Motors and Speakers

Lecture 18 Microprocessor-based Systems (E155) Prof. Josh Brake

Outline

- Motors
 - DC motors
 - Brushed
 - Brushless
 - Servo motors
 - Stepper motors
- Speakers

Main Types of Motors

- DC Motors
 - Brushed
 - Brushless
- Servo motors
- Stepper motors

DDCA Figure e9.42 p. 531.e51

Typical DC Motor Architecture

Brushed DC Motor Operation

"Basic Operation Illustration of a simple electric motor" by Wapcaplet <u>CC BY⁴SA 3.0</u>

DC Motor Animation

"Basic Operation Illustration of a simple electric motor" by Wapcaplet <u>CC BY⁵SA 3.0</u>

Picture of a DC motor

(a)

(C)

Figure e9.33 DDCA ARMed Edition p. 531.e44

Driving Brushed DC Motor

- Brushed DC motors
 - Use an H-bridge
 - Arrangement of switches to control the direction of current flow and thus the direction of rotation.
 - Can control the speed using pulse width modulation to turn the switches on and off

SN754410 Datasheet

Figure e9.34 H-bridge

DDCA/ARMed Edition Figure e9.34 p. 531.e45

Brushless motors

- Brushed motors suffer from several disadvantages
 - Friction from brushes
 - Mechanical wear on brushes
 - Resistance of sliding brush
 - Abrupt switching of current can generate noise
- But we still need a way to switch the direction of the current flow to keep the motor spinning
- Solution: use an electrical solution to switch the current direction

Brushless Motors

- No brushes! Commutation is done electrically.
- Notice that the coils are now in the stator and the magnet is in the rotor.
- In this particular motor the rotor is on the outside of the stator

Driving Brushless DC Motor

- Brushless motors
 - Need to control and synchronize the current flow through the coils in the stator
 - Use hall effect sensors to detect the orientation and rotation speed of the rotor and then synchronize the drive signals
 - Similar idea to what we will discuss for stepper motors

Shaft Encoders

- Even if we send the same exact signal to two DC motors, it is unlikely they will spin at exactly the same speed
- Can use a shaft encoder to measure the actual rotation speed
- Using two LED/sensor pairs spaced by half a slot the direction can also be measured via quadrature outputs

Figure e9.36 Shaft encoder (a) disk, (b) quadrature outputs

Servo motor

- DC motor plus encoder to sense position (normally implemented with a rotary potentiometer)
- Controlled with PWM signal to drive the servo to a particular position (normally within 0 to 180 degrees)
- Separate power and logic signals in 3-wire interface
- Can also remove the physical stop and replace the potentiometer with a fixed voltage divider to make a continuous rotation servo.

DDCA Figure e9.37 p. 531.e48

Driving Servo Motor

- Standard servo is controlled pulses between 1 and 2 ms at a frequency of ~50 Hz.
 - 1 ms pulse = 0 degrees
 - 1.5 ms pulse = 90 degrees
 - 2 ms pulse = 180 degrees
- Continuous rotation servos change speed based on length of pulse

Stepper Motor

 Brushless motor with electromagnets with teeth

DDCA Figure e9.42 p. 531.e51

Stepper motor by Wapcaplet; Teravolt. GFDL

Stepper Motor Operation

DDCA Figure e9.41 p. 531.e50

Speakers

- Purpose: Convert electrical energy to mechanical vibration
- Drive current through the voice coil, creating a variable magnetic field.
- This in turn vibrates the diaphragm back and forth against the magnetic field from the permanent magnet to generate acoustic waves

Magnet
Voicecoil
Suspension
Diaphragm

"Loudspeaker bass" by <u>Svjo CC BY-SA 3.0 link</u>

Cross-sectional view

"Speaker cross section" by lain CC BY-SA 3.0 link

Driving a speaker: LM386 Analysis

Cannot drive directly from an MCU output since lots of current is required.

LM386 Datasheet (link)

https://www.electrosmash.com/lm386-analysis

Summary

- 4 main types of motors
 - DC brushed simple but mechanical solutions create reliability issues
 - DC brushless less mechanical issues but more complicated control
 - Servo for closed-loop control
 - Stepper many discrete steps
- Speakers
 - Designed to optimize transfer of electrical energy to acoustic waves
 - LM386 amplifier follows typical power amplifier design
 - Input amplification
 - Voltage amplification
 - Current amplifier