Low-power Mode

Lecture 22
Microprocessor-based Systems (E155)
Prof. Josh Brake

Outline

Low-power mode motivation
Low-power modes on Cortex-M4
Low-power modes on STM32F401RE
Demo: Blink LED with Sleep Mode

Why low power mode?

Lots of reasons in embedded designs. Some of the most common:
Smaller battery size
Lower electromagnetic interference
Simpler power supply design (e.g., heat dissipation)
Alternative energy supply

Ch. 9, The Definitive guide to ARM Cortex-M3 and Cortex-M4 Processors

How to measure power consumption?

Energy Efficiency: work per watt (e.g., DMIPS/uW or CoreMark/uW)
Active current: current per frequency nA/MHz
Sleep mode current: pA as most clock signals are turned off

Wake-up latency: Number of clock cycles required to go from sleep
mode to resumed execution

Ch. 9, The Definitive guide to ARM Cortex-M3 and Cortex-M4 Processors

Cortex-M4 provides many power efficiency features

Various run/sleep modes

Ultra low power Real-Time Clock (RTC), watchdog, and Brown-Out
Detector (BOD)

Smart peripherals that can run even in sleep mode
Flexible clock control to disable clock for inactive parts of the design

Ch. 9, The Definitive guide to ARM Cortex-M3 and Cortex-M4 Processors

Cortex-M4 Sleep Modes

A Current
Most clock signals Dynamic'current
stopped, only small proportional to
part of the processor & clock frequency
is running
Digital circuit Al.l clock
in state signals
retention stopped
power down
<— Static current
Power Deep sleep Deep sleep Sleep .
down with State mode Active
Retention Power
Gating (SRPG)
FIGURE 9.3

Various power modes including sleep modes

Figure 9.3 The Definitive guide to ARM Cortex-M3 and Cortex-M4 Processors

Entering Sleep Modes

Instruction CMSIS-Core Description
, Wait for interrupt
void
WFI . Enter sleep mode and wake-up from interrupt request, debug
_ WFI(void);
request, or reset.
Wait for Event
S Enter sleep mode conditionally if the event register is clear.
voi
WFE Otherwise, clear the internal event register and continue

_ WFE(void);

execution. Processor can wake-up by interrupt request, event

input, debug request, or reset.

Sleep-on-Exit Feature

Initialization ISR1 (Interrupt
Service Routine)

- Useful for interrupt-driven v
applications where all Mo | oo
operations aside from processor snter foature Servios Routine)
initialization take place in - T Y

Service Routine)

. s ~ Execute WFI A
|nterru pt hanC”erS The processor Sleep
enters sleep Loop v ISR3 (Interrupt

. Automatically goes to sleep " or oan
after returning from orocessing Typically his doesrt get
exception/interrupt handler - O Wit
and returning to Thread CURE 9.4
mOde. Sleep-on-Exit program flow

Figure 9.4 from The Definitive guide to ARM Cortex-M3 and Cortex-M4 Processors

Deep sleep with State Retention Power Gating (SRPQ)

- Uses backup power for retaining flop states while turning off power
to logic and clock buffers.

Power to state retention
Vce

* elements is always on
Power Power . Power to most parts of the system
control —{ gating T is turned off during Deep Sleep
from PMU l
N\ ~
Inputs—b((logic ‘—bcgogic >—> Outputs
™~ ey State |
Clock]\ i = retention
: element
Clock D type
buffers I;> flip-flops
o L L ®
Ground

FIGURE 9.7

SRPG technology allows most parts of a digital system to be powered down without state loss

Figure 9.7 from The Definitive guide to ARM Cortex-M3 and Cortex-M4 Processors

Low-power Modes on the STM32F401RE

Default mode is Run mode - CPU clocked by HCLK and program code
executing

Can reduce power consumption by:
Slowing down system clocks
Set prescaler registers in RCC

Gating the clocks to APBx and AHBX peripherals when they are unused
Turn peripheral clocks gates on in AHBXENR/APBXENR

STM32F401RE low-power modes

- Sleep mode - Cortex-M4 with FPU core stopped, peripherals
continue running

- Stop mode - All clocks are stopped, PLL and oscillators disabled.
Internal SRAM and registers preserved.

