

E11 Lecture 1: The Big Picture & Digital Systems

Prof. David Money Harris Fall 2014

To Bring

- Syllabus
- Lab o
- E11 Bot
- Name Tents

Outline

- Course Goals
- Syllabus
- Autonomous Vehicles
- From Zero to One
- Number Systems
- Boolean Logic

Introduction

- Name Tents
- Introduce Self

Course Goals

- Hands-on interdisciplinary introduction to what engineers and computer scientists do
 - Mechanical Engineering
 - Electrical Engineering
 - Computer Engineering
 - Computer Science
 - Design
 - Controls

Course Goals (Part 2)

- Give students a tastes of what engineers and computer scientists do to help make informed major decisions Provide practical skills including:
 - Machine shop
 - 3D CAD and printing
 - Soldering
 - C programming
 - Sensors & actuators
 - Analog & digital interfacing
 - Modeling
 - Embedded control systems

Course Goals (Part 3)

- Whet your appetite to learn more advanced topics
- Develop skills:
 - Design build test debug
 - Teamwork
 - Presentations
 - **Technical writing**
- Just plain fun!

www.clker.com

The Teaching Team

- Prof. David Money Harris
- Unusual course with a big component of peer teaching
 - Two upper-class lab section instructors:
 - Sherman Lam
 - Cyrus Huang
 - Four lab assistants who previously took the course
 - Nicholas Gonzalez
 - Evan Kahn
 - Jerry Hsiung
 - Adam Dunlap
 - Grutors (PS Grading & Tutoring)
 - Kirklann Lau
 - Ramy Elminyawi
 - Vai Viswanathan
 - Alex Alves

Schedule

Week	Tue	Thur	Lab	Problem Set (due Tue in Class)
0:9/1	Intro & Digital Logic	C Programming I	0: Shop safety briefing	
1:9/8	Arduino Hardware	C Programming II	1: Muddunio Board	
2: 9/15	Design Representation	C Programming III	2: Solidworks & 3D Printing	1: Welcome to Arduino
3: 9/22	Gold Codes	C Programming IV	3: Machine Shop	2: Music & Memory Game
4: 9/29	Analog Circuits	Debugging	4: Robot Assembly	3: Gold Code Generation
5: 10/6	Sensors & Actuators	Diodes & Transistors	5: Motors & Sensors	4: Gold Code Correlation
6: 10/13	Feedback Control	More Sensors	6: Line-Following Bot	5: Reaction Timer & Light Tag
7: 10/20	Fall Break NO CLASS	Line Following Race	NO LAB	
8: 10/27	Game Kickoff & Team Dynamics	Mechanical Performance	Robot Design I	6: Gold Code Detection
9: 11/3	Robot Navigation	<slack></slack>	Robot Design II	7: Electronics
10: 11/10	<slack></slack>	Guest Lecture	Robot Design III	
11: 11/17	Technical Writing	Scrimmage	Robot Design IV	
12: 11/24	Competition: 5:30 Big Shanahan	Thanksgiving NO CLASS	NO LAB	
13: 12/1	Peer Editing	Presentation Skills	Peer Editing	Report Draft
14: 12/8	Guest Lecture	Engineering & CS Outlook	Final Presentations	Final Report

Grading

- Pass/fail. To Pass:
 - Regularly attend class and labs
 - Complete all but one of the weekly labs
 - Complete all but one of the homework assignments
 - Deploy an operational autonomous vehicle to play Capture the Flag
 - Make a presentation about the vehicle
 - Complete a final report documenting your vehicle

Collaboration Policy

- Labs 1-5:
 - Done on your own
 - You are welcome consult your instructors and classmates
- Lab 6 & Final Project:
 - Done with a partner
- Problem Sets:
 - Try it yourself first before discussing with others
 - OK to discuss with other students after trying it yourself
 - Your answers should be your own work: no identical code ©

