
E155 FA21: Lab 1

Lab 1: Development Board Assembly and Testing

1 Introduction

In this lab you will assemble and test your µMudd Mark VI daughter boards and test them with the Nucleo F401RE
microcontroller unit (MCU) and MAX1000 field-programmable gate array (FPGA) development boards. There are
two daughter boards: an Arduino R3 form factor shield which interfaces the MAX1000 board with the MCU board
and a T-shaped connector board which is used with a ribbon cable to enable easy connections to a breadboard. You
will be using these boards for the remainder of the semester, so it is very important to assemble them properly. But
don’t panic, you’ll quickly learn to troubleshoot and repair issues.

2 Learning Objectives

By the end of this lab you will have…

• Learned how to solder
• Assembled and tested your µMudd Mark VI board
• Written a Verilog module to control LEDs and a 7-segment display
• Programmed the FPGA with your Verilog code
• Gained confidence in building, assembling, testing, and debugging circuits
• Interfaced the 7-segment display to the board

3 Before You Start

Before you start working on this lab, you should familiarize yourself with the documentation for both the MAX1000
and Nucleo-F401RE boards. The website has PDF links for the MAX1000 User Guide and the Nucleo-F401RE User
Manual. These two documents contain information that will be helpful for answering questions that you may have
during the course of this lab.

4 Requirements

Follow the steps in this guide to test and assemble your µMudd Mark VI board. Write some Verilog code to exercise the
FPGA using the switches, LEDs, and a 7-segment display to ensure your board is operational. Simulate and synthesize
your code, then upload it to the Flash memory and re-test the board. Hook up a 7-segment display and demonstrate that
it works.

5 Background

In the 1980’s and 1990’s, digital design projects were built from a truckload of chips, each containing a few logic gates
such as 74xx series logic gates or simple programmable array logic chips (PALs). Such projects involve placing and
wiring together dozens of chips on a breadboard. It was easy to make a wiring mistake or burn out a chip and spend
hours tracking down the problem. Now you can perform all of your digital logic on a single field-programmable
gate array (FPGA) to greatly reduce the necessary wiring and number of chips. Later in the course, you will use the
Cortex-M4 microcontroller to write programs in assembly language and C that can interface with external hardware
and the FPGA.

Last Modified: September 7, 2021 pg. 1

E155 FA21: Lab 1

Figure 1: Shield board PCB

Figure 2: Breadboard adapter PCB

You will need to connect your FPGA to the real world to get inputs and outputs. In particular, you will often find it
useful to have switches and LEDs. There are several LEDs and a button on the MAX1000 board itself and a sliding
DIP switch array with 4 switches on the µMudd shield.

The FPGA comes in a 169-Ball Low-Profile Fine-Pitch Ball Grid Array (LFBGA) package. It is the large black square
chip in the center of your MAX1000 board. You’ll notice that there are no visible pins around the sides of the chip
since they are arranged on the bottom of the chip in an array of tiny solder balls. This is convenient for saving space,
but makes debugging a challenge since you cannot directly access any of the physical pins to probe them. This is
one example of a surface mount (SMT) part. The pins on SMT parts do not go through the printed circuit board (as
with the other through-hole parts you’ll be working with) but are mounted on pads on top of the PCB.Their pins are
so small that special soldering skills and tools are needed to reliably attach them to the board. You can solder some
SMT components by hand, but smaller or more specialized parts (such as the tiny resistors you see on the MAX1000
board or the ball grid array FPGA chip) can be challenging or impossible to solder by hand and need specialized
equipment to solder.

The FPGA you will use in this course is the Intel MAX10 10M08SAU169C8G, which contains 8,000 Logic Elements.
You can find the datasheet on the class web page. You will need to become familiar with the internals as you progress
in this class.

The two daughter boards were designed to maximize your access to the capabilities of the FPGA and MCU from a
breadboard. There are several MCU and FPGA pins which are connected on the shield PCB to facilitate easy and
high-fidelity connections between the two devices. The cobbler board is designed with two rows of headers that
plug into a breadboard and give you access to many of the FPGA and MCU pins. Furthermore, the pins are labeled
for your convenience. The other characteristics of the board will be explained later, in the Discussion section of this
guide.

The board schematics are included at the end of this manual. Study these schematics to understand how the boards
work because you will need this information to use and debug your board and are likely to be asked about some
subsystem during your checkoff.

Last Modified: September 7, 2021 pg. 2

E155 FA21: Lab 1

6 Component Discussion

The figures at the end of this document include both the bill of materials (BOM) and the board schematics. Major
components include the Nucleo F401RE board, MAX1000 board, header pins, resistors, DIP switches, and LEDs.
What follows is more information about several key components on the board.

Read through and understand this section that describes each of the board components. Identify the components
in the schematic and think about how they operate. The subsequent section will guide you through the assembly
process.

6.1 Power Supply

There are several ways that power can be supplied to the board. Be very careful when connecting power to the
devices to ensure that you supply voltages that are within the maximum operating ranges. Supplying a board with
voltages outside of the maximum operating conditions is a recipe for a burned out board.