. Standby mode - 1.2 V domain powered off

STM32F401RE Low-power mode summary

- See power control
registers for more detail

Table 15. Low-power mode summary

Effecton
Effecton 1.2V Vpp
Mode name Entry Wakeup domain clocks | domain Voltage regulator
clocks

Sleep WF1 or Return Any interrupt CPU CLK OFF
(Sleep now or from ISR noeffectonother | ON
Sleep-on- clocks or analog
exit) WFE Wakeup event clock sources

PDDS bit + Main regulator or

STOP mode Any EXTI line (configured Low-Power
Sto configuration + in the EXTI reqisters regulator (depends

P SLEEPDEEP bit |. gIsters, on PWR power
+ WFI, Return internal and external lines) control register
from ISR or WFE HSI and (PWR_CR)
— All 1.2 V domain HSE
\IQVTKCUPI pIn r('/S\'Ing ei\ge, clocks OFF oscillator
. alarm (Alarm A or s OFF
PDDSbit+ | \1arm B), RTC Wakeup
SLEEPDEEP bit

Standby + WEIL Return event, RTC tamper OFF

from ISR or WFE

events, RTC time stamp
event, external reset in
NRST pin, IWDG reset

11

Using WFI

. Setup simple scenario, do

setup and then enter into int main(void)
while loop where you execute |
WF' setup_Io();
. Will wait for interrupt, execute setup_NVILO):
ISRr and then-lurn_p baCk Into SCB->SCR |= 1<K 1; // Enable Sleep-on-exit feature
main loop where it will while(1) |
execute WFI again __WFIQ); // Keep in sleep mode

}
}

Ch. 9, The Definitive guide to ARM Cortex-M3 and Cortex-M4 Processors

Danger when using WFI in this way

setup_timer0(); // Setup a timer to trigger a timer interrupt
NVIC_EnableIRQ(TimerO_IRQn); // Enable Timer0 interrupt at NVIC
__WFI(); // Enter sleep and wait for timer #0 interrupt
Toggle_LED();

- What if the interrupt takes a long time to trigger?

- What if timer is set to fire within a few cycles? Or if another interrupt
occurs after the timer is configured but before WFI is executed?

Ch. 9, The Definitive guide to ARM Cortex-M3 and Cortex-M4 Processors

Better solution

volatile int timerOirq_flag; // Set to 1 by timer(O ISR

setup_timer0(); // Setup a timer to trigger a timer interrupt
NVIC_EnableIRQ(TimerO0_IRQn); // Enable Timer0O interrupt at NVIC
if (timerOirq_flag==0) { // timerQOirq_flag is set in timer0 ISR
_WFIC); // Enter sleep and wait for timer #0 interrupt

}
Toggle_LED();

- Check a flag set in the timer ISR

Ch. 9, The Definitive guide to ARM Cortex-M3 and Cortex-M4 Processors 14

volatile int timerQirq_flag;
Slng WFE timerOirq_flag = 0; // Clear flag
set_timer0();
NVIC_EnableIRQ(Timer0_IRQn);
while (timerQirq_flag==0) |{
__WFE(); // Enter sleep and wait for timer #0 interrupt
b
Toggle_LED();

- WFE enables conditional sleep. Here we change the sleep operation
previously using WFI to anidle loop.

- WEFE clears event latch

Ch. 9, The Definitive guide to ARM Cortex-M3 and Cortex-M4 Processors 15

volatile int timerQirq_flag;

Using WFE

timerQirq_flag = 0; // Clear flag

set_timer0();

NVIC_EnableIRQ(Timer0_IRQn);

while (timerQirq_flag==0) |{

__WFE(); // Enter sleep and wait for timer #0 interrupt

by
Toggle_LED();

. Safer

- [If timerO interrupt has triggered before entering the loop, we skip
because software flag is set

- |If the timerO interrupt is triggered just between the compare and WFE,
the interrupt sets the internal event register and the WFE will be
skipped.

