The Fast Fourier Transform (FFT)

Lecture 20

Josh Brake
Harvey Mudd College

1/31

Learning Objectives
By the end of this lecture you will be able to:

e Recall the basic mathematical structure of the Discrete Fourier Transform (DFT)

e Understand how the FFT is used to efficiently compute the DFT

e Be able to sketch a block diagram of the basic blocks needed to implement an FFT on
an FPGA.

2/31

Outline

e Review of the Fourier Transform

= Continuous Fourier Transform

= Discrete Fourier Transform (DFT)
e The Fast Fourier Transform (FFT)
e The FFT on an FPGA

3/31

The Discrete Fourier Transform
(DFT)

The Discrete Fourier Transform (DFT)

Frequency Domain Coefficients Time Domain Coefficients
N-1 N-1
X[kl =) x[n]- W*" x[n] =) X[k]- W"
n=0 n=0

2
W =exp[—j27t/N] = cos(%) -] sin(ﬁ>

x[n]: time domain samples (complex)

e N: number of samples

X [k]: frequency domain coefficients (complex)
e W = exp[—j2m/N]: “roots of unity” or twiddle factors (note: sometimes sign is flipped)
e n:time domain index

e k:frequency domain index

5/31

Example Signal

x[n] = cos(2mfnAt)

x[n]: Samples
f: Signal frequency

n: Index

Consider a signal with N = 8 samples

x[n] = cos(2mfnAt)

n=0,1,2,...,N-1

At = 1/f; where f{; is the sampling frequency
W = exp[—j27t/N | = exp[—j7t/4]

6 /31

Example Signal

x[n] = cos(2mfnAt) . [mxn)[

Coefficient Magnitude
o
o

0.050 1

0.0254

0.00097 &—@& & \ g & & \ J

—0.025 1

Coefficient Magnitude

—0.0501__

Sample Number |

Set f =2 Hz and ;=8 Hz. So, this means that we have 4 samples per period of the sinusoid.

X[n] — [130,_1307130,_190]

7/31

Example: DFT computation

e Compute DFT of the signal
e W = exp[—)27t/N]| = exp[—jm/4]

N-1

X[k] = Z x[n] - Wk?

n=0

8 /31

DFT Computational Complexity

e How many multiplications do we need to perform to compute each Fourier coefficient?

= N complex multiplications (2N real multiplies if signal is real; {4NH.blank-
underline} real multiplications if signal is complex)

= Assuming a real input signal, each frequency requires 2N multipliesand 2(N — 1)
additions since it costs N — 1 additions to add N numbers and we need to do this
for both real and imaginary parts.

= So, overall computational complexity for a single frequency is
2N + 2(N - 1) = 4N — 2 and we have N frequencies for a total of N(4N — 2)
computations.

= This means the DFT is O(N?).

Can we do better?

9/31

The Fast Fourier Transform

The Fast Fourier Transform

How can recursion help us to simplify the computation?

N-1

X[K] = Z x[n] - Wk?

n=0

The derivation in the following slides is based on this paper.

A Tutorial-style Single-cycle Fast Fourier Transform Processor

Alec Vercruysse*
M. Weston Miller*
Joshua Brake'

David Harris
avercruysse@g.hmc.edu
wmiller@g.hmc.edu
jbrake@hme.edu
David Harris@hmc.edu
Department of Engineering, Harvey Mudd College
Claremont, CA, USA

11 /31

History: DFT to FFT

e Algorithm invented by Carl Friedrich Gauss around 1805
e Published in 1965 by Cooley (IBM) and Tukey (Princeton)

e Widely used throughout signal processing.

An Algorithm for the Machine Calculation of
Complex Fourier Series

By James W. Cooley and John W. Tukey

12 /31

Symmetries of the roots of unity

o W' = exp(—jz—l\?n)

o WI = W(n+Nk)
e W = _Wn+N/2
e WNE=]

13 /31

Decimation in Time (DIT) DFT

e Expressthe DFT as a sum of two DFTs by splitting the signals into two based on even
and odd indices.

N/2-1
X[k] = Z x[n] - WK™
n=0
N-1 N-1
X[k] = Z x[2n] - WE2" + Z x[2n + 1] - W@+
n=0 n=0
N-1 N-1

X[k] = 2 x[2n] - W2 4wk Z x[2n + 1] - Wk2n
n=0 n=0

14 /31

Decimation in Time (DIT) DFT

N-1 N-1
X[k] = 2 x[2n] - WX + WK Z x[2n + 1] - Wk
n=0 n=0

Which samples are in each sum?

R(xn)
o 1.04 @ [
o
o
c 0.54
[@)]
[{v]
= 0.0- ° s ° °
[-
L
o i
E_O.S
]
(@]
U_lo— | 1 , | 1 | |. 1
0 1 2 3 4 5 §) 7

15/ 31

DFT Recursion

N-1
X[k] = Z x[2n] - Wk2n
n=0
N-1
+ WK Z x[2n + 1] - Wk
n=0

This division is equivalent to two separate
N/2 DFTs with a final multiplication and
addition per output term.

x[0]

x[2]

x[4]

x[6]

x[1]

x[3]

x[5]

x[71

@—x[al
@—xu]
-@—x[z]
——¥ —-@—xta]
\
\ L <:>—-MM
X @—x[s]
“C:>__Xm]
»t:)——xnl

& & & G

16/ 31

Use recursion to solve 4-point transforms

e Apply the DIT recursion formula to find the 4-point DFT as the sum of two 2-point DFTs.

e Write X[1] (the first output of the 4-point DFT) explicitly using the equation below.

