The Fast Fourier Transform (FFT)

Lecture 20

Josh Brake

Harvey Mudd College

Learning Objectives

By the end of this lecture you will be able to:

- Recall the basic mathematical structure of the Discrete Fourier Transform (DFT)
- Understand how the FFT is used to efficiently compute the DFT
- Be able to sketch a block diagram of the basic blocks needed to implement an FFT on an FPGA.

Outline

- Review of the Fourier Transform
- Continuous Fourier Transform
- Discrete Fourier Transform (DFT)
- The Fast Fourier Transform (FFT)
- The FFT on an FPGA

The Discrete Fourier Transform (DFT)

The Discrete Fourier Transform (DFT)

Frequency Domain Coefficients
Time Domain Coefficients

$$
\begin{gathered}
X[k]=\sum_{n=0}^{N-1} x[n] \cdot W^{k \cdot n} \quad x[n]=\sum_{n=0}^{N-1} X[k] \cdot W^{-k \cdot n} \\
W=\exp [-j 2 \pi / N]=\cos \left(\frac{2 \pi}{N}\right)-j \sin \left(\frac{2 \pi}{N}\right)
\end{gathered}
$$

- $\mathrm{x}[\mathrm{n}]$: time domain samples (complex)
- N : number of samples
- X[k]: frequency domain coefficients (complex)
- $W=\exp [-j 2 \pi / N]$: "roots of unity" or twiddle factors (note: sometimes sign is flipped)
- n: time domain index
- k : frequency domain index

Example Signal

$$
x[n]=\cos (2 \pi f n \Delta t)
$$

- $x[n]$: Samples
- f: Signal frequency
- $\mathrm{n}:$ Index

Consider a signal with $\mathrm{N}=8$ samples

- $x[n]=\cos (2 \pi f n \Delta t)$
- $\mathrm{n}=0,1,2, \ldots, \mathrm{~N}-1$
- $\Delta t=1 / \mathrm{f}_{\mathrm{s}}$ where f_{s} is the sampling frequency
- $\mathbf{W}=\exp [-\mathrm{j} 2 \pi / \mathrm{N}]=\exp [-\mathrm{j} \pi / 4]$

Example Signal

$$
x[n]=\cos (2 \pi f n \Delta t)
$$

Set $\mathrm{f}=2 \mathrm{~Hz}$ and $\mathrm{f}_{\mathrm{s}}=8 \mathrm{~Hz}$. So, this means that we have 4 samples per period of the sinusoid. $\mathrm{x}[\mathrm{n}]=[1,0,-1,0,1,0,-1,0]$

Example: DFT computation

- Compute DFT of the signal
- $\mathrm{W}=\exp [-\mathrm{j} 2 \pi / \mathrm{N}]=\exp [-\mathrm{j} \pi / 4]$

$$
\mathrm{X}[\mathrm{k}]=\sum_{\mathrm{n}=0}^{\mathrm{N}-1} \mathrm{x}[\mathrm{n}] \cdot \mathrm{W}^{\mathrm{k} \cdot \mathrm{n}}
$$

DFT Computational Complexity

- How many multiplications do we need to perform to compute each Fourier coefficient?
- N complex multiplications (2N real multiplies if signal is real; \{4N\}\{.blankunderline\} real multiplications if signal is complex)
- Assuming a real input signal, each frequency requires 2 N multiplies and 2($\mathrm{N}-1$) additions since it costs $\mathrm{N}-1$ additions to add N numbers and we need to do this for both real and imaginary parts.
- So, overall computational complexity for a single frequency is $2 \mathrm{~N}+2(\mathrm{~N}-1)=4 \mathrm{~N}-2$ and we have N frequencies for a total of $\mathrm{N}(4 \mathrm{~N}-2)$ computations.
- This means the DFT is $\mathrm{O}\left(\mathrm{N}^{2}\right)$.

Can we do better?

The Fast Fourier Transform

The Fast Fourier Transform

How can recursion help us to simplify the computation?

$$
\mathrm{X}[\mathrm{k}]=\sum_{\mathrm{n}=0}^{\mathrm{N}-1} \mathrm{x}[\mathrm{n}] \cdot \mathrm{W}^{\mathrm{k} \cdot \mathrm{n}}
$$

The derivation in the following slides is based on this paper.

A Tutorial-style Single-cycle Fast Fourier Transform Processor

Alec Vercruysse*
M. Weston Miller*

Joshua Brake ${ }^{\dagger}$
David Harris
avercruysse@g.hmc.edu
wmiller@g.hmc.edu
jbrake@hmc.edu
David_Harris@hmc.edu
Department of Engineering, Harvey Mudd College
Claremont, CA, USA

History: DFT to FFT

- Algorithm invented by Carl Friedrich Gauss around 1805
- Published in 1965 by Cooley (IBM) and Tukey (Princeton)
- Widely used throughout signal processing.

An Algorithm for the Machine Calculation of Complex Fourier Series

By James W. Cooley and John W. Tukey

Symmetries of the roots of unity

- $\mathrm{W}^{\mathrm{n}}=\exp \left(-\mathrm{j} \frac{2 \pi}{\mathrm{~N}} \mathrm{n}\right)$
- $\mathrm{W}^{\mathrm{n}}=\mathrm{W}^{(\mathrm{n}+\mathrm{Nk})}$
- $\mathrm{W}^{\mathrm{n}}=-\mathrm{W}^{\mathrm{n}+\mathrm{N} / 2}$
- $\mathrm{W}^{\mathrm{Nk}}=1$

Decimation in Time (DIT) DFT

- Express the DFT as a sum of two DFTs by splitting the signals into two based on even and odd indices.

$$
\begin{gathered}
X[k]=\sum_{n=0}^{N / 2-1} x[n] \cdot W^{k \cdot n} \\
X[k]=\sum_{n=0}^{N-1} x[2 n] \cdot W^{k \cdot 2 n}+\sum_{n=0}^{N-1} x[2 n+1] \cdot W^{k \cdot(2 n+1)} \\
X[k]=\sum_{n=0}^{N-1} x[2 n] \cdot W^{k \cdot 2 n}+W^{k} \sum_{n=0}^{N-1} x[2 n+1] \cdot W^{k \cdot 2 n}
\end{gathered}
$$

Decimation in Time (DIT) DFT

$$
X[k]=\sum_{n=0}^{N-1} x[2 n] \cdot W^{k \cdot 2 n}+W^{k} \sum_{n=0}^{N-1} x[2 n+1] \cdot W^{k \cdot 2 n}
$$

Which samples are in each sum?

