
Synchronous Design
Lecture 04

Josh Brake
Harvey Mudd College

Outline
Review of basic synchronous design

Review of the dynamic discipline

FSM Design Steps

FSM Activity: Level to pulse converter

Diode and transistor review

Learning Objectives
By the end of this lecture you should be able to…

Recall the dynamic discipline and timing specs for designing synchronous digital
systems.

Properly condition asynchronous signals using synchronizers.

Recall how to use transistors to drive large currents.

Synchronous Digital Systems
Timing problems are usually the #1 source of difficult bugs

We can almost completely eliminate the timing problems with a synchronous discipline

Like digital vs. analog: digital is a subset of analog

Synchronous is a subset of asynchronous timing methodologies

Limiting choice makes design easier to understand and avoid sneaky bugs

Also, will make testability easier (we’ll see that later)

Basic Synchronous Design Rules
Use only one (named something clear like clk)

Use only as state elements (no latches!)

Put this clock signal into the clock terminal of every flip-flop in the system.

Some common gotchas
Q: How do we begin in a known state?

A:

Q: How do we avoid changing the contents of a flip-flop on every clock cycle?

A:

Dynamic Discipline Review
Propagation delay () – the time from when an input changes until the
output(s) reach their final value.

Contamination delay () – the time from when an input changes until any
output starts to change its value.

tpd

tcd

A

Y

tpd

tcd

Dynamic Discipline Review: Sequential Logic
Propagation Clock-to-Q () – bound on the time from the rising edge of the
clock until the output changes.

Contamination Clock-to-Q () – bound on the time from the rising edge of
the clock until the output changes.

Setup time () – the amount of time an input to a flop must be stable the
clock edge.

Hold time () – the amount of time an input to a flop must be stable the
clock edge.

tpcq

tccq

tsetup

thold

CLK

output(s)

input(s)

tsetup thold

tccq

tpcq

Synchronous Timing Constraints
Setup Time Constraint

Hold Time Constraint

Synchronizers

Synchronizer
The world is asynchronous – how can we
cope? Synchronizers!

Simplest case is a 2-stage synchronizer
made of two flops in series.

If the output of flop F1 goes metastable,
we have some time for it to resolve before
the next clock edge and the second flop
F2.

This avoids passing metastable inputs out
to combinational logic.

Sychronizer
module sync(input logic clk,1
 input logic d,2
 output logic q);3
 4
 logic n1;5
 6
 always_ff @(posedge clk)7
 begin8
 n1 <= d;9
 q <= n1;10
 end11
endmodule12

Another Sychronizer
What if I replace the non-blocking
assignments with blocking assignments?

What logic does this imply?

module sync(input logic clk,1
 input logic d,2
 output logic q);3
 4
 logic n1;5
 6
 always_ff @(posedge clk)7
 begin8
 n1 = d;9
 q = n1;10
 end11
endmodule12

Finite State Machine (FSM) Review

FSM Design

FSM Design Process

FSM Activity

FSM Project: Strobe Signal Generator (Level-to-pulse
convertor)
You have been tasked with creating circuitry for a single photon detector. When a photon
arrives, it generates a pulse of a random length. We want to generate an output pulse of a
fixed duration whenever a photon hits the detector.

Your task (should you choose to accept it): Design an FSM which generates a pulse for a
single clock cycle when an output goes from low to high. Add a synchronizer to ensure
that the input does not cause metastability.

List Out Specifications
Inputs

Outputs

State Transition Diagram

L=1

L=0

L=0
L=1

L=0

L=1

S0
P=0

S1
P=1

S2
P=0Reset

State Transition Table

Output Logic

FSM Verilog Template
Five elements:

1. Inputs and outputs

2. Internal signal definition

3. State register: always_ff block. Make sure you have a reset!

4. Next state logic: always_comb block or assign statements.

5. Output logic: always_comb block or assign statements

FSM Verilog Template
Module and signal declaration.

// This module converts a level change on an input signal to 1
// a single clock cycle output pulse.2

3
module level_to_pulse_converter(4
 input logic clk, reset,5
 input logic L,6
 output logic P7
);8
 9
 logic [2:0] state, nextstate;10
 11
 parameter S0 = 3'b001;12
 parameter S1 = 3'b010;13
 parameter S2 = 3'b100;14
 15
 // Could also use something like the following for specifying the16
 // state encodings.17
 // typedef enum logic [1:0] {S0, S1, S2} statetype;18
 // statetype state, nextstate;19
 ...20

FSM Verilog Template
State register.

 ...1
 // State register2
 always_ff @(posedge clk, posedge reset)3
 if (reset) state <= S0;4
 else state <= nextstate;5

6
 ...7

FSM Verilog Template
Next state and output logic.

 ...1
 // Next state logic2
 always_comb3
 case (state)4
 S0: if(L) nextstate = S1;5
 else nextstate = S0;6
 S1: if(L) nextstate = S2;7
 else nextstate = S0;8
 S2: if(L) nextstate = S2;9
 else nextstate = S0;10
 default: nextstate = S0;11
 endcase12
 13
 // Output logic14
 assign P = (state == S1);15
endmodule16

Develop a testbench for this project
Steps to create a testbench

1. Create clock signal which toggles continuously for any synchronous elements.

2. Initial statement to apply reset and set inputs to desired initial values.

3. Another initial block to apply input signals.

Don’t apply signals on a clock edge! (e.g., make sure that if you are using a clock period of
10 timesteps that you don’t apply your inputs at multiple of 10.

Testbench Code

Diode and Transitor Review

 and are scaling factors and is the
thermal voltage which is (25.4
mV at room temperature).

For a silicon diode, and for an
LED

= (exp() − 1)iD i0 vD
n⋅vT

n i0 vT
= kT/qvT

≈ 0.7Vvon
≈ 1.7 − 2.1Vvon

How many LEDs can you light up in series from a 12 V
source?

Transistors
Used to pull load . (i.e., connect load
to)

Driving a load with an NPN transitor
How do we choose and ?

Set to zero.

Rb Re
Re

Driving a load with an PNP transitor

Used to pull load . (i.e., connect load to)

Wrap up
Synchronous sequential design enables us to design simple and robust digital systems.

Only one clock signal to all flops (single clock domain)

Ensure that the setup and hold time constraints are observed.

We need to synchronize asynchronous inputs to avoid metastability. Price is an
additional clock cycle of latency.

Transistors are like electrically controlled switches and enable us to drive larger loads
from weak source (e.g., FPGA/MCU I/O pins)

Announcements/Reminders
Checkoffs continue today – don’t delay starting on Lab 2. Can reuse code from Lab 1

Only one seven_seg Verilog module.

Make sure LEDs are consistent brightness no matter how many segments are on

Develop a testbench to confirm your circuit is working. See tutorial on the website.

Next week: FPGA documentation and intro to the MCU

