

E11 Lecture 5: Design Representation

Prof. David Money Harris Fall 2014

Outline

- Mechanical Design Representation
 - Orthographic Projections
 - Isometric Projections
 - Computer-Aided Design (CAD)
 - Computer-Aided Manufacturing (CAM)
 - Autonomous Vehicle Chassis
- Electronic Design Representation
 - Schematic Elements
 - Mudduino Schematic

Design Representation

- How to represent a 3-dimensional object on a 2dimensional page?
- Projections
 - Orthographic
 - Isometric

Orthographic Projection

- Front, top, and side views
- orthos "straight" + grαphic "drawing"
- Used by Greek and Roman astronomers and engineers

Orthographic Projection

Isometric Projection

- Shows three faces all at once
- Preserves distances accurately along each axis
- Angles between each axis are 120 degrees
- iso = "equal" + metric = "measure"

Isometric Projection

Example: I-beam

Datum Features

- Datum features are used to align the part
 - Make measurements from a consistent edge
- Feature labeled "A" is the primary datum
 - Align the part to this edge whenever possible
 - Keep it flat against a vice during machining
- Features "B" and "C" are secondary and tertiary datum

Dimensioning

- Dimensions are measured from the datum features
 - Only a minimum necessary set are shown
 - If a dimension isn't labeled, it is implied by symmetry
- Often you will need to make calculations
 - Mark up the drawing to make your life easier in the shop
- Holes are specified by their diameter (Ø)
- Some dimensions have tolerances shown

Example: Sensor Tower

Computer-Aided Design

- CAD software has replaced the drafting table
- HMC primarily uses SolidWorks
 - World's leading CAD tool
 - Relatively easy to use
 - Easy integration with simulation and manufacturing

http://
2.bp.blogspot
.com/LXXD5F17pLk
/
Tu6yMoecK_I
/
AAAAAAAAA
sY/OTesXiCI_Y/s400/
SimplexDrawi
ng20111218.j
pg

http://
www.kungfudrafte
r.com/storage/
post-images/
101-200/00116csh
ot.jpg?
__SQUARESPACE
_CACHEVERSION
=1254965507421

SolidWorks Concepts

- Sketches
 - 2D shapes such as lines, circles, text
 - Must be fully dimensioned
- Features
 - 3D objects built by extruding or cutting sketches

Computer-Aided Manufacturing

- Automate manufacturing from CAD drawings
 - 3D printing
 - Computer numerical control (CNC) machining

3D Printing

- Additive manufacturing process
- Create 3D object from successive layers of materials
- Primarily use powders or polymers
- Good for models and visualization
- Limited material strength

http://3dprint.com/wpcontent/uploads/ 2014/04/moneyfeat.jpg

http://everything3dprinting.com/wp-content/uploads/2013/12/3D-Printed-Dinosaur.jpg

Dimension ST1200 3D Printer

- Prints with ABS plastic
- Soluble support material
- 10 or 13 mil layers
- 10 x 10 x 12" maximum volume
- \$30k machine cost
- \$10/in3 materials cost

3dimensionprint.co.uk

CNC Machining

Subtractive manufacturing process

Computer-controlled tool removes material from a piece of

stock

- Examples:
 - CNC Mill and Lathe
 - Laser Cutter
 - ShopBot

Autonomous Vehicle Chassis

Lab 2: Draw in SolidWorks and 3D print chassis

Chassis Isometric View

3D Printer Access

- Save your SolidWorks drawing in Stereolithography (.STL) format
- Email .STL file to <u>Willie Drake@hmc.edu</u> with subject
 "E11 3D print request for <username>"
- Class covers materials costs for Lab 2 + one additional chassis, up to 2.5 in³
- You may use the printer for personal projects on a spaceavailable basis at a cost of \$10/in³ payable to Engineering

Electronic Design Representation

- Schematic describes the connection of electronic components
- Good schematic practices
 - Make the drawing easy to read
 - Use standard symbols
 - Group together related elements
 - Avoid bending lines without a reason
 - Use pins to connect by name where appropriate
- Bill of materials (BOM) specifies purchasing information

Schematic Symbols

Schematic Symbols

Mudduino Schematic

Power Supply

- Battery & USB sources
- Power and Motor switches + Bypass capacitors

Microprocessor & H-Bridge

- ATMEGA 328 Microprocessor
- H-Bridge Motor Driver
- Oscillator & reset switch

Team LED

- Switch to select team
- Two LEDs to indicate team
- D3 reports team to processor

LEDs and Buzzer

- D5 and D13 drive LEDs
- D4 drives buzzer

Header Pins

- Left and right:
 - Analog/Digital I/O, Motors, V_{bat}, 5V, GND
- Servo and distance sensor (D10 / D14)

FTDI Connector

- Serial transmit and receive data (TXD, RXI)
- 5V and GND, limited to 500 mA
- Reset pulse after programming