DFT Recursion

$$
\begin{aligned}
X[k]= & \sum_{n=0}^{N-1} x[2 n] \cdot W^{k \cdot 2 n} \\
& +W^{k} \sum_{n=0}^{N-1} x[2 n+1] \cdot W^{k \cdot 2 n}
\end{aligned}
$$

This division is equivalent to two separate N/2 DFTs with a final multiplication and addition per output term.

Use recursion to solve 4-point transforms

- Apply the DIT recursion formula to find the 4-point DFT as the sum of two 2-point DFTs.
- Write X[1] (the first output of the 4-point DFT) explicitly using the equation below.

$$
\begin{gathered}
X[k]=\sum_{n=0}^{N-1} x[2 n] \cdot W^{k \cdot 2 n}+W^{k} \sum_{n=0}^{N-1} x[2 n+1] \cdot W^{k \cdot 2 n} \\
X[k]=x[0] \cdot W^{k \cdot 0}+x[2] \cdot W^{k \cdot 2}+W^{k}\left(x[1] \cdot W^{k \cdot 0}+x[3] W^{k \cdot 2}\right)
\end{gathered}
$$

Use recursion to solve 4-point transforms

What is the 2-point DFT?

$\mathrm{N}=2$

$$
X[k]=\sum_{n=0}^{N-1} x[2 n] \cdot W^{k \cdot 2 n}+W^{k} \sum_{n=0}^{N-1} x[2 n+1] \cdot W^{k \cdot 2 n}
$$

$$
\mathrm{X}[\mathrm{k}]=\mathrm{x}[0] \cdot \mathrm{W}^{\mathrm{k} \cdot 0}+\mathrm{W}^{\mathrm{k}}\left(\mathrm{x}[1] \cdot \mathrm{W}^{\mathrm{k} \cdot 0}\right)
$$

$$
\mathrm{X}[\mathrm{k}]=\mathrm{x}[0]+\mathrm{W}^{\mathrm{k}} \cdot \mathrm{x}[1]
$$

The butterfly unit

- Two complex inputs: A \& B
- Multiplies B by the twiddle factor
- Computes sum and difference

FFT Activity

Build your own FFT

Using the template diagrams on the following slides, fill in the missing information.

- The inputs are samples $x[n]$. You need to determine which samples should be connected to each input.
- The rounded rectangles indicate multiplications by twiddle factors $\$ W^{\wedge} k \$$ in the butterfly units. You need to determine what the twiddle factors should be.
- The circle indicate either addition or subtraction operations

The most straightforward way to figure this out is to evaluate the time-decimated DFT equation and look for where the nesting occurs. (e.g., the 4-point DFT is the combination of two, 2-point DFTs.)

Step 1: 4-point FFT

Complete the diagram below
\square Fill in the rounded rectangles with the appropriate twiddle factorsDraw arrows to route signals properly

Hints:

- Each stage includes $\log _{2}(\mathrm{~N})$ butterfly units.

Step 1: 4-point FFT

Step 2: 8-point DFT

Using the process from the previous slide, repeat this for an 8-point DFT.
Note that the top-left portion of the diagram is identical to the 4-point DFT. You simply add another copy below on the bottom left and then combine them with one more stage of butterflies.

Step 2: 8-point DFT

Solution

Summary

- N-point FFT can be computed with...
- $\log _{2}(\mathrm{~N})$ levels of transforms
- Each transform has N/2 steps of butterfly operations
- Each butterfly operation consists of a complex multiplication by a twiddle factor and a complex addition and subtraction.
- Total of $(\mathrm{N} / 2) \log _{2}(\mathrm{~N})$ complex multiplications are needed.

FFT in Software

```
Bit-reverse-copy (x, X)
w=e^(-j*2*pi/N)
w[0] = 1; // initialize twiddle factor table:
for k = 1 to N/2 - 1
    w[k] = w[k-1] * w
M = 2
t = log2(N)-1
for s = 0 to log2(N)-1
    for k = 0 to N-1 by M
        for j = 0 to M/2 - 1
            a = X[k+j]
            b = X[k+j+M/2]
            twiddle = w[j << t]
            p = b * twiddle
            X[k+j] = a + p
            X[k+j+M/2] = a - p
    M = M << 1
    t = t - 1/ stride of twiddle factors gets smaller
```


FFT in Hardware

- Consider the FFT as a processor like the designs in E85
- Two major components
- Datapath
- Controller

A. Vercruysse, M. W. Miller, J. Brake, and D. Harris. 2022. A Tutorial-style Single-cycle Fast Fourier Transform Processor. https://doi.org/10.1145/3526241.3530329

Conclusion

By the end of this lecture you will be able to:

- Recall the basic mathematical structure of the Discrete Fourier Transform (DFT)
- Understand how the FFT is used to efficiently compute the DFT
- Be able to sketch a block diagram of the basic blocks needed to implement an FFT on an FPGA.