- Loopisrepeated and condition checked again causing the loop to exit
and toggle the LED.

Ch. 9, The Definitive guide to ARM Cortex-M3 and Cortex-M4 Processors

Measuring Power Consumption

. Canuse ammeter between IDD
pins on Nucleo board

+5V U4 LD39050PU33R
6 3
I 1 1 M L +3V3 ype V_[I)_D
R32 1 4 SB2 —~ /=1
N ——— EN VO *— O O
3 1IK==C21 % % o ©
luF X5R D603 5
= e IuF_X5R 0603
W LD3 ——C20
SRED 100nF a < ——C19
> | 100nF S
T ° - www.st._com_/stm32nucleo

17

Demo

O 00 NN O U & WIN =

N NNNNNNRPRRRRRRRPRP R
O U A WNREP OO WOWNOOUMAWNIEROS

// main_blink_low_power.c
// Josh Brake

// jbrake@hmc.edu

// 11/4/20

#include "stm32f4xx.h"

#define LED_PIN 5
#define DELAY_TIM TIM2

int main(void) {
// Configure GPIO pin
RCC->AHB1ENR |= (1 << RCC_AHB1ENR_GPIOAEN_Pos);

GPIOA->MODER &= ~(0b11l << LED_PIN%*2);
GPIOA->MODER |= (@0x01 << LED_PIN%2);

GPIOA->BSRR = (1 << (LED_PIN + 16));

// Initialize timer

RCC->APB1ENR |= RCC_APB1ENR_TIM2EN; // TIM2EN

uint32_t psc_div = (uint32_t) ((SystemCoreClock/1le6)-1); // Set prescaler to give 1 us time base
DELAY_TIM->PSC = (psc_div - 1); // Set prescaler division factor

DELAY_TIM->EGR |= TIM_EGR_UG; // Generate an update event to update prescaler value
DELAY_TIM->CR1 |= TIM_CR1_CEN; // Set CEN =1

18

Demo

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

// Setup timer parameters

DELAY_TIM->ARR = 1000e3; // Set ARR to 500 ms
DELAY_TIM->EGR |= TIM_EGR_UG; // Force update
DELAY_TIM->SR &= ~TIM_SR_UIF; // Reset UIF
DELAY_TIM —->CNT = 0; // Reset CNT

// Enable global interrupts
__enable_irq();

// Enable interrupts for TIMx
DELAY_TIM->DIER |= TIM_DIER_UIE;
NVIC_EnableIRQ(TIM2_IRQn); // IRQn 28

v while(1){
__WFI();

v void TIM2_IRQHandler(){
volatile int pin_val = (GPIOA->IDR >> LED_PIN) & 0x1;
if(pin_val) GPIOA->BSRR = (1 << (LED_PIN + 16));
else GPIOA->BSRR = (1 << LED_PIN);
DELAY_TIM->SR &= ~TIM_SR_UIF;

Demo

Try commenting out the WFI line and changing the delay of the timer.

With WFI commented out, the processor will just spin in the loop
continuing to consume power.

WEFI will put it to sleep until the interrupt triggers

Other variables to test
Different clock speeds
Different timer delays

https://github.com/joshbrake/E155 FA2020/tree/master
/L22/Low-power Interrupt Demo

20

https://github.com/joshbrake/E155_FA2020/tree/master/L22/Low-power_Interrupt_Demo

Summary

Power consumption is an important consideration for embedded
systems since we often are running on battery

The STM32F401RE provides four main power modes: run, sleep, stop,
and standby (listed in order of decreasing power consumption).

The WFIl and WFE instructions/functions provided in CMSIS enable
easy use of sleep modes along with configuration registers.

Interrupts can lead to subtle bugs due to their asynchronous nature.
Watch out!

Lecture Feedback

What is the most important
thing you learned in class
today?

What point was most unclear
from lecture today?

https://forms.qgle/Ay6MkpZ6x3xsW2Eb8

https://forms.gle/Ay6MkpZ6x3xsW2Eb8

