a-b}{R_1} + \frac{a-b}{R_2} = \frac{a-b}{\frac{R_1 R_2}{R_1 + R_2}}$$

Hence, $R_{eq} = R_1 R_2 / (R_1 + R_2) = R_1 || R_2 ||$

Example

- What is the equivalent resistance of the circuit below?
- A) 200 Ω
- B) 100 Ω
- C) 50 Ω
- D) 33 Ω

Example


• You have a large drawer of 100 Ω resistors, but you need a 250 Ω resistor. Invent a circuit with the required resistance.

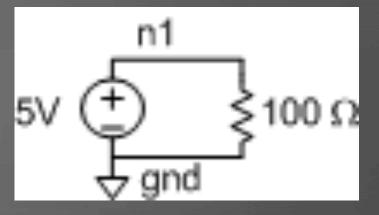
Power

- The amount of energy flowing through a circuit per time.
- Unit: Watts
 - (Watts= Joules / Sec, W = J/s)
- Technically:
 - P = dE/dt

James Watt

- 1736-1819
- Scottish engineer and inventor
- Home schooled
- Revolutionized steam engines
 - Condenser improved power generation

Power


- The power dissipated in a component is P = IV
 - Derivation:

- E = QV
 - For a resistor, V and I are related by Ohm's law, V = IR
 - Hence, $P_{resistor} = I^2R = V^2/R$

Is this a paradox that P is directly and inversely proportional to R?

Example

- How much power is delivered to the resistor?
- A) 2500 W
- B) 0.25 W
- C) 0.04 W
- D) 0.01 W

Open Circuit

- An open circuit is a circuit with no connection
 - Usually where a connection was intended
- Resistance = ∞
- No current flows

Short Circuit

- An short circuit is a circuit where two nodes are connected
 - Usually where a connection was NOT intended
- Resistance = o
- Ex: short circuit across a power supply causes huge amounts of current to flow, might blow a fuse or start a fire!

Multimeter

- Multimeters measure:
 - Voltage (voltmeter)
 - Current (ammeter)
 - Resistance (ohmmeter)

 Some do autoscaling while cheaper ones require that you choose the right scale

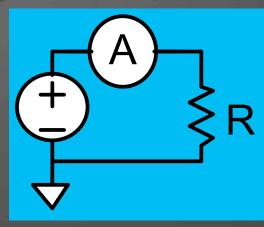
fluke.com

Voltmeter

- Place meter in parallel with circuit
- Meters may be digital or analog
 - Most today are digital for cost, accuracy
- Digital:
 - A/D converter
- Analog:
 - Galvanometer
 - Resistor in series with a coil of wire in a fixed magnetic field
 - Current through coil creates a torque that rotates the coil and deflects a needle

Ammeter

- Place meter in series with circuit
- Meter includes small precision internal resistor
 - Measure voltage across the resistor
 - Deduce current
- Most multimeters have a separate terminal for measuring current
- Fuse in meter will blow if the current is too large

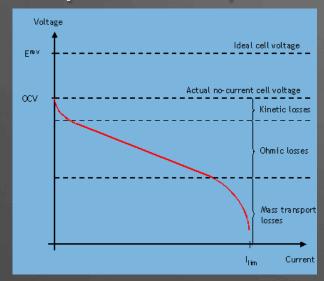

Ohmmeter

- Place in parallel with the resistor being measured
- Apply a small known voltage or current to the resistor
- Measure the current or voltage that flows
- Deduce resistance from Ohm's Law
- Unreliable if the resistor is in situ in a live circuit that distorts the measurements

Power Demo

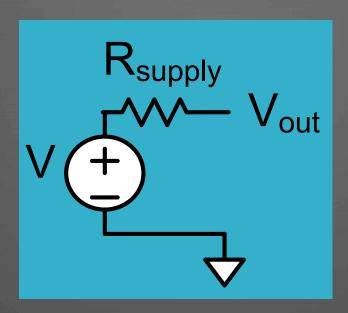
- Resistors are rated for a certain amount of power
 - Typical small resistors are ¼ Watt
 - Resistors can overheat and change if power is exceeded
- Ex: 5Ω resistor connected to a variable power supply
 - Use ammeter to measure current

Plot I vs. V; compute P and R



A Caution about Modeling

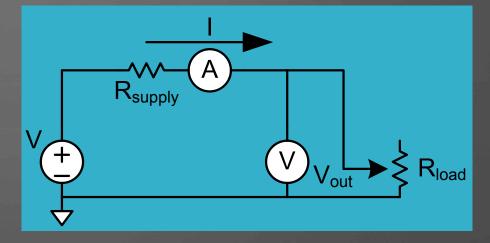
- We have assumed that our components are ideal.
 - This is not a bad approximation for electrical components in their usual operating range.
 - If you push them too hard, they violate the assumptions.
 - Mechanical and chemical systems rarely match ideal models as well as electrical systems.


