
Serial Interfaces: Part 2

Lecture 9
Microprocessor-based Systems (E155)

Prof. Josh Brake



Outline

• Universal Synchronous/Asynchronous Receiver Transmitter
• Description
• Activity

1



Learning Objectives

By the end of this lecture you will be able to
• Explain the tradeoffs between synchronous and asynchronous serial 

interfaces
• Develop a library for the UART peripheral on the STM32F401RE
• Verify the output using the logic analyzer on the ADALM2000

2



Serial Interfaces Overview

3



Motivation

• How can we interface a peripheral?

Imagine transmitting a character on a 
keyboard.
Capital J in ASCII is 7410 = 010010102

4



What if we repackage data in a stream?

• Essential multiplexing in time
• To send N bits, we only need 2 lines 

(CLK + Data) instead of 9
• Price we pay is time – but often worth it.

5



What if we don’t want a shared clock?

• Agree on shared data rate
• Sample the incoming data stream at higher frequency to synchronize 

the input data stream with the reading circuitry
• Add additional bits at the beginning and end of the transmission to 

signal the bounds of the transmission

6

Question
What are some downsides of an asynchronous serial interface as compared 
to a synchronous one?

Answer
• Reduced maximum transmission frequency (typically 8x-16x overhead 

from sampling)
• Wasted bits in each transmission



Universal 
Synchronous/Asynchronous 
Receiver Transmitter (USART)

7



USART Data Frame

• 4 components
1. Start bit: always logical 0
2. Data bits: 5-9 bits of data
3. Parity bit: Option bit with parity of data (i.e., even or odd. Simple error 

checking)
4. Stop bit(s): 1-2 bits. Always logical 1.

8



STM32 USART

9

Transmit/Receive Control

I/O Interface

Configuration

Synchronous Clock Config

Data Registers

STM32F401RE Reference Manual p. 509



Data Registers

10



Pins

• TX – transmitted data out from USART
• RX – received data in to USART
• CK – (optional) clock output for synchronous mode
• RTS – Request To Send indicates the USART is ready to receive data 

(when low)
• CTS – Clear To Send block data transmission at the end of the current 

transfer when high

11



Data framing

12Reference Manual p. 512



Error Flags

• Overrun – new byte in the holding reg before the old one was read out
• Frame – didn’t get the stop bit(s) we expected
• Parity – calculated parity doesn’t match parity bit

13



Receiver

14Reference Manual p. 514



USART registers: Status Register

• UART Status Register
• TXE – transmit data register empty (0 if data is not transferred to the 

shift register, 1 if it is)
• TC – transmission complete flag
• RXNE – read data register not empty (0 if data has not been received, 1 if 

it is ready to be read)
• FE – framing error
• PE – parity error

15



USART registers: Data Register

• Used for both reads and writes
• Max 9-bit data value DR[8:0]

16



USART registers: Baud Rate Register

17



USART registers: Control register 1 

• M: word length 8 or 9 data bits
• PCE: parity control enable
• TE: transmitter enable
• RE: receiver enable

18



USART registers: Control register 2

• STOP: 2 bit field, number of stop bits (0.5, 1, or 2)
• Various clock control (if using in synchronous mode)

19



Character Reception

1. Enable the USART with UE=1 in USART_CR1
2. Program the M bit in USART_CR1 to define word length
3. Program the number of stop bits in USART_CR2
4. (optional): Enable DMA 
5. Select the desired baud rate in USART_BRR
6. Set the RE bit in USART_CR1

Wait for RXNE bit to go from 0 (no data received) to 1 (data received). 
Then you can read out the data from the data register

20



USART Activity

21



Activity

• Configure the USART as an UART to transmit serial data
• Read user manual and develop a bullet list outline of how to configure 

the peripheral
• Write USART library

• Finish STM32F401RE_USART.h and STM32F401RE_USART.c.
• Configure in common 8N1 mode

• 8 data bits
• No parity bit
• 1 stop bit
• Operate at 9600 baud (9.6 Kbps)
• Assume clock is configured at 84 MHz with flash latency also configured

• Create simple main function to transmit a string of your choice over the 
UART and visualize it on the ADALM2000 logic analyzer.

22

Code available on course Github: https://github.com/joshbrake/E155_FA2020/tree/master/L09/demo_src

https://github.com/joshbrake/E155_FA2020/tree/master/L09/demo_src


Setup

• Create new project in PlatformIO (choose CMSIS for 
platform)

• Copy files from Github into the project
• Overwrite platformio.ini file
• Put main.c in src/
• Put libs in lib subfolder. These are linked in with the 

lib_dir environment variable in platformio.ini

23



USART2 Wiring on Nucleo-64

26



USART2 Wiring

27



Bonus: Receiving Serial Input over USB

• Windows: Download Putty or your favorite serial terminal
• Select appropriate serial port (COM<X>; check device manager to find X)

• Mac/Linux: Can use screen
• To connect to a serial port with screen, type:

screen <teletype_device> <baud_rate>
• <teletype_device> usually something like 

/dev/tty.usbmodem144303 (can use ls /dev/tty* to list available 
options)

28

https://www.putty.org/


29



Solution

30

void initUSART(uint8_t USART_ID){
...

USART->CR1.UE = 1; // Enable USART
USART->CR1.M = 0; // M=0 corresponds to 8 data bits
USART->CR2.STOP = 0b00; // 0b00 corresponds to 1 stop 
bit
USART->CR1.OVER8 = 0; // Set to 16 times sampling freq

// Set baud rate to 9600 KBps
// Tx/Rx baud = (f_CK)/(8*(2-OVER8)*USARTDIV) = Tx/Rx 
baud = (f_CK)/(16*USARTDIV)
// f_CK = 84e6 Hz
// USARTDIV = 546.875 should be in BRR
// 546 = 0x0222
// 0.875 = 7/8 = 0b1110
// DIV_Mantissa = 0x222
// DIV_Fraction = 0b1110
USART->BRR.DIV_Fraction = 0b1110;
USART->BRR.DIV_Mantissa = 546;
USART->CR1.TE = 1; // Enable transmission
USART->CR1.RE = 1; // Enable reception

void sendChar(uint8_t USART_ID, uint8_t data){
USART_TypeDef * USART = id2Port(USART_ID);

USART->DR.DR = data;
while(!USART->SR.TC);
}

#define USART_ID USART2_ID

int main(void) {
// Configure flash and clock
configureFlash();
configureClock();

// Initialize USART
initUSART(USART_ID);
uint8_t msg[28] = "Happy Hacking!\n\r";

while(1){
uint8_t i = 0;
do {
sendChar(USART_ID, msg[i]);
i += 1;

} while (msg[i]);
delay_ms(2000);
}

}



Summary

By the end of this lecture you will be able to
• Explain the tradeoffs between synchronous and asynchronous serial 

interfaces
• Develop a library for the UART peripheral on the STM32F401RE
• Verify the output using the logic analyzer on the ADALM2000

31



Lab 4 Questions

• Main learning outcome is configuring and using SPI peripheral – don’t 
spend lots of time generating precise sine/square waves
• One approach: use a timer and a loop to generate and send a new output 

every x seconds where x is a reasonable fraction of a cycle (maybe 100 
samples per cycle?)

32



Lecture Feedback

• What is the most important 
thing you learned in class 
today?

• What point was most unclear 
from lecture today?

33

https://forms.gle/Ay6MkpZ6x3xsW2Eb8

https://forms.gle/Ay6MkpZ6x3xsW2Eb8

