
Introduction to Real-time
Operating Systems

Lecture 23
Microprocessor-based Systems (E155)

Prof. Josh Brake

Outline

• Motivation for multitasking and real-time operating systems
• Introduction to key concepts

• Tasks
• Scheduling
• Semaphores
• Queues
• Interrupts and Events

• Introduction to FreeRTOS

Multitasking Scenarios

• Print information to a display in response to keyboard input
• Car

• Airbag response
• Braking system

• Robotics
• Flight system in a drone
• Control or signal processing algorithms

2

Soft vs. hard real-time requirements
• Soft real-time requirements are those that state a time deadline—but breaching the deadline

would not render the system useless.
• Hard real-time requirements are those that state a time deadline—and breaching the

deadline would result in absolute failure of the system.

Why multitasking?

• Bare-metal programming
• Setup and initialization – runs once
• Infinite loop – runs continuously and handles main tasks

• Bare-metal + interrupts
• Can now incorporate additional functionality which quickly responds to

inputs and can guarantee that we don’t miss important events.
• Examples: Receiving and processing UART data, catching button inputs

• But as we build more and more complicated programs, it is hard to
guarantee specific timing constraints are met.
• Many different scenarios
• Lots of edge cases which makes things very difficult to debug.

3

Why multitasking?

• Enter the concept of multitasking
• Multitasking: means that several tasks (or programs) are processed in

parallel on the same CPU

• Only have a single core on your microcontroller so this is not true
parallelism, just swapping different tasks in and out

• Operations inside your bare-metal infinite loops are tasks.
• For example, consider that you want to blink 2 LEDs at different

frequencies. In bare-metal, you could have your infinite loop use timers
to poll a timer and then toggle the LEDs based on the current time.

• Works, but inefficient as the processor is always running.

4

Task States

5Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide. 2016.

The Mudd Multitasking Kernel

• You are taking E155, Clinic, and an HSA. In addition, you want to sleep
8 hours a night and have time to hang out with your friends playing
board games over Zoom.

• Imagine you must manage your clinic mid-year report, MicroPs final
project, and must read a book and write a paper for your HSA in
addition to chatting with your friends. You only have one brain.

• What are different ways you can manage your tasks?

6

Scheduling algorithms

• The scheduling algorithm decides which task is running on the core.
• Three main algorithms

• Co-operative scheduling
• Round-robin scheduling
• Preemptive scheduling

7

Co-operative scheduling

8
Ibrahim, Dogan. ARM-Based Microcontroller Multitasking Projects: Using the FreeRTOS Multitasking Kernel.

Task1() {
// Task 1 code

}

Task2() {
// Task 2 code

}

Task3() {
// Task 3 code

}

while(1) {
Task1();
Task2();
Task3();

}
Each task must yield control or else it can starve all other tasks.

Co-operative scheduling

• Tasks must not block the overall execution, for example, by using
delays or waiting for some resources and not releasing the CPU.

• The execution time of each tasks should be acceptable to other tasks.
• Tasks should exit as soon as they complete their processing.
• Tasks do not have to run to completion and they can exit for example

before waiting for a resource to be available.
• Tasks should resume their operations from the point after they

release the CPU.

9

Round-robin scheduling

• The scheduler creates a periodic time slice and equally divides CPU
use between tasks.

10
Ibrahim, Dogan. ARM-Based Microcontroller Multitasking Projects: Using the FreeRTOS Multitasking Kernel.

Advantages:
• It is easy to implement.
• Every task gets an equal share of the CPU.
• Easy to compute the average response time.

Disadvantages
• It is not generally good to give the same CPU

time to each task.
• Some important tasks may not run to completion.
• Not suitable for real-time systems where tasks

usually have different processing requirements.

Preemptive scheduling

• Most common scheduling algorithm in real-time systems
• Tasks are assigned priorities
• Higher priority tasks can preempt lower priority tasks to take the CPU
• Need to be careful to assign priorities appropriately or you can starve

lower priority tasks

11
Ibrahim, Dogan. ARM-Based Microcontroller Multitasking Projects: Using the FreeRTOS Multitasking Kernel.

Q: How are tasks and their priorities
different than interrupts?

Scheduling Algorithm Goals

• Be fair such that each process gets a fair share of the CPU.
• Be efficient by keeping the CPU busy. The algorithm should not spend

too much time to decide what to do.
• Maximize throughput by minimizing the time users must wait.
• Be predictable so that same tasks take the same time when run

multiple times.
• Minimize response time.
• Maximize resource use.
• Enforce priorities.
• Avoid starvation.