Both the STM32F401RE and MAX1000 boards have their own on-board voltage regulators. The MCU can take volt-
ages between 7 - 12 V on MCU_VIN and theMAX1000 takes a voltage of 5 V on MAX1000_VIN. Details on powering
the devices can be found in section 6.3.2 of the Nucelo-64 User Manual (MCU) and section 3.3.10 in the MAX1000
User Guide (FPGA).

Both devices can be powered independently via their own USB connections, but also can be reconfigured to be
powered via a direct connection to a voltage source. The recommended way to power the combined boards is by
providing power to the Nucleo board either via USB or the MCU_VIN pin by selecting the proper position for jumper
JP5. To power the MCU board via USB, JP5 should be configured as U5V. If VIN or E5V is to be used, JP5 should be set
to select E5V. See Tables 7 and 8 in section 6.3.2 of the Nucleo-64 User Manual (UM1724) for more information. After
properly configuring the power supply for the Nucleo board, the jumper JP1 on the µMudd Mark VI Shield should
be connected (i.e., shorted) to connect the MAX1000_VIN to the +5 V output of the Nucleo board. Connecting the
boards in this way enables you to power both devices from the MCU power supply instead of needing two separate
USB connections.

6.2 Nucleo-F401RE Development Board

The Nucleo-F401RE development board provides a convenient platform to test and develop embedded systems ap-
plications. The board is focused around an STM32F401RE MCU and provides voltage regulators to provide power
to the chip, various breakout headers (both Arduino and Morpho headers) which allow access to the pins of the
microcontroller chip, a reset button and user input button, configuration jumpers, and an embedded ST-LINK pro-
grammer/debugger.

6.2.1 Programming

The STM32F401RE has an embedded ST-LINK/V2-1 programmer and debugger as described in section 6.2 of the
Nucleo-64 User Manual. The main purpose of the ST-LINK is to provide the ability to interface with the serial wire
debug (SWD) interface of the MCU via USB.

There are a variety of integrated development environments (IDEs) which can be used to interact with the device
including PlatformIO and Keil µVision. The IDEs provide a helpful wrapper around compiler toolchains such as GNU
Compiler Collection (GCC) toolchain to facilitate easy programming and debugging. In this course you are welcome
to use any IDE you would like, although instruction and support will be focused around PlatformIO which is based
on the GCC toolchain.

Last Modified: September 7, 2021 pg. 3

E155 FA21: Lab 1

6.3 MAX1000 Development Board

The MAX1000 board is developed by Arrow and focused around an Intel MAX 10 10M08SAU169C8G field pro-
grammable gate array (FPGA). Figure 1 of the Intel MAX 10 FPGA Device Overview explains the naming of the
chip.

The MAX 10 FPGA is very similar to the Cyclone IV architecture that is used to introduce FPGAs in E85. At its root,
the FPGA consists of Logic Elements (LEs) which can be internally connected within the FPGA. Each LE consists of
a 4-input look-up table (LUT) and a programmable D flip-flop.

The 10M08SAU169C8G is member code 08 and thus according to Table 4 of the Intel MAX 10 FPGADevice Overview,
it includes the following resources.

Resource Quantity

Logic Elements (LE) 8000
M9K Memory 378 Kb
User Flash Memory 1376 Kb
18 x 18 Multiplier 24
Phase-locked Loop (PLL) 2
Analog to Digital Converter (ADC) 1

Table 1: 10M08SAU169C8G Resources

6.3.1 Programming

The FPGA is programmed using the onboard Arrow USB programmer via Quartus. After setting up and compiling
the Quartus project, Quartus will generate bitstream files which are used to configure the FPGA. More details will
be provided later in this lab writeup.

6.4 Header Pins

The boards provide several sets of header pins that tap out signals from the FPGA, MCU, LEDs, switches, and power
and ground.

Item Quantity Manufacturer P/N Relevant Identifiers
14-pin female header 2 PPTC141LFBN-RC Shield: U1
40-pin male vertical keyed header 2 SBH11-PBPC-D20-ST-BK Shield: J2; Breadboard adapter: J1
40-pin male breakable header 2 PREC040SFAN-RC Shield: J1; Breadboard adapter: J2, J3
Arduino stackable headers kit 1 PRT-11417 Shield: P1, P2, P3, P4

Table 2: Header pin components

The two 14-pin headers are used to connect the MAX1000 FPGA board to the shield. You will also need to break off
and solder two 14-pin male header pin strips to the MAX1000 board.

The Arduino headers are stackable, with pins which extend below the board and receptacles which are on the top of
the board. These should be inserted from the top and then soldered on the bottom of the board. Make sure to match
the correct length pin with the corresponding location on the shield board (P1, P2, P3, or P4). Also make sure to not
clip the leads on these later on since you need them to stack on to the MCU board!

There are also two places for 2-pin headers to be installed on the shield at CN1 and J1. These should be installed on
the top of the board with the short part of the header facing down through the board and should be soldered from

Last Modified: September 7, 2021 pg. 4

E155 FA21: Lab 1

below. There is a small plastic jumper connector which can be connected to either CN1 or to J1 when in use. CN1
is simply used as a place to store the jumper connector when not in use; both pins of CN1 are connected to ground.
When connected to J1, the VIN input of the MAX1000 board (MAX1000_VIN) is connected to the +5 V output of the
Nucleo board. This enables the whole system to be powered from a single power source through the Nucleo boards
voltage regulators.

