Real-time Operating Systems
Examples with FreeRTOS

Lecture 24
Microprocessor-based Systems (E155)
Prof. Josh Brake

Learning Goals

To understand the following key concepts of Real-time Operating
Systems through examples in FreeRTOS

Task creation
Basic scheduling
Task priorities and preemption

Outline

[/ &
[=
| S—

FreeRTOS Refresher

Examples for today

1. Task creation with LED blink example: '01_task_creation_blink_led.c”

2. Passing parameters into task using pvParameters:
"02_passing_parameters_blink_led.c

3. Multiple tasks with two serial prints: 03_multiple_tasks_print.c’

4. Simple preemption example: poll button and blink LED and single print:
"04 _simple_preemption.c”

FreeRTOSConfig.h

- Configuration file used to set some of the common options for the

kernel
. _ /* Defines needed by FreeRTOS to implement CMSIS RTO0S2

// <o>Minimal stack size [words] <@-65535> API. Do not change! %/
// <i> Stack for idle task and default task stack in #define configCPU_CLOCK_HZ (SystemCoreClock)
words. _ #define configSUPPORT_STATIC_ALLOCATION 1
// <1> Default: 128 | #define configSUPPORT DYNAMIC ALLOCATION 1
#define configMINIMAL_STACK_SIZE ((uintl16_t)(128)) #define configUSE_PREEMPTION 1

_ #define configUSE_TIMERS 1
// <o>Total heap size [bytes] <0-0xFFFFFFFF> #define configUSE_MUTEXES 1
// <1> Heap memory size in bytes. #define configUSE_RECURSIVE_MUTEXES 1
// <1> Detault; 8192 | #define configUSE_COUNTING_SEMAPHORES 1
#define configTOTAL_HEAP_SIZE ((size_t)8192) #tdefine configUSE_TASK_NOTIFICATIONS 1

| #define configUSE_TRACE_FACILITY 1

// <o>Kernel tick frequency [Hz] <@-0xFFFFFFFF> #define configUSE_16_BIT_TICKS 0
// <i> Kernel tick rate in Hz. #define configUSE_PORT_OPTIMISED TASK_SELECTION 0
// <1> Default: 1000 | #define configMAX_PRIORITIES 56
#define configTICK_RATE_HZ ((TickType_t)1000) #define configKERNEL_INTERRUPT_PRIORITY 255

Three Options

Revisiting Not Running State

Suspended
Ready
Blocked

Not Running
(super state)

called

Suspended

o

vTaskSuspend()
called

vTaskResume()

Event

vTaskSuspend()

called

N\

vTaskSuspend()
called

Running

Blocking API
function called

rd

/

Figure 15. Full task state machine

Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide. 2016.

-

Ex.1: Task creation with LED blink

Basic task creation workflow
Set up and initialization as usual
Write tasks according to specified prototype

In main
Call initialization functions
Create tasks
Start scheduler

Ex.1: Task creation with LED blink

// Task to toggle LED
static void toggleledTask (void *pvParameters)

{
const TickType t xDelay = pdMS TO TICKS(500);

while (1)
{
/* Simply toggle the LED every xDelay ms,
blocking between each toggle. */
toggleLED (LED PIN);
vTaskDelay(nglay);

Ex.1: Task creation with LED blink

// Main function where initialization is performed and tasks are created.
int main ()

{

// Call initialization functions

init flash(); // Set up flash

init clock(); // Configure 84 MHz clock rate
init gpio(); // Initialize GPIO for LED

// Create tasks

const size t xRegTestStackSize = 250U; // Set value for stack for each task.

xTaskCreate (toggleLedTask, // Task function
"Blink 1", // Optional name for task
xRegTestStackSize, // Task stack size
(void*) &led 1, // void pointer to optional parameters
1, // Task priority

NULL) ;

// Start the scheduler
vTaskStartScheduler () ;

// Infinite while loop.

while (1) ;

// Handle to created task

Should never get here unless the scheduler fails to start.

Ex. 2: Passing parameters into task using
pvParameters

02 passing parameters blink led.c

// New type to hold information about LED
typedef struct param led ({

uint32 t delay ms;

uint8 t led pin;
} param led;

// Create param led struct to hold delay and pin number for LED.

param led led 1 = {200, 5}; // delay ms = 200, led pin = 5

// Task to toggle LED
static void togglelLedTask (void *pvParameters)

{

const param led * led info = (param led *) pvParameters;
const TickType t xDelay = pdMS TO TICKS (led info->delay ms);

while (1)

{
/* Simply toggle the LED every xDelay ms, blocking between each toggle. */

togglelED (led info->led pin);
vTaskDelay (xDelay) ;

Ex. 3: Multiple tasks with two serial prints

// Initialize and configure USART

void init uart()
RCC->AHB1ENR |= RCC_AHBlENR_GPIOAEN;
RCC->APB1ENR |= RCC_APBIENR_USARTZEN;

// Configure PA2 and PA3 as alternate functions USART2

GPIOA->MODER &= ~(GPIO MODER MODE2 | GPIO MODER MODE3) ;