Lab Kits

- You will need a laptop
 - If you don't have one, ask me about a loaner
- You will need to buy your lab kit before September 8
 - **\$174**
 - Bring ID card with Claremont Cash to Sydney Torrey
 - Engineering Department Office Parsons 2373
 - Take your receipt to stockroom to pick up kit
 - Parsons B174

Labs

- Lab o starts this week
 - Machine shop intro and safety briefing
 - Meet in E80 lab (Parsons B171)
 - Bring your laptop
 - Might as well bring it to each lab

Autonomous Vehicles

The Great Robot Race

http://www.youtube.com/watch?v=uoiJeIbowBA

The "Tortoise", Gray Walter 1950

Google Autonomous Cars

From Robot Shop Blog

Land, Air, Sea, ...

Land, Air, Sea, ...

http://www.youtube.com/watch?v=geqip_oVjec

Autonomous Vehicles - Components

Autonomous Vehicles - Components

Sensor Sensing Mounts On board Sensing Actuator **Processing** Chassis Battery Locomotion **Drive Motor**

Autonomous Vehicles - Feedback

Autonomous Vehicles - Feedback

From Zero to One

- We'll be building digital systems
 - Simple building blocks: o and 1
 - o = FALSE
 - 1 = TRUE
 - Robustly assemble them into complex systems
 - (Much more on this in E85 and CS60 and E155)

Digital Abstraction

- o and 1 could be represented by any physical quantity
 - voltage
 - current
 - position of a mass
 - electron spin
 - reflectivity
 - magnetic polarity
 - water flow
- Most of these properties are continuous
- Only consider a discrete subset of the values

The Analytical Engine

- Designed by Charles Babbage from 1834 – 1871
- Considered to be the first digital computer
- Built from mechanical gears, where each gear represented a discrete value (o-9)
- Babbage died before completion

High and Low Voltages

- Most digital systems today use voltage to process o and 1
 - o = low voltage
 - 1 = high voltage
- Power supply voltage: VDD (or VCC)
 - Formerly 5 V standard
 - Decreased toward 3.3, 2.5, 1.8, 1.2, 1.0, 0.8, ...
 - We'll use VDD = 5 V
- Ground = o V

Logic Levels

Bits & Binary Numbers

- A o or 1 represents one of two states
 - Hence, it is called a binary digit, or bit
- N bits can represent one of states
- Write as binary numbers
 - 000...000 = 0
 - 111...111 = 2^N-1
- Leftmost bit is called most significant bit (weight = 2^{N-1})
- Rightmost bit is called least significant bit (weight = 1)

Number Systems

Decimal Numbers

1's column
10's column
100's column
1000's column

$$5374_{10} = 5 \times 10^3 + 3 \times 10^2 + 7 \times 10^1 + 4 \times 10^0$$
five three seven four thousands hundreds tens ones

Binary Numbers

1's column
2's column
4's column
8's column

$$1101_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 13_{10}$$
one
eight
one
two
one
one
one

Powers of 2

More Powers of 2

Number Conversion

- Decimal to binary conversion:
 - Convert 10011, to decimal

- Decimal to binary conversion:
 - Convert 47₁₀ to binary
 - _

Addition

Decimal

Binary

Addition Examples

Signed Numbers

- How could we represent negative numbers in binary?
 - "Two's complement" number system
 - Most significant bit has a weight of -2^{N-1}
- Examples: 5-bit two's complement numbers

```
• -6<sub>10</sub> =
```

Boolean Logic

- Digital systems operate on o's and 1's to produce more o's and 1's
 - Called Boolean Logic

Charles Boole 1815-1864

- Born to working class parents
- Taught himself mathematics and joined the faculty of Queen's College in Ireland.
- Wrote An Investigation of the Laws of Thought (1854)
- Introduced binary variables
- Introduced the three fundamental logic operations: AND, OR, and NOT.

Scanned at the American Institute of Physics

NOT Gate

AND Gate

$$Y = AB$$

A	В	Y
0	0	0
0	1	
1	0	
1	1	

OR Gate

XOR Gate

$$Y = A \oplus B$$

A	В	Y
0	0	
0	1	
1	0	
1	1	