

E11 Lecture 11: Capacitors & Inductors

Professor David Money Harris Fall 2010

Outline

- Frequencies
- Capacitors
- Inductors
- 1st order systems
 - DC Response
 - Step Response

Frequencies

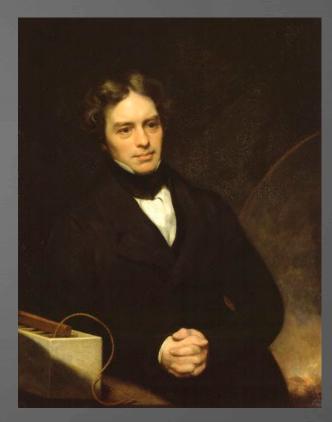
- Consider a signal x(t) = cos(wt)
- w is the frequency of the signal (in units of radians/sec)
- If w = 0, x(t) = 1
 - Zero frequency is a constant signal, called DC (direct current)
- If w is relatively small, signal is called low frequency
- If w is relatively large, signal is called high frequency

Capacitor

- A capacitor consists of two conductors separated by an insulator.
- When a voltage V is applied, positive charge +Q
 accumulates on one plate and negative charge –Q
 accumulates on the other.
- The capacitance is the ratio of charge to voltage:
 - Q = CV
- Units of Farads (farad = coulomb / volt)

Michael Faraday

- **1791-1867**
- English chemist and physicist
- Poor family, little formal education
 - Didn't know calculus
- One of history's best experimentalists
- Professor at the Royal Institution
- Inventor of motors
- Established the basis for concept of electromagnetic field

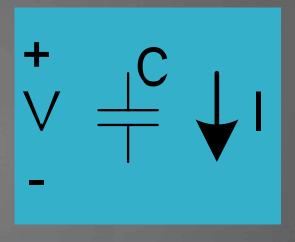


en.wikipedia.org/wiki/File:Michael_Faraday_oo1.jpg

Capacitor I-V Relationship

- Q = CV
- Current is I = dQ/dt
- Hence

$$I = C \frac{dV}{dt}$$



Capacitor Energy Storage

• A capacitor stores energy in the form of the electric field created by the charge. $\frac{1}{\tau}$

If a capacitor is charged from o to V_{DD},
 the energy stored is

$$E = \int_{0}^{T} P dt$$

$$= \int_{0}^{T} V I dt$$

$$= \int_{0}^{T} CV \frac{dV}{dt} dt$$

$$= \int_{0}^{V_{DD}} CV dV$$

$$= \frac{1}{2} CV_{DD}^{2}$$

Capacitor Behavior

- A capacitor doesn't like to change its voltage instantly.
 - Requires current
 - Requires energy
- Capacitor looks like:
 - Open circuit at low frequency
 - Short circuit at high frequency

Capacitor Applications

- Store electrical energy
- Stabilize a voltage (such as the power supply)
 - Capacitor opposes changes to its voltage
- Passing only high frequency signals

Capacitor Types

- Ceramic Disk
 - Typical values of 10 pF 100 nF
 - Cheap and reliable
 - No polarity
- Electrolytic
 - Popular for values > 1 mF
 - Cheap
 - Wide tolerances (~ -50% / +100%)
 - Polarized, can explode if hooked backward

leds-capacitors-manufacturer.com

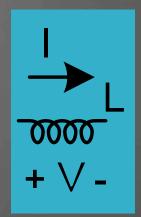
diytrade.com

- Tantalum
 - Similar to electrolytic, but smaller and more expensive

Inductor

- An inductor consists of a coil of wire.
- Current flowing in the wire induces a magnetic field
- Changing the magnetic field induces a voltage

$$V = L \frac{dI}{dt}$$



Inductance L has units of Henries (Volts / (Amperes/sec))

Joseph Henry

- 1797-1878
- American scientist
- Poor family, father died young
- Research was the basis of the telegraph
- First secretary of the Smithsonian

www.photolib.noaa.gov/bigs/perso124.jpg

Inductor Energy Storage

 An inductor stores energy in the form of the magnetic field created by the current.

If an inductor has current I flowing,
 the energy stored is

$$E = \int_{0}^{T} P dt$$

$$= \int_{0}^{T} I V dt$$

$$= \int_{0}^{T} I L \frac{dI}{dt} dt$$

$$= \int_{0}^{I} L I dI$$

$$= \frac{1}{2} L I^{2}$$

Inductor Behavior

- An inductor doesn't like to change its current instantly.
 - Requires voltage
 - Requires energy
- Inductor looks like:
 - Short circuit at low frequency
 - Open circuit at high frequency

Inductor Applications

- Store magnetic energy
- Mechanically operate electromechanical systems
- Passing only low frequency signals

Inductor Types

- Coils
 - Often wound on iron core to increase magnetic field
 - Typical values of 10 mH 100 mH
 - Relatively expensive compared to capacitors

http://personal.ee.surrey.ac.uk/Personal/H.M/UGLabs/components/inductors.htm

First Order Systems

- A 1st order system is described by a 1st order differential eq
 - An equation with just a first derivative
- Systems with a single energy storage element are 1st order
 - e.g. a single inductor or capacitor