N-1 N-1
X[k] = Z x[2n] - WK 4 Wk 2 x[2n + 1] - Wk2n
n=0 n=0

X[k] = x[0] - WK + x[2] - WE2 + WK (x[1] - WO + x[3]W*?)

17 /31

Use recursion to solve 4-point transforms

X [@] = @ =®—X[0]

Even 2-point Transform
x[21>< . @ -@—xm
x[4] (DA A=

Odd 2-point Transform
3 A : O X [3]

@—xm

4

Even 2-point Transform

x[3]>< Whj) Q_X[S]

X[5] @ (w2 -@—X[G]
Odd 2-point Transform

<(7— OHef—— (O

18 /31

What is the 2-point DFT?

N =2
N-1 N-1
X[k] = Z x[2n] - WK 4 wk Z x[2n + 1] - wk2n
n=0 n=0

X[k] = x[0] - WKO + WK (x[1] - Wk©?)
X [k] =x[0] + WK - x[1]

19/ 31

The butterfly unit

e Two complexinputs: A &B
e Multiplies B by the twiddle factor

e Computes sum and difference

d “'lllllllll!dllil" 63()U1Z
b A’ bout

20/ 31

FFT Activity

Build your own FFT

Using the template diagrams on the following slides, fill in the missing information.

e Theinputs are samples x[n]. You need to determine which samples should be
connected to each input.

e The rounded rectangles indicate multiplications by twiddle factors SWAkS in the
butterfly units. You need to determine what the twiddle factors should be.

e The circle indicate either addition or subtraction operations

The most straightforward way to figure this out is to evaluate the time-decimated DFT
equation and look for where the nesting occurs. (e.g., the 4-point DFT is the combination
of two, 2-point DFTs.)

22/ 31

Step 1: 4-point FFT
Complete the diagram below

|| Fillin the rounded rectangles with the appropriate twiddle factors

| Draw arrows to route signals properly

Hints:

e Each stage includes log, (N) butterfly units.

23/ 31

Step 1: 4-point FFT

x[]

1=1

X[0]

X[1]

X[2]

X[3]

YT

24 / 31

Step 2: 8-point DFT
Using the process from the previous slide, repeat this for an 8-point DFT.

Note that the top-left portion of the diagram is identical to the 4-point DFT. You simply
add another copy below on the bottom left and then combine them with one more stage
of butterflies.

25/ 31

Step 2: 8-point DFT

()
{0
OO0
OO0
(D
0
=0
gt oy

@—X[@] Butterfly Index
j=0
j=1
j=3

@—x[zl

y -.@_xm

' @—xM]

@—x[s]

NG

.@—xm

X

OO TTOO
auisys]

1 i=2

26 / 31

Solution

x[0]

x[4]

x[2]

x[6]

x[1]

x[5]

x[3]

x[7]

Level

i=2

Butterfly Index

e e .
I mn
WNRe

27 1 31

Summary

e N-point FFT can be computed with...
" log,(N) levels of transforms
= Each transform has N/2 steps of butterfly operations

= Each butterfly operation consists of a complex multiplication by a twiddle factor
and a complex addition and subtraction.

= Total of (N/2) log,(N) complex multiplications are needed.

28 /31

FFT in Software

Bit-reverse-copy (x, X) // initialize X to bit-reversed order
w=e" (—-j*2xpi/N)
wlo] = 1; // initialize twiddle factor table:
for k =1 to N/2 -1
wlk]l = wlk-1] * w // wlk] holds wk
M=2 // size of the transform at current level
t = log2(N)-1 // stride through twiddle factors
for s = @ to log2(N)-1 // level s
for k = @ to N-1 by M // iterate over M-point transforms
for j =0 to M/2 -1 // butterflies in M-point transform
a = X[k+jl
b = X[k+j+M/2]
twiddle = w[j << t]
p = b x twiddle // multiply by appropriate twiddle factor
X[k+j] = a + p
X[k+j+M/2] = a - p
M=M=<<1 // boost size of transform for next level
t=t-1 // stride of twiddle factors gets smaller

29 /31

FFT in Hardware

e Consider the FFT as a processor like the
designsin E85 i

e Two major components

FFT adr0a— clk
h Control adrob— !
= Datapat Unit | | we
p rd_adr =4 adrla _} adrb
adrib— RAMO

rd0a

= Controller

rdOb

dlk twiddleadr

Twiddle ROM clk
|
twiddle we
. adra
adrb RAM1 a
a ~aout | wda rda rdia wd
+ wda 10

b Abmult bout | wdb 2 - b
@ ><:; ou ~ wdb rdb rdlb
Butterfly Unit ‘ “

A. Vercruysse, M. W. Miller, J. Brake, and D. Harris. 2022. A Tutorial-style Single-cycle Fast
Fourier Transform Processor. https://doi.org/10.1145/3526241.3530329

30/ 31

Conclusion
By the end of this lecture you will be able to:
e Recall the basic mathematical structure of the Discrete Fourier Transform (DFT)

e Understand how the FFT is used to efficiently compute the DFT

e Be able to sketch a block diagram of the basic blocks needed to implement an FFT on
an FPGA.

31/31

