
Asynchronous Serial Interfaces
and the Internet of Things

Lecture 12

Josh Brake
Harvey Mudd College

Outline
Serial Interfaces pt. 2 – the Universal Synchronous/Asynchronous Receiver Transmitter

General Internet Architecture

Protocol layers

Browsing the Web

HTTP - Commands and Format

HTML - Hypertext Markup Language

ESP8266

Overview

Lab 7 Webserver Code

Basic workflow for whole system

Learning Objectives
By the end of this lecture you should be able to…

Articulate the differences and tradeoffs between a synchronous serial link (e.g., SPI) and
an asynchronous serial link.

Use the USART peripheral on the MCU to print to the terminal window

Write a basic HTML webpage

Explain the basic operating principles of an HTTP webserver

Universal
Synchronous/Asynchronous
Receiver Transmitter (USART)

What if we don’t want a shared clock?
We must…

Agree on shared data rate

Sample the incoming data stream at higher frequency to synchronize the input data
stream with the reading circuitry

Add additional bits at the beginning and end of the transmission to signal the bounds of
the transmission

Q: What are some downsides of an asynchronous serial interface as compared to a
synchronous one?

Reduced (typically 8x-16x overhead from sampling)

Wasted in each transmission

USART Data Frame
4 components

1. Start bit: always logical 0

2. Data bits: 5-9 bits of data

3. Parity bit: Option bit with parity of data (i.e., even or odd. Simple error checking)

4. Stop bit(s): 1-2 bits. Always logical 1.

STM32L432KC USART

RM0394 p. 1198

Data Registers

RM0394 p. 1198

Pins
TX – transmitted data out from USART

RX – received data in to USART

CK – (optional) clock output for synchronous mode

RTS – Request To Send indicates the USART is ready to receive data (when low)

CTS – Clear To Send block data transmission at the end of the current transfer when
high

Data framing

RM0394 p. 1202

Error Flags
Overrun – new byte in the before the old one was read out

Frame – didn’t get the we expected

Parity – calculated doesn’t match .

Receiver

RM0394 p. 1204

USART registers: Interrupt and Status Register (ISR)
UART Status Register

TXE – transmit data register empty (0 if data is not transferred to the shi� register, 1 if it
is)

TC – transmission complete flag

RXNE – read data register not empty (0 if data has not been received, 1 if it is ready to
be read)

FE – framing error

PE – parity error

USART registers: Data Register
Used for both reads and writes

Max 9-bit data value DR[8:0]

USART registers: Baud Rate Register

USART registers: Control register 1
M: word length 8 or 9 data bits

PCE: parity control enable

TE: transmitter enable

RE: receiver enable

USART registers: Control register 2
STOP: 2-bit field, number of stop bits (0.5, 1, or 2)

Various clock control (if using in synchronous mode)

Character Reception
1. Program the M bit in USART_CR1 to define word length

2. Program the sampling rate (x8 or x16) in USART_CR1

3. Program the number of stop bits in USART_CR2

4. (optional): Enable DMA

5. Select the desired baud rate in USART_BRR

6. Enable the USART with UE=1 in USART_CR1

7. Set the RE bit in USART_CR1

Wait for RXNE bit to go from 0 (no data received) to 1 (data received). Then, read out the
data from the data register

USART Instances

USART Activity

Activity
Configure the USART as an UART to transmit serial data

Read user manual and develop a bullet list outline of how to configure the peripheral

Write USART library

Finish STM32L432KC_USART.h and STM32L432KC_USART.c.

Configure in common 8N1 mode

8 data bits

No parity bit

1 stop bit

Operate at 9600 baud (9.6 Kbps)

UART is configured to use the HSI which is 16 MHz.

Use simple main function to transmit a string of your choice over the UART.

Bits to configure

UE: USART Enable

M: Word Length

OVER8: Oversampling mode

TE: Transmitter Enable

RE: Receiver Enable (In CR2)

STOP: Number of stop bits

Setup
Download source code from GitHub

Create new SEGGER project

Configure serial monitor to read at 9600 baud

DS11451 p. 55

USART2 Wiring on Nucleo-32

UM1956 p. 20

USART2 Wiring

UM1956 p. 33

Receiving Serial Input over USB
Use built-in serial monitor in SES

Solution
...1
 // Set M = 002
 // M=00 corresponds to 1 start bit, 8 data bits, n stop bits3
 USART->CR1 &= ~(USART_CR1_M0 | USART_CR1_M1); 4
 // Set to 16 times sampling freq5
 USART->CR1 &= ~USART_CR1_OVER8; 6
 // 0b00 corresponds to 1 stop bit7
 USART->CR2 &= ~USART_CR2_STOP; 8

9
 10
 // Set baud rate to 115200 (see RM 38.5.4 for details)11
 // Tx/Rx baud = f_CK/USARTDIV (since oversampling by 16)12
 // f_CK = 16 MHz (HSI)13
 14
 USART->BRR = (uint16_t) (HSI_FREQ / baud_rate);15
 // Enable USART16
 USART->CR1 |= USART_CR1_UE; 17
 // Enable transmission and reception18
 USART->CR1 |= USART_CR1_TE | USART_CR1_RE; 19
 20
 return USART;21
}22

