
Interrupts
Lecture 18

Josh Brake
Harvey Mudd College

1 / 26

Learning Objectives
By the end of this lecture you will be able to:

Explain the basic exception model used on ARM Cortex-M4 processors

Configure interrupts to quickly respond to information from on-board peripherals like
GPIO pins and timers

2 / 26

Outline
Interrupts and Exceptions

The exception model in ARM Cortex-M4 processors

The Nested Vector Interrupt Controller (NVIC)

Configuring interrupts on ARM Cortex-M4

Activity

Toggle LED with switch using polling and interrupts

3 / 26

ARM Cortex-M4 Exception Model

4 / 26

Sources of exceptions

Figure 7.1, p.230 The Definitive guide to ARM Cortex-M3 and Cortex-M4 Processors

5 / 26

Interrupt Servicing Sequence
1. Peripheral asserts interrupt request

2. Processor suspends currently operating task

3. Processor executes an Interrupt Service Routine (ISR) to service the peripheral and
optionally clear the interrupt request

4. Processor resumes previously suspended task.

6 / 26

Vector Table
Table of addresses to functions that are
placed starting at address 0x0000000.

Each memory location contains the
address of different exception/interrupt
handlers

RM0394 p. 322 Table 46
7 / 26

Nested Vector Interrupt Controller
On Cortex-M4 the NVIC supports up to 240 IRQs, a Non-Maskable Interrupt, a SysTick
timer interrupt, and a number of system exceptions.

When handling and IRQ, some of the registers are stored on the stack automatically and
are automatically restored. This allows exception handlers to be written as normal C
functions.

Nested refers to the fact that we have different priorities and therefore can handle an
interrupt with a higher priority in the middle of handling an interrupt of a lower priority.

Vector refers to the fact that the interrupt service handlers are addresses pointing to
functions.

8 / 26

Interrupt Priorities
Interrupt priority levels allow us to define which interrupts can pre-empt others

Cortex-M processors support three fixed highest-priority levels and up to 256 level of
programmable priority.

However, the actual number of available levels is chip dependent since
implementing all 256 levels can be costly in terms of power and speed.

Three negative priorities (hard fault, NMI, and reset) can pre-empt any other exceptions

9 / 26

Interrupt Priorities

Figure 7.2 p. 236 The Definitive guide to ARM Cortex-M3 and
Cortex-M4 Processors

Figure 7.4 p. 237 The Definitive guide to ARM Cortex-M3 and
Cortex-M4 Processors

10 / 26

Exception Definitions

Table 7.3 p.234 The Definitive guide to ARM Cortex-M3 and Cortex-M4 Processors

11 / 26

Interrupt Setup
1. Enable global interrupts.

2. Set the priority level (optional).

3. Enable interrupt generation in the peripheral that triggers the interrupt.

4. Enable the interrupt in the NVIC.

The name of the ISR needs to match the name used in the vector table so that the linker
can place the starting address of the ISR into the vector table correctly.

12 / 26

Handling an interrupt

13 / 26

Relevant Files in Common Microcontroller So�ware
Interface Standard (CMSIS)
core_cm4.h - Definitions which are global to the Cortex-M4

e.g., NVIC_Type which specifies the NVIC registers

Sidenote: Documentation for this is in the Cortex-M4 user manual, not in the reference manual or datasheet.

cmsis_gcc.h - Compiler specific definitions

e.g., the specific directive syntax necessary to force functions to be inline. void __enable_irq(void) and void
__disable_irq(void) are defined in cmsis_gcc.h
These are compiler specific and use the cpsie i (enable) and cpsid i disable special assembly instructions.

stm32l432xx.h - Device specific configurations.

e.g., the number of NVIC priority bits

14 / 26

NVIC Memory Location

RM0394 p. 67 15 / 26

Core Registers for NVIC

16 / 26

core-cm4.h

17 / 26

cmsis_gcc.h

18 / 26

stm32l432xx.h
/**1
 * @brief STM32L4XX Interrupt Number Definition, according to the selected device2
 * in @ref Library_configuration_section3
 */4
typedef enum5
{6
/****** Cortex-M4 Processor Exceptions Numbers **7
 NonMaskableInt_IRQn = -14, /*!< 2 Cortex-M4 Non Maskable Interrupt 8
 HardFault_IRQn = -13, /*!< 3 Cortex-M4 Hard Fault Interrupt 9
 MemoryManagement_IRQn = -12, /*!< 4 Cortex-M4 Memory Management Interrupt 10
 BusFault_IRQn = -11, /*!< 5 Cortex-M4 Bus Fault Interrupt 11
 UsageFault_IRQn = -10, /*!< 6 Cortex-M4 Usage Fault Interrupt 12
 SVCall_IRQn = -5, /*!< 11 Cortex-M4 SV Call Interrupt 13
 DebugMonitor_IRQn = -4, /*!< 12 Cortex-M4 Debug Monitor Interrupt 14
 PendSV_IRQn = -2, /*!< 14 Cortex-M4 Pend SV Interrupt 15
 SysTick_IRQn = -1, /*!< 15 Cortex-M4 System Tick Interrupt 16
/****** STM32 specific Interrupt Numbers **17
 WWDG_IRQn = 0, /*!< Window WatchDog Interrupt 18
 PVD_PVM_IRQn = 1, /*!< PVD/PVM3/PVM4 through EXTI Line detection Interrupts 19
 TAMP_STAMP_IRQn = 2, /*!< Tamper and TimeStamp interrupts through the EXTI line 20
 RTC_WKUP_IRQn = 3, /*!< RTC Wakeup interrupt through the EXTI line 21

22
...23
} IRQn_Type;24

19 / 26

Interrupt Activity

20 / 26

Activity: GPIO Pin Interrupts
Download the code from the course Github.

Build and upload button_polling.c

21 / 26

button_polling.c

22 / 26

External Interrupt/Event Controller (EXTI)

23 / 26

Results
1. Configure EXTI controller

2. Define IRQ handler name

3. Capture trace on oscilloscope demonstrating latency between button press and LED
response for three cases:

Polling with 200 ms delay

Polling with no delay (comment out delay)

Interrupt driven

24 / 26

Results: Interrupt vs. Polling with 200 ms Delay

25 / 26

Results: Interrupt vs. Polling with No Delay

26 / 26

