
The Fast Fourier Transform (FFT)
Lecture 20

Josh Brake
Harvey Mudd College

Learning Objectives
By the end of this lecture you will be able to:

Recall the basic mathematical structure of the Discrete Fourier Transform (DFT)

Understand how the FFT is used to efficiently compute the DFT

Be able to sketch a block diagram of the basic blocks needed to implement an FFT on
an FPGA.

Outline
Review of the Fourier Transform

Continuous Fourier Transform

Discrete Fourier Transform (DFT)

The Fast Fourier Transform (FFT)

The FFT on an FPGA

The Discrete Fourier Transform
(DFT)

The Discrete Fourier Transform (DFT)
Frequency Domain Coefficients Time Domain Coefficients

: time domain samples (complex)

: number of samples

: frequency domain coefficients (complex)

: “roots of unity” or twiddle factors (note: sometimes sign is flipped)

: time domain index

: frequency domain index

X[k] = x[n] ⋅∑
n=0

N−1

Wk⋅n x[n] = X[k] ⋅∑
n=0

N−1

W−k⋅n

W = exp[−j2π/N] = cos() − j sin()
2π
N

2π
N

x[n]

N
X[k]

W = exp[−j2π/N]

n
k

Example Signal

: Samples

: Signal frequency

: Index

Consider a signal with samples

 where is the sampling frequency

x[n] = cos(2πfnΔt)

x[n]
f

n

N = 8

x[n] = cos(2πfnΔt)

n = 0, 1, 2, . . . , N − 1
Δt = 1/fs fs
W = exp[−j2π/N] = exp[−jπ/4]

Example Signal

Set =2 Hz and =8 Hz. So, this means that we have 4 samples per period of the sinusoid.

x[n] = cos(2πfnΔt)

f fs
x[n] = [1, 0, −1, 0, 1, 0, −1, 0]

Example: DFT computation
Compute DFT of the signal

W = exp[−j2π/N] = exp[−jπ/4]

X[k] = x[n] ⋅∑
n=0

N−1

Wk⋅n

DFT Computational Complexity
How many multiplications do we need to perform to compute each Fourier coefficient?

 complex multiplications (real multiplies if signal is real; { }
{.blank-underline} real multiplications if signal is complex)

Assuming a real input signal, each frequency requires multiplies and
 additions since it costs additions to add numbers and we

need to do this for both real and imaginary parts.

So, overall computational complexity for a single frequency is
 and we have frequencies for a total of

computations.

This means the DFT is .

Can we do better?

4N

N − 1 N

N

The Fast Fourier Transform

The Fast Fourier Transform
How can recursion help us to simplify the computation?

The derivation in the following slides is based on this paper.

X[k] = x[n] ⋅∑
n=0

N−1

Wk⋅n

History: DFT to FFT
Algorithm invented by Carl Friedrich Gauss around 1805

Published in 1965 by Cooley (IBM) and Tukey (Princeton)

Widely used throughout signal processing.

Symmetries of the roots of unity

=Wn

=Wn

=Wn

=WNk

Decimation in Time (DIT) DFT
Express the DFT as a sum of two DFTs by splitting the signals into two based on even
and odd indices.

X[k] = x[n] ⋅∑
n=0

N/2−1

Wk⋅n

X[k] = x[2n] ⋅ + x[2n + 1] ⋅∑
n=0

N−1

Wk⋅2n
∑
n=0

N−1

Wk⋅(2n+1)

X[k] = x[2n] ⋅ + x[2n + 1] ⋅∑
n=0

N−1

Wk⋅2n Wk
∑
n=0

N−1

Wk⋅2n

Decimation in Time (DIT) DFT

Which samples are in each sum?

X[k] = x[2n] ⋅ + x[2n + 1] ⋅∑
n=0

N−1

Wk⋅2n Wk
∑
n=0

N−1

Wk⋅2n

DFT Recursion

This division is equivalent to two separate
 DFTs with a final multiplication and

addition per output term.