Solution
void sendChar(USART_TypeDef * USART, char data){1
 while(!(USART->ISR & USART_ISR_TXE));2
 USART->TDR = data;3
 while(!(USART->ISR & USART_ISR_TC));4
}5

Solution
// Lecture 12 Demo1
// Josh Brake2
// jbrake@hmc.edu3
// 10/5/224
 5
#include "STM32L432KC.h"6
#include <stm32l432xx.h>7
#define USART_ID USART2_ID8
#define TIM TIM159
 10
int main(void) {11
// Configure flash and clock12
configureFlash();13
configureClock();14

15
...16

Solution
...1
// Initialize USART2
USART_TypeDef * USART = initUSART(USART_ID, 9600);3
 4
// Initialize timer5
RCC->APB2ENR |= RCC_APB2ENR_TIM15EN;6
initTIM(TIM);7
 8
char msg[28] = "Happy Hacking!\n\r";9
 10
while(1){11
 int i = 0;12
 do {13
 sendChar(USART, msg[i]);14
 i += 1;15
 } while (msg[i]);16
 delay_millis(TIM, 2000);17
 }18
}19

The Hypertext Transfer Protocol
(HTTP)

Protocol Layers

Worldwide web is a service on the Internet

Uses Hypertext Transfer Protocol (HTTP)

What layer is this protocol at?

URL: Uniform Resource Locator

URL format: <protocol>://<hostname>:
<port>/<path_and_filename>

Browsing the Web
What happens when you type in a URL?

Finds IP for domain if necessary (Using Dynamic Nameserver (DNS))

Connects to server, send HTTP request

Server receives request, searches for desired page.

If it exists, sends it.

If not, sends 404 “Page Not Found” error code.

Web browser gets page, closes connection

Parses webpage sending HTTP requests as necessary to get all the elements

HTTP: Commands and Format
GET

Most common

Used to request a resource

Format

GET / HTTP/1.1 Host: Accept

HTML: HyperText Markup Language
Simple text format to specify webpage formatting

Elements

DOCTYPE statement

HTML tag

Head

Body

Tags look like <tag>...</tag>
Common tags: html, head, body, p, h<x> x={1,2,3}, title

Activity: Simple HTML Page
Open text editor (e.g., VSCode)

Save document as .html

Create example webpage below

Open in web browser

<!DOCTYPE html>1
<head>2
 <title>My First Webpage</title>3
</head>4
<body>5
 <h1>E155 Demo</h1>6
 <p>Put text here!</p>7
</body>8

Other HTML Elements
Other HTML elements

Form

Attributes

type - submit

action - where to send form data

value - text on button

Add form to webpage

<form action="action_key">1
 <input type="submit" value="Send GET request">2
</form>3

ESP8266 Overview and Demo

Overview
ESP-WROOM-02 carries
ESP8266EX highly integrated Wi-
Fi SoC solution to meet the
continuous demands for efficient
power usage, compact design
and reliable performance in the
industry.

With the complete and self-
contained Wi-Fi networking
capabilities, it can perform as
either a standalone application
(WROOM module itself) or the
slave to an MCU host which is the
primary intention of the click
board as a whole. So, this click
board is applied to any
microcontroller design as a Wi-Fi
adaptor through UART interface
(RX,TX lines on mikroBUS pin
socket).

https://www.mikroe.com/wifi-esp-click

Overview
The Adafruit HUZZAH ESP8266 breakout is what we designed to
make working with this chip super easy and a lot of fun. We took a
certified module with an onboard antenna, and plenty of pins, and
soldered it onto our designed breakout PCBs. We added in: - Reset
button, - User button that can also put the chip into bootloading
mode, - Red LED you can blink, - Level shi�ing on the UART and
reset pin, - 3.3V out, 500mA regulator (you’ll want to assume the
ESP8266 can draw up to - - 250mA so budget accordingly) - Two
diode-protected power inputs (one for a USB cable, another for a
battery)

Two parallel, breadboard-friendly breakouts on either side give you
access to:

1 x Analog input (1.0V max)

9 x GPIO (3.3V logic), which can also be used for I2C or SPI

2 x UART pins

2 x 3-6V power inputs, reset, enable, LDO-disable, 3.3V output

https://cdn.sparkfun.com/datasheets/Wireless/WiFi/ESP8266ModuleV1.pdf

https://cdn.sparkfun.com/datasheets/Wireless/WiFi/ESP8266ModuleV1.pdf

ESP8266 Webserver Code
Polls for waiting for a client to send an HTTP request

When a request has been received, parses the request to slice the request a�er the
/REQ: tag.

Send the tag to the MCU which then decides what to do with the information.

Then the MCU sends the content of the webpage back to the ESP8266 over the UART as
properly formatted HTML.

ESP8266 Demo

Wireshark

Wrapup
UART is a serial interface without a shared clock. Saves a wire, but at the cost of much
slower data rates due to sampling overhead.

Webpages in HTML are served using HTTP – sending text over a serial connection.