Example: RC Circuit

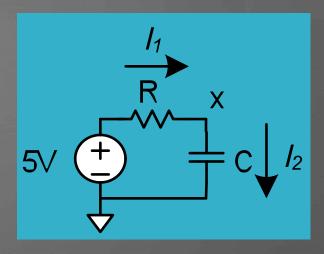
Apply KCL to find governing equation

$$I_{1} = \frac{V - x}{R}$$

$$I_{2} = C \frac{dx}{dt}$$

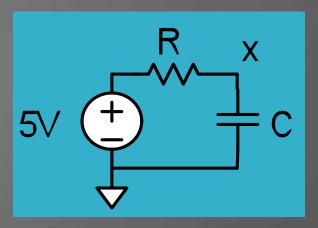
$$I_{1} = I_{2}$$

$$\frac{dx}{dt} + \frac{x}{RC} = \frac{V}{RC}$$



RC Circuit DC Response

- What is the voltage at node x?
- A) o V
- B) 2.5 V
- C) 5 V
- D) infinity



Differential Equations

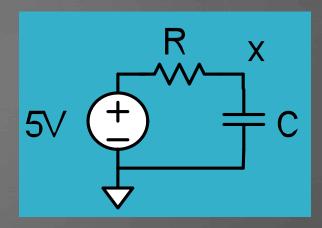
- This is a 1st order differential equation
 - An equation involving a single derivative

$$\frac{dx}{dt} + \frac{x}{RC} = \frac{V}{RC}$$

- Solving differential equations
 - Need to know the initial condition (value of x at the start)
 - Guess the form of the answer
 - Use intuition about functions, or past experience
 - Substitute the guess into the equation and check
 - Use initial condition to solve for free variable

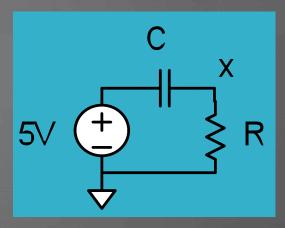
RC Circuit DC Response

- Two ways to analyze
- Formal: $\frac{dx}{dt} + \frac{x}{RC} = \frac{V}{RC}$
 - V = constant 5 V
 - x must be constant -> dx/dt = o
 - \bullet x = V = 5V
- Intuitive
 - Capacitor looks like open circuit at DC
 - By voltage divider, $x = V \frac{\infty}{\infty + R} = V$



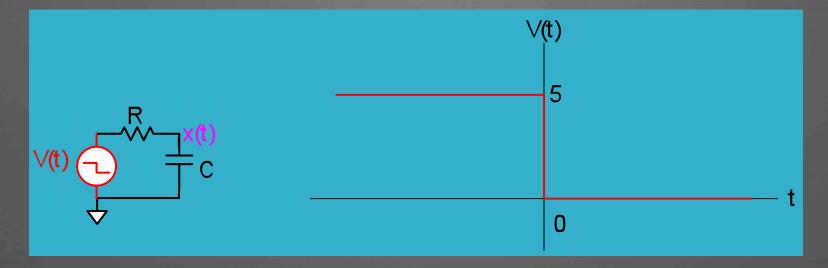
RC Circuit DC Response

- What is the voltage at node x?
- A) o V
- B) 2.5 V
- C) 5 V
- D) infinity



RC Circuit Step Response

- A step is an abrupt change from one value to another.
- What happens if the input voltage steps from 5 to 0 at time t = 0?



RC Circuit Step Response

$$\frac{dx}{dt} + \frac{x}{RC} = \frac{V}{RC}$$

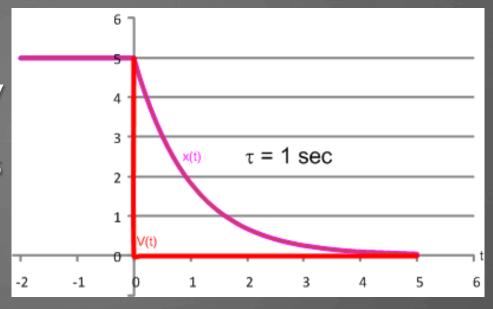
$$V(t) = \begin{cases} 5 & t < 0 \\ 0 & t > 0 \end{cases}$$

- x(t) = 5 for t < 0 (initial condition)</p>
- x(t) for t > o must be a function whose derivative is of the same form so it can cancel
- Guess $x(t) = Ae^{\frac{-t}{\tau}}$
- Initial condition: x(o) = 5 -> A = 5
- Hence $x(t) = 5e^{\frac{-t}{RC}}$

$$\frac{d}{dt}Ae^{\frac{-t}{\tau}} + \frac{1}{RC}Ae^{\frac{-t}{\tau}} = 0$$
$$\frac{-1}{\tau}Ae^{\frac{-t}{\tau}} + \frac{1}{RC}Ae^{\frac{-t}{\tau}} = 0$$
$$\tau = RC$$

RC Circuit Response

- t is the *time constant*
- Capacitor won't change voltage instantaneously
- t describes how fast exponential approaches final value
- After 3t, output is ~ o



 All 1st order systems have a response in the form of an exponential approaching the final value

Step Response

What would the RC circuit be to a rising step?