12
Ibrahim, Dogan. ARM-Based Microcontroller Multitasking Projects: Using the FreeRTOS Multitasking Kernel.

Other scheduling algorithms

• First-come first-served
• Shortest time remaining first
• Longest time remaining first
• Multilevel queue scheduling
• Dynamic priority scheduling

13

14

Introduction to FreeRTOS

• We will use FreeRTOS as our example
• Other popular RTOSes include Zephyr, NuttX, VxWorks. Varying

licensing argreements.
• Like a programming language: once you learn one RTOS, concepts

transfer to others.

• FreeRTOS licensed under MIT license – very permissive.
• Can be used in commercial applications and users retain all ownership of

their IP.

15Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide. 2016.

Code Structure of FreeRTOS

16Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide. 2016.

Data Types and Naming Conventions

• Port specific data types
• TickType_t – holds tick count value
• BaseType_t – Base type value which is most efficient data type on a

given system. Typically the word size.

17

Naming Conventions: Variable Names

• Variable Names - prefixes tell their type

18

Prefix Type
c char
s int16_t (short)
i int32_t (long)
x BaseType_t and other non-standard types

(structs, task handles, queue handles, etc.)

Naming Conventions: Function Names

• Function Names – prefixed with return type and file they are defined
in.

19

Function Description
vTaskPrioritySet() returns a void and is defined within task.c.
xQueueReceive() returns a variable of type BaseType_t and is

defined within queue.c.
pvTimerGetTimerID() returns a pointer to void and is defined within

timers.c.

Template Project

20Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide. 2016.

Creating Tasks

21

Parameters
• pvTaskCode - pointer to C function that implements that task
• pcName – Descriptive name for the task
• usStackDepth – size of stack to be allocated by the kernel when creating the stack (in words)
• pvParameters – pointer to void to pass in parameters. Need to cast void pointer to correct type

inside the function to use it.
• uxPriority – Defines the priority of the task
• pxCreatedTask – handle to created task

Return
• pdPass or pdFail - indicates if task was successfully created.

Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide. 2016.

Printing to Terminal

22

int main(void) {
xTaskCreate(vTask1, “Task 1”, 1000, NULL, 1, NULL);
xTaskCreate(vTask2, “Task 2”, 1000, NULL, 1, NULL);
vTaskStartScheduler();

for(;;);
}

Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide. 2016.

Printing to Terminal Example Output

23

int main(void) {
xTaskCreate(vTask1, “Task 1”, 1000, NULL, 1, NULL);
xTaskCreate(vTask2, “Task 2”, 1000, NULL, 1, NULL);
vTaskStartScheduler();

for(;;);
}

Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide. 2016.

Example: Priorities

24Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide. 2016.

Revisiting Not Running State

• Three Options
• Suspended
• Ready
• Blocked

25Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide. 2016.

Example: Printing with better delay using blocked
state

26Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide. 2016.

Example: Sending tasks to blocked state

27Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide. 2016.

Key Terms in Real-time Systems

• Tasks – C functions which indicate things to do. Implemented as
infinite loops.

• Scheduling – The process of determining what task is currently
running

• Semaphores – an abstract data type which controls access to a
resource used by multiple tasks

• Queues – A way to communicate between tasks (Chapter 4 of
Mastering FreeRTOS)

• Interrupts and Events – how to safely integrate interrupts with the
RTOS kernel (Chapter 6 of Mastering FreeRTOS)

28

Summary

• Multitasking is an important concept in advanced embedded systems
• Have timing constraints that must be met (both soft and hard deadlines)
• Hard to debug and manage systems with increasing complexity while

guaranteeing all deadlines are met.

• Real-time operating systems introduce a scheduler which enables the
programmer to efficiently use CPU cycles while ensuring deadlines
are met.

• FreeRTOS is an open and accessible platform to learn RTOS concepts
like tasks, queues, semaphores, and resource management.

29

Next Up

• For Wednesday:
• Read Chapter 3 of Mastering the FreeRTOS Real Time Kernel: A Hands-

On Tutorial Guide. (available here)
• Download demo project code from Github (link to be provided)

• Course evaluations

30

https://www.freertos.org/Documentation/RTOS_book.html

References

• Ibrahim, Dogan. ARM-Based Microcontroller Multitasking Projects:
Using the FreeRTOS Multitasking Kernel. Netherlands, Elsevier
Science, 2020.

• Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-
On Tutorial Guide. 2016.

31

Lecture Feedback

• What is the most important
thing you learned in class
today?

• What point was most unclear
from lecture today?

32

https://forms.gle/Ay6MkpZ6x3xsW2Eb8

https://forms.gle/Ay6MkpZ6x3xsW2Eb8

