
Interrupts

Lecture 12
Microprocessor-based Systems (E155)

Prof. Josh Brake



Learning Objectives

By the end of this lecture you will be able to:
• Explain the basic exception model used on ARM Cortex-M4 

processors
• Configure interrupts to quickly respond to information from on-board 

peripherals like GPIO pins and timers

1



Outline

• Interrupts and Exceptions
• The exception model in ARM Cortex-M4 processors
• The Nested Vector Interrupt Controller (NVIC)
• Configuring interrupts on ARM Cortex-M4

• Activity
• Toggle LED with switch using polling and interrupts

2



ARM Cortex-M4 Exception Model

3



Sources of exceptions

4Figure 7.1, p.230 The Definitive guide to ARM Cortex-M3 and Cortex-M4 Processors



Interrupt Servicing Sequence

1. Peripheral asserts interrupt request
2. Processor suspends currently operating task
3. Processor executes an Interrupt Service Routine (ISR) to service the 

peripheral and optionally clear the interrupt request
4. Resume previously suspended task.

5



Nested Vector Interrupt Controller

• On Cortex-M4 the NVIC supports up to 240 IRQs, a Non-Maskable 
Interrupt, a SysTick timer interrupt, and a number of system 
exceptions.

• When handling and IRQ, some of the registers are stored on the stack 
automatically and are automatically restored. This allows exception 
handlers to be written as normal C functions.

• "Nested" refers to the fact that we have different priorities and 
therefore can handle an interrupt with a higher priority in the middle 
of handling an interrupt of a lower priority.

• "Vector" refers to the fact that the interrupt service handlers

6



Interrupt Priorities

• Interrupt priority levels allow us to define which interrupts can pre-
empt others

• Cortex-M processors support three fixed highest-priority levels and 
up to 256 level of programmable priority.
• However, the actual number of available levels is chip dependent since 

implementing all 256 levels can be costly in terms of power and speed.

• Three negative priorities (hard fault, NMI, and reset) can pre-empt any 
other exceptions

7



Interrupt Priorities

8
Figure 7.4 p. 237 The Definitive guide to ARM Cortex-M3 and Cortex-M4 Processors

Figure 7.2 p. 236 The Definitive guide to ARM Cortex-M3 and 
Cortex-M4 Processors



Exception Definitions

9Table 7.3 p.234 The Definitive guide to ARM Cortex-M3 and Cortex-M4 Processors



Interrupt Setup

1. Enable global interrupts
2. Set the priority level (optional)
3. Enable the interrupt generation control in the peripheral that triggers 

the interrupt
4. Enable the interrupt in the NVIC

10

The name of the ISR needs to match the name used in the vector table 
so that the linker can place the starting address of the ISR into the 
vector table correctly.



Handling an interrupt

11



Relevant Files in CMSIS

12

stm32f401xe.h - Device specific configurations.

e.g., the number of NVIC priority bits

core_cm4.h - Definitions which are global to the Cortex-M4

e.g., NVIC_Type which specifies the NVIC registers

Sidenote: Documentation for this is in the Cortex-M4 user manual, not in the 
STM32F401RE manual or datasheet.

cmsis_gcc.h - Compiler specific definitions

E.g., the specific directive syntax necessary to force functions to be inline.
void __enable_irq(void)and void __disable_irq(void) are defined 
in cmsis_gcc.h

These are compiler specific and use the cpsie i (enable) and cpsid i disable 
special assembly instructions.



NVIC Memory Location

13



Core Registers for NVIC

14Cortex-M4 Technical Reference Manual, Table 6-1 p. 6-4



core-cm4.h

15



cmsis_gcc.h

16



stm32f401xe.h

17

IRQn_Type enumerator (enum) is copied into main.h

Creates shorthand so we can refer to TIM2_IRQn to return 28 
instead of needing to always look it up in the datasheet



Activity: GPIO Pin Interrupts

• Download the code from the course Github
(https://github.com/joshbrake/E155_FA2020/tree/master/L12)

• Create new PlatformIO project with CMSIS framework
• Replace contents of platformio.ini with those from the Github repo 

platformio.ini
• Move contents of lib into your PIO lib folder
• Move demo_src/src into your PIO src folder
• Move demo_src/demo into your PIO project folder

• Build upload main_button_polling_solution.c

18

https://github.com/joshbrake/E155_FA2020/tree/master/L12


Project Setup

19

STM32F401RE.h

platformio.ini

main.h



main_button_polling_solution.c

20



External Interrupt/Event Controller (EXTI)

21



Your Task

22

Configure button input as 
interrupt
• Configure EXTI controller
• Define IRQ handler name
• Upload test the response 

time compared to polling
using Scopy



Results

23

Interrupt – 527 ns Polling (with 0 delay in while (859 ns)



Learning Objectives

By the end of this lecture you will be able to:
• Explain the basic exception model used on ARM Cortex-M4 

processors
• Configure interrupts to quickly respond to information from on-board 

peripherals like GPIO pins and timers

24



Up Next

• Monday: Project Kickoff!
• Wednesday: Digital Signal Processing
• Lab 6: Serial temperature sensor

25



Lecture Feedback

• What is the most important 
thing you learned in class 
today?

• What point was most unclear 
from lecture today?

26

https://forms.gle/Ay6MkpZ6x3xsW2Eb8

https://forms.gle/Ay6MkpZ6x3xsW2Eb8