The 2×20 pin vertical keyed headers are used to attach the ribbon cable that connects the shield and the breadboard
adapter. Be aware that these are keyed and so they must be installed in the correct orientation. The opening in the
plastic on the header (the key) must be properly aligned with the divot shown on the board silkscreens.

6.5 Bar LED Array

There is a 4-segment light-emitting diode (LED) array on the board. The top LED is connected to the +3.3 V output
of the Nucleo board to indicate when power is applied. The other 3 LEDs are connected to GPIO pins on the MCU
PB0, PC1, and PC0.

There are a few concerns that must be addressed whenever using LEDs. One is that LEDs glow nicely when given
about 5 mA of current but may burn out when given more than about 20 mA. Therefore, it is important to include a
current-limiting resistor to prevent LEDs from burning out, overheating the driver, or simply wasting power. A 330
Ω resistor does the job nicely, allowing 3.3 V/330 Ω = 10 mA of current to flow. (In actuality, the current is about
half of this. There is a voltage drop across the diode (about 1.7 V for red), which makes the actual current (3.3 V-1.7
V)/330 Ω = 4.8 mA. This is still around the desired 5-20 mA range and so still works).

6.6 Dual inline package (DIP) switches

TheDIP switches provide a convenient source of inputs to circuits in your FPGA. When a switch is closed, it delivers
a high output. When a switch is open, a pull-down resistor produces a low output.

6.7 Resistor Arrays

The resistor networks or arrays are convenient ways to package a series of resistors into a compact package. Resis-
tor arrays come in two varieties: isolated and common bussed. Isolated arrays contain sets of individual resistors
grouped together in a single package where each terminal of each resistor is exposed. In comparison, bussed resistor
arrays connect all of one side of the resistors together to a single pin. Common bussed resistors are thus more com-
pact and pin-efficient compared to isolated resistors (for N resistors, common bussed arrays have N+1 pins whereas
isolated arrays have 2N pins). Both resistor arrays on the shield board (RN1 and RN2) are common bussed array.
Since one of the pins is common to all resistors, you should take care to make sure the orientation of the array is
correct. The common pin, indicated by a dot on the side of the array, should be connected to the corresponding pin
1 on the board which is indicated by a square pad.

6.8 Ribbon Cable

The 40-pin ribbon cable is used to connect the shield with the breadboard adapter PCB. The cable is keyed (i.e., has
the bump on one side) to ensure that it can only be inserted the correct way.

6.9 Header Receptacle

Although the ribbon cable is keyed to ensure correct alignment, it is important to make sure that the header is
installed correctly. Make sure to line up the opening in the plastic shrouding with the notch marking on the PCB
silkscreen.

Last Modified: September 7, 2021 pg. 5

E155 FA21: Lab 1

Figure 3: Photos of finished boards.

7 Assembling the Boards

This section will give you tips on how to assemble the board. Following these tips will help you complete this lab
quickly and in a logical way that places the flattest components first to make soldering easier.

Figure 3 shows a few photos of the boards to give you an idea of what your final product should look like.

7.1 Getting Started

The board has two sides. The component side, with the white silk screen markings indicating component placement,
should go up. All components except the pin headers on the breadboard adapter and the MAX1000 board are placed
on the component side. The through-hole parts are soldered on the reverse solder side.

Using a multimeter, measure the resistance between the pins labeled MCU_VIN and GND on the board, and verify
that the resistance is nearly infinite. If the resistance is low, you have a short circuit on your bare board and should
get a new one. As you assemble your board, occasionally check the resistance between MCU_VIN and GND. If it is
ever less than 10 Ω, you’ve introduced a short and should debug it before continuing.

When you begin soldering, moisten the sponge. When the iron first heats up, tin the tip by applying a generous
amount of solder all over the tip, then wiping off the excess on the sponge. Periodically repeat as you work to keep
the tip looking silvery rather than black and blistered.

For through-hole components, touch the tip of the iron to the pad on the board at the same time it touches the lead
of the component. Apply the solder to the joint, not the tip of the iron. The solder should smoothly adhere to both
the pad and the component pin rather than balling up on the component. The connection should appear shiny; a
gray color indicates a possible unreliable “cold solder” joint.

If you are in doubt about the quality of your solder joints, ask early on rather than doing all of them first and
discovering that your connections are intermittent or unreliable. Some of the components will be soldered close to
vias (the small holes through the board used to connect between wiring layers on the printed circuit board). Be sure
excess solder does not bridge to the via, creating a short circuit. When you are done, tin the iron one last time to
protect the tip before turning it off

A Safety Note: You may wish to use safety goggles while soldering, especially if you don’t wear glasses. Also, be
sure to hold the ends of leads as you cut them after soldering so they don’t fly into the eye of the person working
across the room. Solder contains lead, so wash your hands afterward.

Last Modified: September 7, 2021 pg. 6

E155 FA21: Lab 1

7.2 Soldering the MAX1000 board headers

The first step is to solder 2, 14-pin headers onto the MAX1000 board so that you can plug it into a breadboard or the
shield. First break off two 14-pin sections from the 40-pin strips of headers in your kit. The best way to do this is to
use a pair of pliers (available in the toolkits at each soldering station in the lab) to grab the last header in the 14-pin
segment and then carefully apply pressure to snap the headers at the correct location.