Power Supply Model

- A typical power supply is not an ideal voltage source
 - Can provide a finite amount of output current
 - Voltage droops as you pull more current
 - Examples: fuel cell, solar cell, battery

Power Supply Model

 Model power supply as ideal voltage source in series with nonzero output resistance.


Loaded Nonideal Supply

 Suppose the load on the supply is varied. How does current and voltage change? How does power supplied to the load resistor change?

$$I = \frac{V}{R_{supply} + R_{load}}$$

$$V_{out} = V \frac{R_{load}}{R_{supply} + R_{load}}$$

$$P_{load} = \frac{V_{out}^2}{R_{load}} = V^2 \frac{R_{load}}{\left(R_{supply} + R_{load}\right)^2}$$

Matched Load

What load resistance draws maximum power? How much

power?

$$\begin{split} P_{load} &= \frac{V_{out}^2}{R_{load}} = V^2 \frac{R_{load}}{\left(R_{supply} + R_{load}\right)^2} \\ \frac{dP_{load}}{R_{load}} &= \frac{\left(R_{supply} + R_{load}\right)^2 - R_{load} 2\left(R_{supply} + R_{load}\right)}{\left(R_{supply} + R_{load}\right)^4} = 0 \\ R_{supply}^2 &+ 2R_{supply} R_{load} + R_{load}^2 - 2R_{supply} R_{load} - 2R_{load}^2 = 0 \\ R_{load} &= R_{supply} \\ V_{out} &= V / 2 \\ P_{load} &= \frac{V^2}{4R_{load}} \end{split}$$

Open and Short Loads

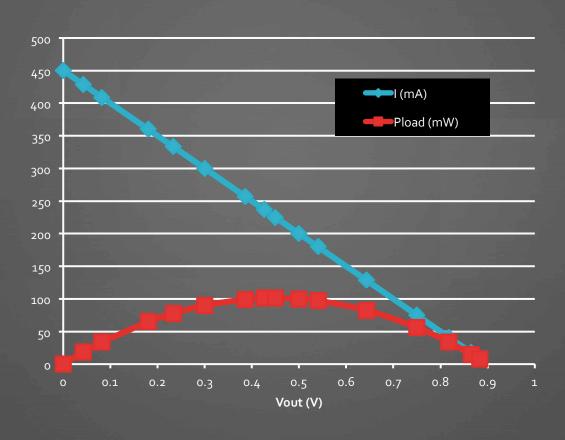
Open Circuit Load

$$Arr R_{load} = \infty$$

$$V_{out} = V$$

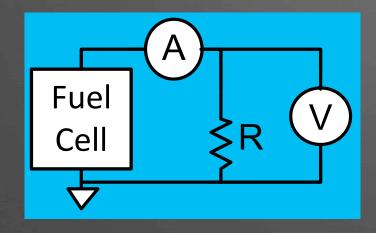
Short Circuit Load

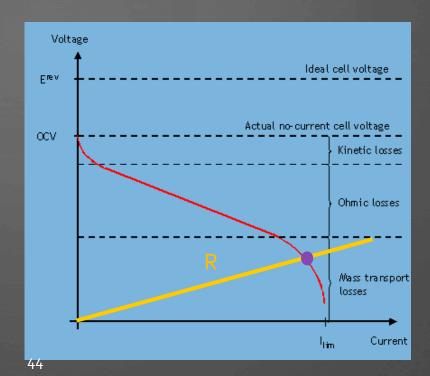
$$Arr R_{load} = O$$


$$V_{out} = 0$$

•
$$I = V / R_{supply}$$

Example


- A fuel cell has an open circuit voltage of 0.9 V and an effective output resistance of 2 Ω. How much power can it deliver to a matched load?
- A) 101 mW
- B) 810 mW
- C) 405 mW
- D) 1620 mW


Fuel Cell Model Predictions

Nonlinear Circuits

- In a nonlinear circuit, voltage and current are not proportional
- But nevertheless P = IV
- Ex: Fuel cell

