
C Programming
Lecture 08

Josh Brake
Harvey Mudd College

Outline
C refresher

Common idioms to set/clear bits

Pointers and arrays

Structures

Writing a simple device driver: GPIO

Finding information in documentation

Writing code to properly configure the peripheral

Learning Objectives
By the end of this lecture you should be able to…

Recall basic C programming idioms and concepts (e.g., pointers, arrays, structures).

Write a simple device driver to control the peripherals in your MCU using memory-
mapped I/O.

C Programming Review

Important Concepts in C
C is libertarian by nature. You can stomp on any memory address you want!

There is no memory management built in. You must manually allocate (and deallocate!)
any memory you need.

Primitive Data Types in C

Primitive Data Types in stdint.h

Operators and Operator Precedence

Operator Precedence Tip!

You should only have to remember multiplication/division before addition/subtraction.
For everything else, use parentheses!

Important Keywords in C
 – prevents the compiler from using a cached value (forces load)

 – “read-only”. Prevents you from assigning a value to the variable.

Inside a function: retains its values between calls.

Applied to a function: visible only in this file

Applied to a function definition: has global scope (redundant)

Applied to a variable: defined elsewhere

As return type of function: doesn’t return a value

In a pointer declaration, the type of a generic pointer

In a parameter list: takes no parameters

Important Libraries
 – standard fixed-width types (e.g., uint32_t)

 - standard input and output. Contains functions like printf or fprintf.

 – standard library: random number generation (rand and srand),
allocating or freeing memory (malloc and free).

 – math library: standard math functions like sin, cos, sqrt, log, exp, floor,
ceil.

 – string library: functions to compare, copy, concatenate, and
determine the length of a string.

Setting and Clearing Bits

C Idioms for Setting and Clearing Bits

1

2

#define GPIOA_BASE 0x480000001
#define GPIOA_MODER (*((volatile unsigned long *) (GPIOA_BASE + 0x00)))2

3
// Set bit 3 of the GPIOA_MODER to 1.4
 5

6
// Clear bit 7 of the GPIOA_MODER (i.e., set to 0)7

8
9

1

2

Pointers and Arrays

Pointers and Arrays in C: Arrays

1 Equivalent to a=
2 Equivalent to b= , address
3 Equivalent to p[5]= , address

int * p = (int*) 0x20000000;1
2

int a = *p;3
4

int b = *(p+3);5
6

*(p+5) = b;7

1

2

3

Pointers and Arrays in C: Strings

1 Address

char * str = (char *) 0x20001000;1
2

str[13] = 'A';3 1

Dereferencing

1 Equivalent to a =
2 aptr stores address of
3 same as a=3
4 ptr=
5 ptr=
6 p[5]=

1
int * p = (int*) 0x20000000;2

3
int a = *p;4
int * aptr = &a;5

6
*aptr = 3;7

8
int * ptr = &p[0];9

10
ptr = &p[5]11

12
*ptr = 42;13

1

2

3

4

5

6

Structures
struct optional_tag {1
 type_1 identifier_1;2
 type_2 identifier_2;3
 ...4
 type_N identifier_N;5
} optional_variable_definitions ;6

Structures

How many bytes does this structure occupy in memory?

struct contact {1
 char name[30];2
 unsigned long long phone;3
 float height;4
};5

6
struct contact jbrake; // example variable definition7

Using structures as part of a new type
Can also wrap in a typedef to avoid needing to use the struct keyword.

1

2

typedef struct my_tag {int i;} my_type; // Declaration of new type1
2

// Creating variable with struct keyword3
4
5
6

// Creating variable using new type7
8
9

1

2

Arrow Operator
Use a structure to access a chunk of memory in a specific location.

typedef struct {1
 char first_name[30];2
 unsigned long long phone;3
 float height;4
} contact_type;5

6
contact_type jbrake;7
strcpy(jbrake.first_name, "Josh Brake");8
jbrake.phone = (unsigned long long) 9096218553;9
contact_type * contact_type_ptr = &jbrake;10
unsigned long long phone_num = contact_type_ptr->phone;11

Writing Device Drivers: GPIO
Example

GPIO Block Diagram

RM0394 p. 259

GPIO Register Map

RM0394 p. 274

Steps for writing a device driver for a new peripheral
1. Look at block diagram

2. Note what elements in the diagram need to be configured

3. Find relevant registers and bits

4. Write code

1. Base address for peripheral

2. Create structure to define registers

Blink LED
On-board LED connected to pin PB3.