The easiest way to solder these headers is to place the long half of the headers into a breadboard at the right width
and then place the MAX1000 board on top. Then you can easily go down the line and solder each pin on the board
without needing to worry that it will move around on you.

After you have finished this step, you are ready to move on to the shield PCB.

7.3 Soldering the Shield PCB

For this PCB we will start at the center of the board and move outward to make it easier to access the components
without others getting in the way.

7.3.1 MAX1000 Shield Headers

First, take the 2, 14-pin female headers which are for the MAX1000 board to connect to. These should be placed in
the holes for components U1. It is at this point that you will likely experience a common issue when soldering: the
need for an extra hand or two. In order to solder the components on, you can use one of the PCB clamps or a “third
hand” tool in the lab to hold the PCB. Then, hold the component on its correct location on the PCB with one hand
while you solder it with the other. You can either ask a friend to help you apply solder to the joint while you work
the iron, but if no one is available, you can simply put a small amount of solder on the tip of the hot iron and then
apply it to one of the pins of the header. In order to make sure the component is attached firmly, one good strategy
is to solder the first and last pin of the component first, ensure that the alignment looks good, and then proceed to
solder the rest of the pins in between.

After you have finished soldering the headers for U1, you can test that it fits well by plugging in your MAX1000
board. It may require a bit of force to plug and unplug, but it is ok to press firmly when plugging it in. Do be careful
when unplugging it to apply the force slowly so that you remove the board easily and without bending the pins.

7.3.2 Resistor Networks, DIP Switches, and Bar LED

Next install the resistor networks RN1 and RN2. Make sure to orient both arrays such that pin 1 of the arrays
(indicated by a dot on the side of the array package) is oriented properly andmatches up with pin 1 on the component
footprint which is indicated by a square copper pad.

TheDIP switches and bar LEDs should be soldered next. Again, make sure that the components are properly oriented.
The datasheets provide information about the pin orientation and arrangement, so check if you have any doubt. Most
components have some recognizable feature on the package to indicate the location of pin 1 or allow you to figure
it out such as a notch, beveled corner, or physical marking such as a dot. Pin 1 on the PCB is indicated by a square
copper pad as compared to a circular one.

7.3.3 Stackable Headers and Jumpers

Next install the stackable headers (P1, P2, P3, and P4) and jumpers (CN1 and J1). The stackable headers are already
in the correct sizes so just make sure to put the right size header in the right spot. The two, two-pin headers CN1
and J1 should be snapped off one of the 40-pin male headers and installed on the board so that the long side of the
headers and the plastic shroud is on the component side of the board. DO NOT clip the leads on P1-P4!

Last Modified: September 7, 2021 pg. 7

E155 FA21: Lab 1

7.3.4 40-pin Keyed Header

The last component to install on the board is the 2×20 pin header for the ribbon cable to connect the shield and bread-
board adapter. Make sure to correctly orient the opening of the plastic shroud with the marking on the silkscreen.
Be careful to make sure the connector is aligned properly before soldering all the pins by soldering one pin on either
end of the header first, then checking to make sure it is aligned properly and flush with the board, and then soldering
the remaining pins. Soldering is a reversible process, but desoldering is roughly 100× more challenging. Similar to
the old adage “measure twice, cut once”, “align and mount twice, solder once.”

8 Testing the Boards

At this point, your boards should be fully assembled. Congratulations! See Figure 4 for a few photos showing the
completed boards for reference.

To test your board, you will upload a simple circuit on the MAX1000 FPGA board which generates a 1̃ Hz clock signal
and blinks two LEDs on the MAX1000 board. LED1 (Pin A8) is connected to a simple clock divider and indicates
that your FPGA programming is working properly. LED2 blinks based on an output signal from the MCU. The MCU
reads in the slowed clock signal and then echoes that signal back to the FPGA as well as blinking one of the LEDs
on the µMudd shield board. This will ensure that the boards are correctly interfaced and provide a simple example
of how to program both the FPGA and MCU. Sample code for the test (MCU and FPGA) is provided on the course
website.

Figure 5: Block Diagram of Blink Test Circuit

8.1 MCU Programming

To program the STMF401RE MCU, we will use PlatformIO. PlatformIO is an integrated development environment
(IDE) which is used as an extension to Visual Studio Code (VS Code). It uses a build system based on the GNU Com-
piler Collection (gcc) which is an extremely popular and well developed open-source collection of tools to compile
code. In future labs we will talk in more detail about the compilation process of going from C code to machine code
running on your MCU, but for now we will deal with it at a higher level of abstraction.

To begin, install VS Code on your machine if you do not already have it installed. Then, inside VS Code navigate to
the extensions menu, search for, and install PlatformIO. It make some time for PlatformIO to download and install.

After installing, PlatformIO open the main PlatformIO menu by clicking on the alien icon in the sidebar. Select the
menu option to create a new project, give it a name, and select the STM32F401RE as the target platform. You can
narrow down the options by beginning to type a few relevant characters such as “F401RE” into the selection field.
Select CMSIS for the framework and uncheck “use default location” and select the location to save the project.

