
Introduction to Real Time
Operating Systems (RTOS)

Lecture 22

Josh Brake
Harvey Mudd College

1 / 34

Learning Objectives
By the end of this lecture you will be able to:

Articulate the importance of multitasking and how computers are not true multitasking
systems.

Describe the basic concepts of a real-time operating system

Compare and contrast the tradeoffs of various scheduling algorithms.

2 / 34

Outline
Motivation for multitasking and real-time operating systems

Introduction to key concepts

Tasks

Scheduling

Semaphores

Queues

Interrupts and Events

Introduction to FreeRTOS

3 / 34

Multitasking Scenarios
Printing information to a display in response to keyboard input

Car

Airbag response

Braking system

Robotics

Flight system in a drone

Control or signal processing algorithms

So� vs. hard real-time requirements

So� real-time requirements are those that state a time deadline—but breaching the
deadline would not render the system useless.

Hard real-time requirements are those that state a time deadline—and breaching the
deadline would result in absolute failure of the system.

4 / 34

Why multitasking?
Bare-metal programming

Setup and initialization – runs once

Infinite loop – runs continuously and handles main tasks

Bare-metal + interrupts

Can now incorporate additional functionality which quickly responds to inputs and
can guarantee that we don’t miss important events.

Examples: Receiving and processing UART data, catching button inputs

But as we build more and more complicated programs, it is hard to guarantee specific
timing constraints are met.

Many different scenarios

Lots of edge cases which makes things very difficult to debug.

5 / 34

Why multitasking?
Enter the concept of multitasking

Multitasking: means that several tasks (or programs) are processed in parallel on the
same CPU

Only have a single core on your microcontroller so this is not true parallelism, just
swapping different tasks in and out

Operations inside your bare-metal infinite loops are tasks.

For example, consider that you want to blink 2 LEDs at different frequencies. In bare-
metal, you could have your infinite loop use timers to poll a timer and then toggle
the LEDs based on the current time.

Works, but inefficient as the processor is always running.

6 / 34

Task States

Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide. 2016.

7 / 34

The Mudd Multitasking Kernel
You are taking E155, Clinic, and an HSA. In addition, you want to sleep 8 hours a night
and have time to hang out with your friends playing board games over Zoom.

Imagine you must manage your clinic mid-year report, MicroPs final project, and must
read a book and write a paper for your HSA in addition to chatting with your friends.
You only have one brain.

What are different ways you can manage your tasks?

8 / 34

Scheduling Algorithms
The scheduling algorithm decides which task is running on the core.

Three main algorithms:

Co-operative scheduling

Round-robin scheduling

Preemptive scheduling

9 / 34

Co-operative scheduling

Each task must yield control or else it can starve all other tasks.

Task1() {1
 // Task 1 code2
}3

4
Task2() {5
 // Task 2 code6
}7

8
Task3() {9
 // Task 3 code10
}11

12
while(1) {13
 Task1();14
 Task2();15
 Task3();16
}17

Ibrahim, Dogan. ARM-Based Microcontroller Multitasking
Projects: Using the FreeRTOS Multitasking Kernel.

10 / 34

Co-operative scheduling
Rules

1. Tasks must not block the overall execution, for example, by using delays or waiting for
some resources and not releasing the CPU.

2. The execution time of each tasks should be acceptable to other tasks.

3. Tasks should exit as soon as they complete their processing.

4. Tasks do not have to run to completion and they can exit for example before waiting for
a resource to be available.

5. Tasks should resume their operations from the point a�er they release the CPU.

11 / 34

Round-robin scheduling
The scheduler creates a periodic time slice and equally divides CPU use between tasks.

Advantages:

It is easy to implement.

Every task gets an equal share of the CPU.

Easy to compute the average response
time.

Disadvantages

It is not generally good to give the same
CPU time to each task.

Some important tasks may not run to
completion.

Not suitable for real-time systems where
tasks usually have different processing
requirements.

Ibrahim, Dogan. ARM-Based Microcontroller Multitasking
Projects: Using the FreeRTOS Multitasking Kernel.

12 / 34

Preemptive Scheduling
Most common scheduling algorithm in real-time systems

Tasks are assigned priorities

Higher priority tasks can preempt lower priority tasks to take the CPU

Need to be careful to assign priorities appropriately or you can starve lower priority
tasks

Q: How are tasks and their priorities
different than interrupts?

Ibrahim, Dogan. ARM-Based Microcontroller Multitasking
Projects: Using the FreeRTOS Multitasking Kernel.

13 / 34

Scheduling Algorithm Goals
Be fair such that each process gets a fair share of the CPU.