X[k] = x[2n] ⋅∑
n=0

N−1

Wk⋅2n

+ x[2n + 1] ⋅Wk
∑
n=0

N−1

Wk⋅2n

N/2

Use recursion to solve 4-point transforms
Apply the DIT recursion formula to find the 4-point DFT as the sum of two 2-point DFTs.

Write (the first output of the 4-point DFT) explicitly using the equation below.X[1]

X[k] = x[2n] ⋅ + x[2n + 1] ⋅∑
n=0

N−1

Wk⋅2n Wk
∑
n=0

N−1

Wk⋅2n

X[k] = x[0] ⋅ + x[2] ⋅ + (x[1] ⋅ + x[3])Wk⋅0 Wk⋅2 Wk Wk⋅0 Wk⋅2

Use recursion to solve 4-point transforms

What is the 2-point DFT?

N = 2

X[k] = x[2n] ⋅ + x[2n + 1] ⋅∑
n=0

N−1

Wk⋅2n Wk
∑
n=0

N−1

Wk⋅2n

X[k] =

X[k] =

The butterfly unit
Two complex inputs: &

Multiplies B by the twiddle factor

Computes sum and difference

A B

FFT Activity

Build your own FFT
Using the template diagrams on the following slides, fill in the missing information.

The inputs are samples . You need to determine which samples should be
connected to each input.

The rounded rectangles indicate multiplications by twiddle factors W^k in the
butterfly units. You need to determine what the twiddle factors should be.

The circle indicate either addition or subtraction operations

The most straightforward way to figure this out is to evaluate the time-decimated DFT
equation and look for where the nesting occurs. (e.g., the 4-point DFT is the combination
of two, 2-point DFTs.)

x[n]

Step 1: 4-point FFT
Complete the diagram below

Fill in the rounded rectangles with the appropriate twiddle factors

Draw arrows to route signals properly

Hints:

Each stage includes butterfly units.(N)log2

Step 1: 4-point FFT

Step 2: 8-point DFT
Using the process from the previous slide, repeat this for an 8-point DFT.

Note that the top-left portion of the diagram is identical to the 4-point DFT. You simply
add another copy below on the bottom left and then combine them with one more stage
of butterflies.

Step 2: 8-point DFT

Solution

Summary
N-point FFT can be computed with…

 levels of transforms

Each transform has steps of butterfly operations

Each butterfly operation consists of a complex multiplication by a twiddle factor
and a complex addition and subtraction.

Total of complex multiplications are needed.

(N)log2
N/2

(N/2) (N)log2

FFT in Software
Bit-reverse-copy (x, X) // initialize X to bit-reversed order1
w=e^(-j*2*pi/N) 2
w[0] = 1; // initialize twiddle factor table: 3
for k = 1 to N/2 - 14
 w[k] = w[k-1] * w // w[k] holds wk5
 6
M = 2 // size of the transform at current level7
t = log2(N)-1 // stride through twiddle factors8
for s = 0 to log2(N)-1 // level s9
 for k = 0 to N-1 by M // iterate over M-point transforms10
 for j = 0 to M/2 – 1 // butterflies in M-point transform11
 a = X[k+j]12
 b = X[k+j+M/2]13
 twiddle = w[j << t]14
 p = b * twiddle // multiply by appropriate twiddle factor15
 X[k+j] = a + p16
 X[k+j+M/2] = a - p17
 M = M << 1 // boost size of transform for next level18
 t = t - 1 // stride of twiddle factors gets smaller19

FFT in Hardware
Consider the FFT as a processor like the
designs in E85

Two major components

Datapath

Controller

A. Vercruysse, M. W. Miller, J. Brake, and D. Harris. 2022. A Tutorial-style Single-cycle Fast
Fourier Transform Processor. https://doi.org/10.1145/3526241.3530329

Conclusion
By the end of this lecture you will be able to:

Recall the basic mathematical structure of the Discrete Fourier Transform (DFT)

Understand how the FFT is used to efficiently compute the DFT

Be able to sketch a block diagram of the basic blocks needed to implement an FFT on
an FPGA.