After creating the project, PlatformIO will automatically install the required support packages needed to compile,
upload, and debug code on the MCU. Because of this, there may be a delay when creating this initial project that will
not be necessary for future new projects.

After PlatformIO is finished installing the necessary components, it will open the project with a few subfolders.

Last Modified: September 7, 2021 pg. 8

https://platformio.org

E155 FA21: Lab 1

Figure 4: Photo of assembled boards.

Last Modified: September 7, 2021 pg. 9

E155 FA21: Lab 1

Download the source code files (main_blink.c and the simple libraries for the reset and clock control (RCC) and
GPIO) from the website and place all of the files in the src subfolder.

PlatformIO should select the correct upload protocol by default, but tomake sure, add the lineupload_protocol = stlink
to your platformio.ini file under the line which says framework=cmsis.

Compile and build the project by clicking on the PlatformIO alien in the sidebar and select build underProject Tasks > genericSTM32F401RE > General > Build.
You can also click the checkmark icon in the bottom bar. Then upload the project by selecting the option under the
Project Tasks menu or clicking the arrow icon in the bottom bar.

Nextwewill go through the process of compilingVerilog and configuring the FPGA.Download thefpga_blinkpcb.sv
file from the course website. This contains the Verilog code for the project.

Helpful Keyboard Shortcuts

In addition the menu option and shortcut buttons, PlatformIO has several helpful keyboard shortcuts.

Three that youwill find yourself using frequently andmay be worthwhile memorizing shown in the table below.

Task Bottom Bar Icon Keyboard Shortcut
Build Checkmark ctrl + alt + b
Upload Arrow ctrl + alt + u
Debug F5

8.2 FPGA Programming

Open upQuartus and select the option to create a new project. In theWizard, select a directory and name the project
project. Under “Family, Device, and Board Settings”, select the FPGA on the MAX1000 board, the 10M08SAU169C8G.
Under Simulation, select “Tool Name” = “ModelSim-Altera” and “Format(s)” = “System Verilog HDL”.

After you finish configuring the project and close the wizard, there are also a few other settings you will need to
configure for the device which are different than the defaults.

• Under Assignments > Settings and then under “Operating Settings and Conditions > Voltage” set
VCCA and VCC_ONE voltages to 3.3 V

• Under Assignments > Device click “Device and Pin Options” and under the Voltage tab set “Default I/O
Standard” to 3.3-V LVTTL.

• Under Assignments > Device click “Device and Pin Options” and under the “Unused Pins” tab, make
sure “Reserve all unused pins” is set to “as inputs that are tri-stated with weak pullup” (this should be the
default and will make sure that there are no issues with pins that are shared between the MCU and FPGA).

9 Clean Up

Clean up your lab station. Discard the refuse you accumulated while soldering. Tin the iron and turn it off. Please
keep the lab clean and neat as you work because you share it with many others.

10 FPGA Design

Your next goal is to write some Verilog modules to further test the hardware on your board and operate a 7-segment
display. The system should have the following inputs and outputs:

Last Modified: September 7, 2021 pg. 10

E155 FA21: Lab 1

Signal Signal Type Description

clk input 12 MHz clock on FPGA
s[3 : 0] input the four DIP switches
led[7 : 0] output the 8 lights on the LEDs on the MAX1000 board
seg[6 : 0] output the segments of a common-anode 7-segment display

The following tables define the relationship of the LEDs to the switches and clock.

S0 LED0 LED1
0 OFF ON
1 ON OFF

S1 LED2 LED3
0 OFF ON
1 ON OFF

S2 LED4 LED5
0 OFF ON
1 ON OFF

S3 S2 LED6
0 0 OFF
0 1 OFF
1 0 OFF
1 1 ON

LED7
Blink at 2̃.4 Hz

10.1 Design and Synthesis inQuartus

The 7-segment display should display a single hexadecimal digit specified by s[3:0]. Be sure each digit can be
distinguished from other digits (e.g. b and 8 should look different). Remember that you will be using a common
anode display. The anode (positive terminal) of all of the LEDs is tied to 3.3 V through a single (“common”) pin. Each
segment’s cathode (negative terminal) is connected to a pin. Therefore, you will need 7 separate control signals.
Remember that a logic 0 applied to the cathode will turn on the segment. The segments are defined as shown below.
Let seg[0] be A and seg[6] be G.

A

F

E
D

C

B
G

Figure 6: Seven segment display layout

Last Modified: September 7, 2021 pg. 11

E155 FA21: Lab 1

Launch the Quartus Prime software and start New Project Wizard from the File or startup menu.

Your first decision is where to keep your files. Ideally, they would go on your Charlie home directory. However,
Quartus can be painfully slow accessing files on the file server over the network. An alternative is to keep your files
on the local C drive while you are working and then to copy them back to your Charlie account before you log out.
Please clean up after yourself by deleting the project from the C file when you are done, and remember that it is an
honor code violation to refer to somebody else’s code that was left on a computer. Note that some CAD tools have
trouble with filenames having spaces and other special characters, exceeding 8 characters, or in paths not starting
with a letter drive. The best way to avoid these problems is to choose short alphanumeric filenames.