Be efficient by keeping the CPU busy.

The algorithm should not spend too much time to decide what to do.

Maximize throughput by minimizing the time users must wait.

Be predictable so that same tasks take the same time when run multiple times.

Minimize response time.

Maximize resource use.

Enforce priorities.

Avoid starvation.

14 / 34

Other scheduling algorithms
First-come first-served

Shortest time remaining first

Longest time remaining first

Multilevel queue scheduling

Dynamic priority scheduling

15 / 34

FreeRTOS

16 / 34

Introduction to FreeRTOS
We will use FreeRTOS as our example

Other popular RTOSes include Zephyr, NuttX, VxWorks. Varying licensing
argreements.

Like a programming language: once you learn one RTOS, concepts transfer to
others.

FreeRTOS licensed under MIT license – very permissive.

Can be used in commercial applications and users retain all ownership of their IP.

17 / 34

Code Structure of FreeRTOS

Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide. 2016.

18 / 34

Data Types and Naming Conventions
Port specific data types TickType_t - holds tick count value

BaseType_t – Base type value which is most efficient data type on a given system.
Typically the word size.

19 / 34

Naming Conventions: Variable Names
Variable Names - prefixes tell their type

Prefix Type

c char

s int16_t (short)

i int32_t (long)

x BaseType_t and other non-standard types (structs,
task handles, queue handles, etc.)

20 / 34

Naming Conventions: Function Names
Function Description

vTaskPrioritySet() returns a void and is defined within task.c.

xQueueReceive() returns a variable of type BaseType_t and is defined
within queue.c.

pvTimerGetTimerID() returns a pointer to void and is defined within
timers.c.

21 / 34

Template Project

Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide.
2016.

22 / 34

Creating Tasks

Return

pdPass or pdFail - indicates if task was
successfully created.

Parameters

pvTaskCode - pointer to C function that
implements that task

pcName – Descriptive name for the task

usStackDepth – size of stack to be
allocated by the kernel when creating the
stack (in words)

pvParameters – pointer to void to pass
in parameters. Need to cast void pointer to
correct type inside the function to use it.

uxPriority – Defines the priority of the
task

pxCreatedTask – handle to created
task

23 / 34

Printing to Terminal

Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide. 2016.

int main(void) {1
 xTaskCreate(vTask1, “Task 1”, 1000, NULL, 1, NULL);2
 xTaskCreate(vTask2, “Task 2”, 1000, NULL, 1, NULL);3
 vTaskStartScheduler();4

5
 for(;;);6
}7

24 / 34

Printing to Terminal Example Output
int main(void) {1
 xTaskCreate(vTask1, “Task 1”, 1000, NULL, 1, NULL);2
 xTaskCreate(vTask2, “Task 2”, 1000, NULL, 1, NULL);3
 vTaskStartScheduler();4

5
 for(;;);6
}7

25 / 34

Example: Priorities

26 / 34

Revisiting Not Running State
Three Options

Suspended

Ready

Blocked

27 / 34

Example: Printing with better delay using blocked
state

28 / 34

Example: Sending tasks to blocked state

29 / 34

Key Terms in Real-time Systems
Tasks – C functions which indicate things to do. Implemented as infinite loops.

Scheduling – The process of determining what task is currently running

Semaphores – an abstract data type which controls access to a resource used by
multiple tasks

Queues – A way to communicate between tasks (Chapter 4 of Mastering FreeRTOS)

Interrupts and Events – how to safely integrate interrupts with the RTOS kernel (Chapter
6 of Mastering FreeRTOS)

30 / 34

Summary
Multitasking is an important concept in advanced embedded systems

Have timing constraints that must be met (both so� and hard deadlines)

Hard to debug and manage systems with increasing complexity while guaranteeing
all deadlines are met.

Real-time operating systems introduce a scheduler which enables the programmer to
efficiently use - CPU cycles while ensuring deadlines are met.

FreeRTOS is an open and accessible platform to learn RTOS concepts like tasks, queues,
semaphores, and resource management.

31 / 34

FreeRTOS Examples

32 / 34

Learning Goals
To understand the following key concepts of Real-time Operating Systems through
examples in FreeRTOS

Task creation

Basic scheduling

Task priorities and preemption

33 / 34

Outline
FreeRTOS Refresher

Examples for today

1. Task creation with LED blink example: 01_task_creation_blink_led.c
2. Passing parameters into task using pvParameters:
02_passing_parameters_blink_led.c

3. Multiple tasks with two serial prints: 03_multiple_tasks_print.c
4. Simple preemption example: poll button and blink LED and single print:
04_simple_preemption.c

34 / 34

