
Direct Memory Access
(DMA)

Lecture 20
Microprocessor-based Systems (E155)

Prof. Josh Brake



Outline

• What is Direct Memory Access?
• How does DMA work on the STM32F401RE?
• Bitfields with CMSIS
• Activity



Recall STM32F401RE System Architecture

2



Direct Memory Access

• Used to provide high-speed data transfer between peripherals and
memory without CPU action

• DMA controller connects to the AHB bus with an independent FIFO to 
optimize bandwidth

• STM32F401RE has two DMA controllers with 8 streams each (total of 
16 streams)

• Each stream has 8 channels

3



DMA Block Diagram

• 3 modes
• Peripheral-to-memory
• Memory-to-peripheral
• Memory-to-memory

4
DMA block diagram Figure 22 p. 168 from STM32F401RE Reference Manual (PDF)



DMA Controller Implementation

5
DMA block diagram Figure 23 p. 169 from STM32F401RE Reference Manual (PDF)



DMA Channel Selection

6Figure 24 p. 170 from STM32F401RE Reference Manual



DMA1 Request Mapping Table

7STM32F401RE Reference Manual pp. 170-171



DMA Stream Configuration Register

8



CMSIS Structures for Bitfields

• <x> - The name of the bitfield syntax is 
<Peripheral Name>_<Register Name>_<Bitfield Name>

• <x>_Pos - position in register of lsb of the bitfield
• <x>_Msk - masked out bits (1's shifted by <x>_Pos)
• <x>_<N> - mask of specific bit within bitfield

9



Examples from stm32f401xe.h

10



Examples from stm32f401xe.h

11



Examples from stm32f401xe.h: DMA_SxCR

12



DMA Stream – Number of Data Register

13



DMA Stream Peripheral Address Register

14



DMA Stream - Memory address register

15



Activity

• Configure the USART peripheral to send data using DMA. Send an 
array of characters every second to the terminal.

• Set up DMA transfer to see mystery ASCII art printed to the terminal
• Create new CMSIS project for STM32F401RE
• Download and run demo code (DMA_USART_CHAR_main.c) from 

GitHub (put in src)

16

https://github.com/joshbrake/E155_FA2020/tree/master/L20

https://github.com/joshbrake/E155_FA2020/tree/master/L20


Demo Code

17



18



Activity Steps and Hints

• Use DMA_USART_main_demo.c
• Enable USART2 (connected to serial port via ST-LINK)
• Configure DMA

• Figure out which DMA controller, stream, and channel you need to use.
• Configure the stream

• Set control register
• Set memory source address
• Set peripheral destination address
• Set number of data elements to be transferred

• Enable the DMA stream

• Configure timer to trigger DMA transactions on update event
• Set up timer interrupt to reset DMA for next transaction

19

https://github.com/joshbrake/E155_FA2020/blob/master/L20/DMA_USART_main_demo.c


Summary

• DMA enables efficient and low-latency access between memory and 
peripherals

• Need to configure DMA controller, then configure DMA requests 
from the peripheral (timer, USART, SPI, etc.)

• Use interrupts to handle and reset flags as necessary

20



Lecture Feedback

• What is the most important 
thing you learned in class 
today?

• What point was most unclear 
from lecture today?

21

https://forms.gle/Ay6MkpZ6x3xsW2Eb8

https://forms.gle/Ay6MkpZ6x3xsW2Eb8