Create a working directory for the project such as c:\e155\xx\lab1_xx where ‘xx’ area your initials. Name
the project lab1_xx and click Next.

Click Next at the Add Files page, since we will not be adding any existing files to the new project. Now we will tell
Quartuswhich FPGAwe are using. Under Family, selectMAX10. UnderAvailable Devices, select 10M08SAU169C8G.
If you ever forget which device to use, the part number is written on the FPGA.

On the next page, select Pick ModelSim-Altera as the Simulation tool and SystemVerilog HDL as the format. Click
Next and verify the settings for the project. When you are satisfied, click Finish.

Choose File -> New and create a SystemVerilog HDL file. Save the file as lab1_xx.sv in your project directory
and check the box to add the file to the current project. Create modules to perform the functions described above.
The 7-segment display decoder should be combinational logic. Use a reasonable amount of hierarchy. Name the
top-level module lab1_xx. The 7-segment display code, for example, will be reused in future labs, so it should be a
module of its own. Every module should begin with a comment section that includes your name and email address,
the date of creation, and a brief summary of its purpose, so that somebody else can understand what the module
does and get a hold of you if they need help. Comment the modules as appropriate.

10.2 Logic Simulation in ModelSim

The next step is to simulate your logic with ModelSim.

Check that Altera has the correct path for ModelSim by invoking Tools→Options. Under EDA Tool Options, check
that the ModelSim-Altera path is C:\intelFPGA_lite\18.1\modelsim_ase and set it if necessary. Note
that the path for your machine may be different and you should replace the folder (i.e. intelFPGA_lite) and
version number (i.e. 18.1) of the above path to match yours. EDA stands for Electronic Design Automation and is
the industry name for computer-aided design (CAD) tools for electronic design.

For unknown reasons, Quartus wants you to compile your code before simulating. To do this, select Processing →
Start Compilation to compile your design. Ignore warnings about missing pin assignments or timing violations.

Invoke ModelSim by choosing Tools → Run Simulation Tool → RTL Simulation. RTL stands for Register Transfer
Level code (your SystemVerilog code). The ModelSim window will open. Get in the habit of watching the transcript
window to look for errors and to familiarize yourself with what a good run looks like. If you see errors, close
ModelSim, correct your Verilog code in Quartus, and reopen ModelSim.

At this point it is possible that you will see the error “** Error: (vlog-19) Failed to access library ‘work’ at “work”. In
that case, open your SystemVerilog file in ModelSim, click the “Compile” button, find your file in the resulting dialog
box, click compile, and click “yes” when prompted to create the library “work”.

In ModelSim, simulate your design by choosing Simulate → Start Simulation. Click on the + symbol next to the
work library and select your code (lab1_xx).

If the wave pane isn’t open, open it by choosing View → Wave. View all of the inputs and outputs of your design
by selecting them in the Objects window and dragging them to the Waves window. In a more complicated design,
you may wish to examine internal signals as well.

Manually test your design by forcing the inputs to specific values. In the transcript window, type:

Last Modified: September 7, 2021 pg. 12

E155 FA21: Lab 1

1 force s 0000
2 run 100
3 force s 0001
4 run 100
5 force s 0010
6 run 100
7 ...

You should see the led and seg outputs displaying appropriate values. Note that the clock is not driven and you have
not reset any registers so led[7] will be an x.

Check the outputs against your expectations. If you find any discrepancies, fix the code and resimulate. A helpful
shortcut to avoid restarting ModelSim is that you can edit the module by finding it in under “work” in the library
pane, right clicking, and choosing Edit. Make your fixes, then right click again and choose Recompile. Then type
restart -f in the transcript window to restart simulation without having to set up the waveforms window again.
When you return to Quartus, you’ll find your corrected code.

10.3 Pin Assignment

Next, assign pins to relate the signal names in your Verilog code to physical pin numbers on the FPGA. Launch
Assignments → Pin Planner. A table listing all inputs and outputs for the project should appear. Under Location,
type the pin number to associate with the given signal. For example, switch 1 on SW1 (connecting pins 1 and 8) is
mapped to pin E1, so enter PIN_E1 as the value for s[0].

The FPGA pinouts are shown in the Board Schematic. Most of the user input/output (I/O) pins are tapped out to the
headers and labeled on the board silk screen. Some have special functions; for example, FPGA pin E1 is connected
to LED1. The clock is connected to pin P88 and not to a header pin because a 40 MHz clock would be degraded by
the parasitic capacitance and inductance of the breadboard.

The pin numbers for the LEDs and switches are marked on the board’s silkscreen. For the outputs for the 7-segment
display, you may select any I/O pins you’d like. Do make sure that these pins are not being used for other purposes.
For example, you are fine to use any of the pins which are mapped to the MCU (e.g., PA3_H5) but you should avoid
E1, C2, C1, or D1 as these are connected to pulldown resistors since they are used for the DIP switch.

Note that the Pin Planner defaults to assuming that each bank of I/O pins receives 2.5 V and uses 2.5 V outputs.
However, our system uses 3.3 V I/O. Fortunately, leaving the voltages at their default value in Pin Planner works and
generates 3.3 V outputs.