UM1956 p. 33

Enabling peripheral clock

RM0394 p. 191

DS11451 p. 13

Finding clock enable bit for GPIOB

RM0394 p. 218

Where is that bit located?
1. Look in system and memory overview section

2. Look RCC register mapping to find register and bit offsets

Configuration steps to enable basic GPIO: RCC
Turn on clock domain in Reset and Clock Control (RCC)

RCC base address:

RCC_AHB2ENR register offset:

Bit for GPIOB_EN:

Configure pin as output in GPIO register block
Configure pin as an output (GPIO_MODER)

Base address of GPIOB:

Offset of MODER register:

Bits in MODER to be set:

Value for relevant bits to configure pin as output:

Blink Demo: Includes
// Nucleo-L432KC Blink demo1
// Josh Brake2
// jbrake@hmc.edu3
// 9/21/224
#include <stdint.h>5
#define GPIOB_BASE_ADR (0x48000400UL)6
#define RCC_BASE_ADR (0x40021000UL)7
#define RCC_AHB2ENR ((uint32_t *) (RCC_BASE_ADR + 0x4C))8
#define GPIOB_MODER ((uint32_t *) (GPIOB_BASE_ADR + 0x00))9
#define GPIOB_ODR ((uint32_t *) (GPIOB_BASE_ADR + 0x14))10
#define DUMMY_DELAY 10000011

12
...13

Blink Demo: main
...1

2
int main(void) {3
 // Initialization code 4
 *RCC_AHB2ENR |= (1 << 1);5
 // Set PB3 as output (MODER bit 7 to 0 and bit 6 to 1)6
 *GPIOB_MODER &= ~(1 << 7);7
 *GPIOB_MODER |= (1 << 6);8
while(1) {9
 for(volatile int i = 0; i < DUMMY_DELAY; i++);10
 *GPIOB_ODR ^= (1 << 3);11
}12

Miscellanous Notes

Using MCU while connected to development board
Make sure that you have the MCU_+5V header connected. This ensures the on-board
voltage regulators work which makes sure the reset signal is held high. If not, you won’t
be able to connect to your MCU to program it (the reset pin will float and the MCU will
always be in reset!)

Remove jumper that came installed by default on the Nucleo board (connects reset to
ground!)

Using structures to model memory-mapped I/O

__IO is defined with a #define statement to one of the C keywords we discussed
earlier. Which one?

// Base addresses for GPIO ports1
#define GPIOA_BASE (0x48000000U)2
typedef struct3
{4
__IO uint32_t MODER; /*!< GPIO port mode register, Address offset: 0x00 */5
__IO uint32_t OTYPER; /*!< GPIO port output type register, Address offset: 0x04 *6
__IO uint32_t OSPEEDR; /*!< GPIO port output speed register, Address offset: 0x08 7
__IO uint32_t PUPDR; /*!< GPIO port pull-up/pull-down register, Address offset: 8
__IO uint32_t IDR; /*!< GPIO port input data register, Address offset: 0x10 */9
__IO uint32_t ODR; /*!< GPIO port output data register, Address offset: 0x14 */10
__IO uint32_t BSRR; /*!< GPIO port bit set/reset register, Address offset: 0x1811
__IO uint32_t LCKR; /*!< GPIO port configuration lock register, Address offset:12
__IO uint32_t AFR[2]; /*!< GPIO alternate function registers, Address offset: 0x213
__IO uint32_t BRR; /*!< GPIO Bit Reset register, Address offset: 0x28 */14
} GPIO_TypeDef;15

Wrap Up
C is libertarian – will allow you to do many things, not all of which are good for you.

Understanding certain C data structures like pointers and structures will enable you to
more easily and naturally write code to control your MCU.

The MCU reference manual contains the information needed to write code to configure
and manipulate the peripherals using memory-mapped I/O.

