

E11 Lecture 12: Diodes & Transistors

Profs. David Money Harris & Sherman Lam Fall 2014

Outline

- Semiconductors
- Diodes
- Transistors

Semiconductors

- Silicon is a Group IV Material
- Forms tetrahedral crystal with bonds to four neighbors
- Adjustable conductivity

Dopants

- Silicon is a semiconductor
- Pure silicon has no free carriers and conducts poorly
- Adding dopants increases the conductivity
- Group V: extra electron (n-type)
- Group III: missing electron, called hole (p-type)

Diodes

- A p-n junction is called a diode
 - p side is called anode
 - n side is called cαthode
- Current only flows from anode to cathode
 - When V_{diode} > V_{on}
 - V_{on} ≈ 0.7 V for silicon diodes
- Approximate I-V behavior

Light Emitting Diode

- Electron-hole recombination in a diode releases photons
- Wavelength of photons depends on semiconductor's bandgap
- GaAs and related materials glow red, yellow, green, or blue
- V_{on} depends on material, typically ~1.7 V
- Typically 5-20 mA gives satisfactory brightness

Nick Holonyak

- **1928-**
- Invented the first practical visible LED in 1962 while at GE
- EE Prof at University of Illinois
- Also invented laser diode and light dimmer

en.wikipedia.org/wiki/File:Nick_Holonyak_Jr.jpg

LED Circuit Analysis

- What value of R makes $I_{LED} = 10 \text{ mA}$?
- a) 10 Ω
- **b)** 100 Ω
- **c)** 330 Ω
- d) $3 k\Omega$

npn Bipolar Junction Transistor

- Made of two back-to-back diodes
- Behaves as a current-controlled switch
- 3 Terminals
 - Base (control)
 - Emitter (negative switch terminal)
 - Collector (positive switch terminal)

William Shockley

- 1910-1989
- Son of a mining engineer
- B.S. Caltech, Ph.D. MIT
- Invented BJT in 1948 @ Bell Labs
- Supervised Bardeen & Brattain
 - who invented first transistor in 1947
 - The three received the Nobel Prize in Physics in 1956

computerhistory.org

npn Transistor Behavior

- Base-to-emitter junction is a diode
- Small base current allows larger collector current to flow
- Three operating regions:
 - Cutoff:
 - no current flows
 - Linear:
 - collector current proportional to base current
 - Saturation:
 - collector current ceases to increase with base current

Operating Regions

Three operating regions:

- Cutoff:
 - base-emitter diode off
 - no current flows
- Linear:
 - base-emitter diode on
 - collector current proportional to base current

β typically around 100, but highly variable

- Saturation:
 - base-emitter diode on
 - collector current independent of base current

$$V_{be} < V_{on}$$

 $I_c = 0$

$$V_{be} = V_{on}, V_{ce} > o$$

 $I_c = \beta I_b$

$$V_{be} = V_{on} V_{ce} \approx 0$$

I_c const

Linear and Saturation Models

- When V_{be} ≈ 0.7V, transistor turns ON
- If V_{ce} > o, transistor behaves as a
 current amplifier

$$I_c = \beta I_b$$

- If V_{ce} falls to o, I_c ceases to rise with I_b
 - Saturation

Transistor Applications

- Amplifiers
- Switches

Transistor Amplifier

- For V_{in} < 0.7, Cutoff, I_c = 0, V_{out} = V_{cc}
- For V_{in} > 0.7, linear mode of operation
 - $I_b = (V_{in} 0.7)/R_b$
 - $I_c = \beta I_b$
 - $V_{out} = V_{DD} I_c R_c$
 - \bullet = $V_{DD} \beta (R_c/R_b)(V_{in} 0.7)$
 - Gain = dVout/dVin = $-\beta(R_c/R_b)$
- But V_{out} never falls below o
 - Transistor saturates first

Amplifier Behavior

Transistor as Switch

- Turn on or off a high-current load
 - Such as the motor
 - Needs more current than digital I/O
- If D2 = 0, transistor is cutoff
 - No current flows to load
- If D2 = 1 (5V), transistor saturates
 - $I_b = (5-0.7) / 215 = 20 \text{ mA}$
 - I_c of up to ~2A flows to load
 - Enough to pull x down close to o