10.4 7-Segment Display Circuit

The 7-segment display will be used throughout the class for general output of numbers. In this lab assignment,
though, it will be used to output the hexadecimal number entered by the user through the DIP switches.

Each segment of the display works as an independent LED. Therefore, the same current-limiting concern with the
LEDs applies to the display as to the on-board bank of LEDs. You can limit the current into each segment of the
display the sameway you did for the LEDs on board, adding a suitable resistor to provide roughly 5-20 mA of current.
You can find resistors and other such components in the supply cabinet or in the stockroom.

Consult the data sheet for the pinout of the common anode dual seven segment display. All seven segments share
the same anode, which should be connected to VCC (3.3 V). Each of the segments has its own cathode, which can be
pulled to 0 to turn on the segments.

Be sure to turn power off before wiring circuits on your board. You can choose either side of the display to use in this
lab. After deciding on which side to use, you will need to connect the VDD pin of that side (either VDD1 or VDD2)
to 3.3 V. Then connect the input pins of the same side of the display to the header pins you chose. Remember to
add suitable resistor between each of the inputs to the display and the header pins. These LEDs are common anode

Last Modified: September 7, 2021 pg. 13

E155 FA21: Lab 1

LEDs. That is, all the anodes from the LEDs are connected to a single VDD (VDD1 or VDD2). You are driving the
cathode of each LED. Given this information, you might need to modify your Verilog file. Do so in the simplest way
possible.

10.5 Generating the FPGA Configuration Files

Now you will synthesize your HDL into a programming file to be transferred onto the FPGA. This outputs an SRAM
Object File (.sof) in your project directory that can be used to program the FPGA directly over JTAG using the Arrow
USB programmer. Be sure your SystemVerilog files are saved, and choose Processing → Start Compilation. To help
sort the many messages that the compilation process generates, click a tab under the Message area to see only that
type of message. If compilation is successful but generates warnings, check the Warning and Critical Warning tabs
for errors relevant to your design. Warnings about incomplete I/O assignments may be ignored if you have in fact
assigned all relevant I/O pins. Missing Synopsis Design Constraints file warnings and timing analysis violations may
also be ignored.

Note that Quartus seems to crash from time to time while compiling. If it does, restart and try again. If you find a
consistent pattern of what causes the crashes, please let the instructor know.

Launch Tools → Netlist Viewers → RTL Viewer and examine the RTL schematic of your design. This shows the
logic synthesized from your Verilog design. Ensure the hardware matches your expectations.

Look at the Compilation Report tab. In the Flow Summary, you should see a total number of registers and pins that
match your expectations. Under Analysis & Synthesis, you can see how the logic blocks and registers are broken
down in each module. Under Fitter, the Pin-Out File should match the pin assignments you intended.

10.6 Programming the FPGA

Next, you will load your design onto the FPGA and PROM with an Altera USB Blaster programming device and the
chip’s JTAG interface. Run Tools → Programmer to bring up the Programmer window. In the top left corner, check
that USB Blaster is selected and use Hardware Setup to choose it if necessary. In the top-right corner, set Mode
to JTAG. Your lab1_xx.sof file should appear already in the programmer window, and list EP3C5E144 as the
associated device. If it does not appear, click the Add File… button and find the file by hand in your project directory.
Be sure the Program/Configure box for your .sof file is checked.

You are now ready to program the FPGA. Connect the board to the computer using the USB micro-B connector.
In the programmer window, press Start to begin the process. Check the Messages pane for programmer output,
and verify that there were no errors. Look for “Configuration succeeded” and “Successfully performed operation(s)”
messages.

At this point, with your design loaded, you should see the hexadecimal digit currently set on the switches displayed
on the 7-segment display. Debug your design until it is fully functional. Good luck!

10.7 Programming the Flash on the MAX1000

Programming over JTAG only changes the volatile SRAM of the FPGA itself and does not write to the non-volatile
PROM.The design will only stay on the FPGA until it is reset or power is disconnected (try it!). To program the FPGA
so that the program persists across resets, you need to program the internal configuration flashmemory (CFM). To do
this, in the Programmer window, select the .pof file (programmer object file) that is generated when you synthesize
your project. Then, make sure the checkboxes under “Program/Configure” are checked and click “Start.” See Chapter
6 - “Configuring the MAX1000” in the MAX1000 User Guide (available on the website) for more detailed instructions.

When debugging your design, simple JTAG programming has advantages, namely that it is a much faster process.
Losing the contents of the FPGA with every reset is less important if your design is being changed with every test.
Programming the CFM is much slower than JTAG programming and requires extra steps to complete, but should be

Last Modified: September 7, 2021 pg. 14

E155 FA21: Lab 1

used whenever the design is unlikely to be changed in the short term.

Always write your finished labs to the CFM before checkoff. Also remember that whatever design you last pro-
grammed to the CFM will be loaded immediately when the FPGA turns on. Forgetting this could cause you massive
confusion when debugging, especially in Labs 5-7 when old code on the FPGA might interfere with pins you are
trying to use with your MCU.

Compile your project to generate an up-to-date .sof and .pof file.