GPIOA->MODER |= (0bl0 << GPIO MODER MODER2 Pos | 0bl0 << GPIO MODER MODER3 Pos) ;
GPIOA->AFR[0] |= (0b0111l << GPIO AFRL AFSEL2 Pos | 0b011l << GPIO AFRL AFSEL3 Pos);
USART->CR1l |= (USART CR1 UE);

USART->CR1l &= ~(USART CR1 M | USART CR1 OVERS);

USART->CR2 &= ~ (USART CR2_STOP);

// Set baud rate to 115200
USART->BRR |= (22 << USART BRR DIV Mantissa Pos | 13 << USART BRR DIV Fraction Pos);
USART->CR1 |= (USART CR1 TE | USART CR1 RE);

// Simple function to send characters over USART.
void sendChar (uint8 t data) {
USART->DR = (data & USART_DR_DR);
while (! ((USART->SR >> USART SR TC Pos) & 1));

Ex. 3: Multiple tasks with two serial prints

#define USART USART?2
#define UART DELAY MS 2000

// Task to print string over USART
static void printStringTask (void *pvParameters) {

// Strings to print from tasks. , .
uint8 t * str = (uint8 t *) pvParameters;

const uint8 t strl[64] = "Hello from Task 1.\n"; 71 okT Del B
const uint8 t str2[64] = "Hello from Task 2.\n"; const Iicklype t xbelay =
— deS_TO_TICKS (UART_DELAY_MS) ;
int i = 0;
while (1) {
do {
sendChar (str[i]);
i++;
}
while (str[1] != 0);
i =0;

vTaskDelay (xDelay) ;

Ex. 3: Multiple tasks with two serial prints

Which task prints first? How could you change this?

Change duty cycle so that Task 1 prints once a second, Task 2 prints
every other second.

How do you expect the tasks to execute now?

Preemptive scheduling

Tasks are assigned priorities

lower priority tasks . oriority

A

Task 3

Task 2

Q: How are tasks and their priorities A
iff tthanint ts?
different than interrupts Task 1

Most common scheduling algorithm in real-time systems

Task 2

Task 1

Higher priority tasks can preempt lower priority tasks to take the CPU
Need to be careful to assign priorities appropriately or you can starve

>

Ibrahim, Dogan. ARM-Based Microcontroller Multitasking Projects: Using the FreeRTOS Multitasking Kernel.

Time

Ex. 4: Simple preemption example: poll button and
blink LED and single print

// Task to poll button
static void pollButtonTask (void *pvParameters) {
const TickType t xDelay = pdMS TO TICKS(100); // Schedule every 100 ms

volatile int 1i;

while (1) {
volatile int pin val = 1;

// Loop to check if the button is pressed (button is pulled low when pressed)
// and blink LED rapidly while the button is pressed using a dummy loop.
while (pin val) {
pin val = ! ((GPIOC->IDR >> BUTTON PIN) & 1);
1f(pin val) {
toggleLED (LED PIN);
for(i=0; 1 < 400000; i++); // Dummy loop to do a delay.

}
vTaskDelay (xDelay) ;

Ex. 4: Simple preemption example: poll button and
blink LED and single print

// Main function where initialization is performed and tasks are created.
int main ()

{

// Call initialization functions

init flash(); // Set up flash

init:clock(); // Configure 84 MHz clock rate
init gpio(); // Initialize GPIO for LED
init uart(); // Initialize UART

// Create tasks
const size t xRegTestStackSize = 250U; // Set value for stack for each task.

xTaskCreate (toggleLedTask, // Task function
"Blink 1", // Optional name for task
xRegTestStackSize, // Task stack size
(void*) &led 1, // void pointer to optional parameters
1, B // Task priority
NULL) ; // Handle to created task

xTaskCreate (printStringTask, "Print Testl", xRegTestStackSize, (void*)é&strl, 2, NULL);
xTaskCreate (pollButtonTask, "Poll Button", xRegTestStackSize, NULL, 3, NULL);

// Start the scheduler
vTaskStartScheduler () ;

// Infinite while loop. Should never get here unless the scheduler fails to start.
while (1);

Ex. 4: Questions

What will execution look like?
Will the other tasks get any CPU time?

What behavior do you expect to see if we change the priority of the
print task such that it is higher than that of the poll button task?

Task states

What happens if you press and release the button quickly? When does
the print occur?

What happens if you hold the button for several seconds and then
release it? When does the print occur then?

Why are these two cases different?
How can we make this example more efficient?

Summary

To understand the following key concepts of Real-time Operating
Systems through examples in FreeRTOS

Task creation - tasks are like wrappers for C functions. They should
never return and yield to the scheduler once they are done doing their
work.

Basic scheduling - The scheduler decides what task should be running at
any given time.

Task priorities and preemption - Task priorities help the scheduler
decide between the importance of different tasks. Can be useful to
distinguish between hard and soft deadlines and make sure they are met
appropriately.

References

Ibrahim, Dogan. ARM-Based Microcontroller Multitasking Projects:
Using the FreeRTOS Multitasking Kernel. Netherlands, Elsevier
Science, 2020.

Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-
On Tutorial Guide. 2016.

Lecture Feedback

What is the most important
thing you learned in class
today?

What point was most unclear
from lecture today?

https://forms.qgle/Ay6MkpZ6x3xsW2Eb8

https://forms.gle/Ay6MkpZ6x3xsW2Eb8