Launch the Programmer and remove your oldlab1_xx.sof from the programming file list. Now add thelab1_xx.pof
file you just generated. Check both “Program/Configure” boxes and click “Start.” Watch the Messages pane for any
errors. When the process completes, your design is loaded on the CFM. It will automatically be loaded onto the
FPGA after reset or power-on until the Serial Flash Loader is used again to replace it. If you choose Tools -> Options
-> Initiate Configuration after Programming, you won’t have to hit reset after the first programming.

If you want to erase the CFM, change the CFM and UFM options from “Program/Configure” to “Erase” and click Start
again.

When you are finished, save you files somewhere (such as your network drive or a USB key) and remove the files
from the local machine. Good luck!

11 What to Turn In

For this lab and all subsequent ones, turn in a lab report. The report should not exceed one page of text, plus
schematics, code, and anything else appropriate, such as diagrams, simulation results, or calculations. The report
typically has the following sections:

• Introduction: Briefly explain what was done.
• Design and Testing Methodology: Explain how you approached the design of this assignment from both a
software and a hardware standpoint (as appropriate). Include how you tested your design. These tests should
convince the reader that the requirements of the assignment have been met.

• Technical Documentation: Include your Verilog code and schematics of your circuits.
– Quality and clarity of your code is important. Make sure it is adequately commented. Succinct code

using standard idioms is best.
– Schematics of your breadboarded circuits should be sufficient for another engineer to understand and

reconstruct the circuit on the breadboard. Always use standard symbols for standard components such
as resistors, switches, transistors, diodes, etc. Give the component name or part number such that the
reader could order parts and replicate your circuit, or look up components in a datasheet where necessary.
The reader shouldn’t have to open Quartus to relate your Verilog code to the schematic, and shouldn’t
need to refer to a data sheet to wire external components or understand what the connections are. Don’t
assume that the reader has memorized the pinouts of any chips. Therefore, you’ll need to label both the
pin number and pin name for each pin you use from the FPGA board or other component (e.g., 7-segment
display). There is no need to draw any of the circuitry on the board; just refer to it by the pins number
and name.

• Results and Discussion: Did you accomplish all of the prescribed tasks? If not, what are the shortcomings?
How might you address them given more time? As appropriate, how did the design perform (ex. How fast/ac-
curate/reliable was it?). Is there anything you would do differently if you were to redo the lab? Is there
anything else interesting worth mentioning?

• Conclusions: Briefly summarize what was done and how it performed.
• Howmany hours did you spend on the lab? Any comments, suggestions, or complaints about the assignment?
This will not count toward your grade, but will help refine the lab for the future.

The report does not need to be long but should be complete. Some individual questions may not apply to this
particular lab but are listed to give you a general idea of what is desired. Future reports will follow a similar format
and the questions may be more applicable in these instances.

Last Modified: September 7, 2021 pg. 15

E155 FA21: Lab 1

Have your lab checked off by the instructor. You will need to demonstrate that the board and 7-segment display
operate correctly. You will also be asked a question about some part of the lab or your board. You should be
thoroughly familiar with all of the lab and the components of your board to be able to answer the question. The oral
exam is typically in the form of a “Fault-Tolerance Question.” What would happen if a particular wire is broken or
a pin is shorted to Vcc or GND? Be prepared for any other questions about your lab, however.

12 FAQs and Hints

If some of you are seeing issues with specific pins on your FPGA there could be a few different reasons and corre-
sponding steps to take to troubleshoot.

• You could have an electrical short which is causing some pins to be electrically connected that should not due
to solder bridges. Double check to make sure that the pins are isolated and not connected together by checking
the resistance between the pins with a multimeter.

• You are trying to use a pin that is shared between the FPGA and the MCU (e.g., PA8_J10) and the MCU is
not leaving that pin floating or it is driving it as an output. For example, if you leave the test code on the MCU
from the first part of the lab, PA10 will be driven which means that you can’t use PA10_L12 as a pin for your
seven segment!). You can get around this by wiping the code on the MCU by uploading a file with a blank
main function.

• You should also read through the Nucleo board documentation to see what pins have special functions that
are used by default by the MCU. Hint: You likely want to stay away from using the pins that the MCU uses
for serial communication by default.

• You may also see a similar issue if you are using a pin which is dedicated to other hardware on the board (e.g.,
E1 which is wired to the DIP switch)

Last Modified: September 7, 2021 pg. 16

	Introduction
	Learning Objectives
	Before You Start
	Requirements
	Background
	Component Discussion
	Power Supply
	Nucleo-F401RE Development Board
	Programming

	MAX1000 Development Board
	Programming

	Header Pins
	Bar LED Array
	Dual inline package (DIP) switches
	Resistor Arrays
	Ribbon Cable
	Header Receptacle

	Assembling the Boards
	Getting Started
	Soldering the MAX1000 board headers
	Soldering the Shield PCB
	MAX1000 Shield Headers
	Resistor Networks, DIP Switches, and Bar LED
	Stackable Headers and Jumpers
	40-pin Keyed Header

	Testing the Boards
	MCU Programming
	FPGA Programming

	Clean Up
	FPGA Design
	Design and Synthesis in Quartus
	Logic Simulation in ModelSim
	Pin Assignment
	7-Segment Display Circuit
	Generating the FPGA Configuration Files
	Programming the FPGA
	Programming the Flash on the MAX1000

	What to Turn In
	FAQs and Hints

