Serial Interfaces: Part 1

Lecture 8 Microprocessor-based Systems (E155) Prof. Josh Brake

Outline

- Serial Interfaces Overview
 - Advantages over parallel
 - Major considerations
 - Overview of protocols
- Serial Peripheral Interface
 - Description
 - STM32F401RE configuration
- MCP4801 DAC
 - Datasheet overview
- Lab 4 hints and suggestions

Learning Objectives

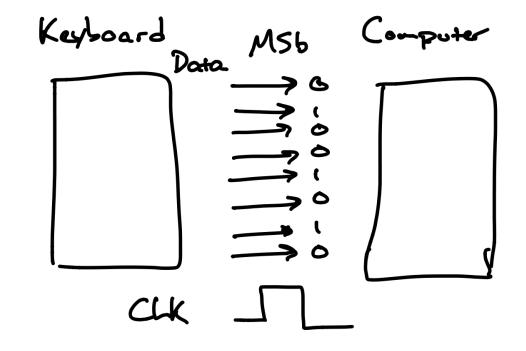
By the end of this lecture you will be able to

- List common specifications of a serial interface
- Articulate the tradeoffs between different serial protocols
- Explain the basic operation of SPI

Quiz

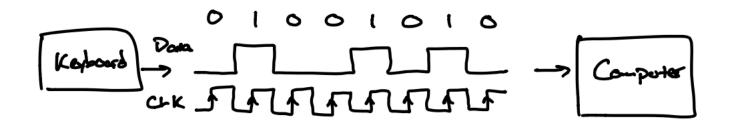
- Make a bulleted list of the general initialization procedure for a peripheral. What are the major steps?
- Serial interfaces often are idle high (the data or clock line is held at a non-zero voltage). Why do you think this is the case?
- How is it possible to read data in a serial interface without a shared clock (asynchronously)?
- Name a serial interface you've used recently.

https://docs.google.com/presentation/d/1ShVehgj6aX2Dr44j0Ulh 4JXsUJaZQ8HdsNg32T6HZcs/edit#slide=id.p


Serial Interfaces Overview

Motivation

• How can we interface a peripheral?


Imagine transmitting a character on a keyboard.

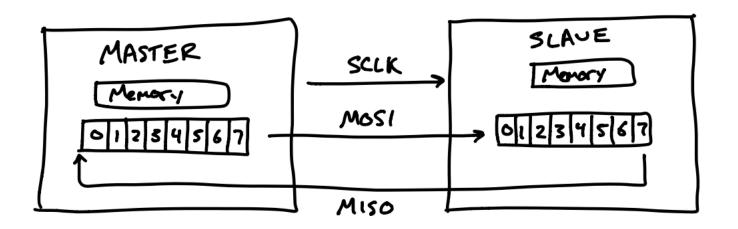
Capital J in ASCII is $74_{10} = 01001010_2$

What if we repackage data in a stream?

- Essential multiplexing in time
- To send N bits, we only need 2 lines (CLK + Data) instead of 9
- Price we pay is time but often worth it.

Example Serial Interfaces

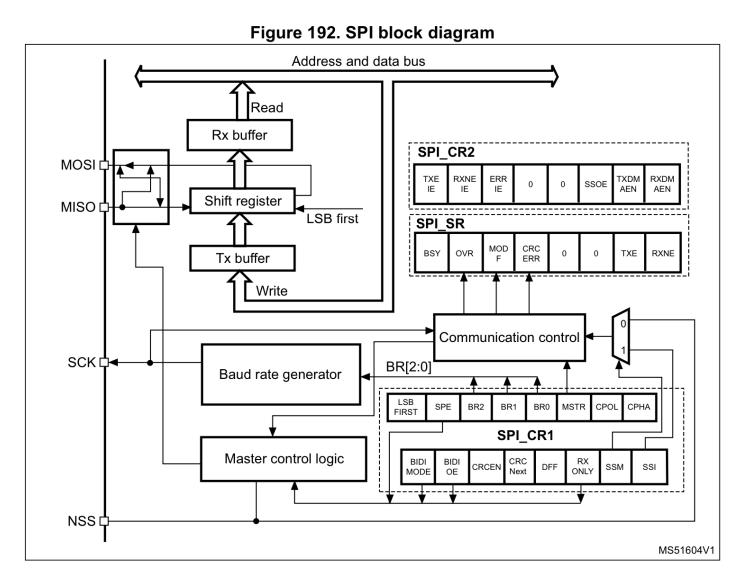
- Universal Serial Bus (USB)
- Serial Peripheral Interface (SPI)
- Thunderbolt
- Universal Asynchronous Receiver Transmitter (UART)
- Inter-integrated circuit (I²C)
- Ethernet


Basic Specifications

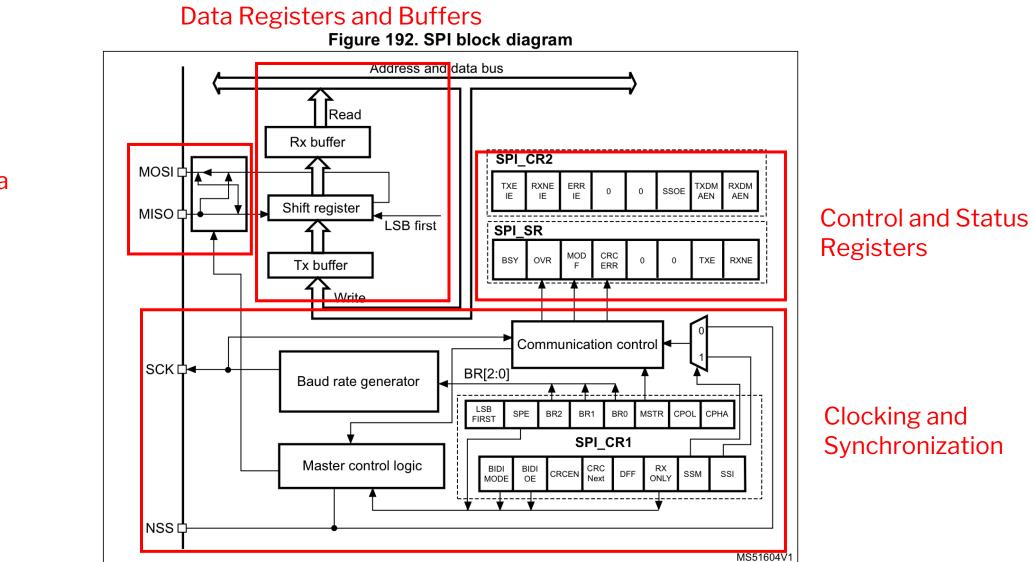
- Synchronous vs. Asynchronous is there a shared clock signal?
- Number of wires
- Data transmission modes simplex, full/half duplex
- Bandwith/speed/bitrate/baud rate
- Signal voltage levels (e.g., TTL, RS-232)
- Max cable length

Serial Peripheral Interface (SPI)

SPI Overview and History


- Developed in the mid-1980s by Motorola
- Used to interface with many peripherals like memory (SD cards, flash), displays, sensors (accelerometers, gyroscopes, temperature sensors, ADCs and DACs).
- Four-wire, synchronous serial bus

SCLK: Serial clock MOSI: Master Out Slave In MISO: Master In Slave Out CE/CS/nCE/nCS: Chip select/enable


SPI Block Diagram

- MISO: Master In / Slave Out
- MOSI: Master Out / Slave In
- SCK: Serial Clock output
- NSS: Slave select (N means active low)

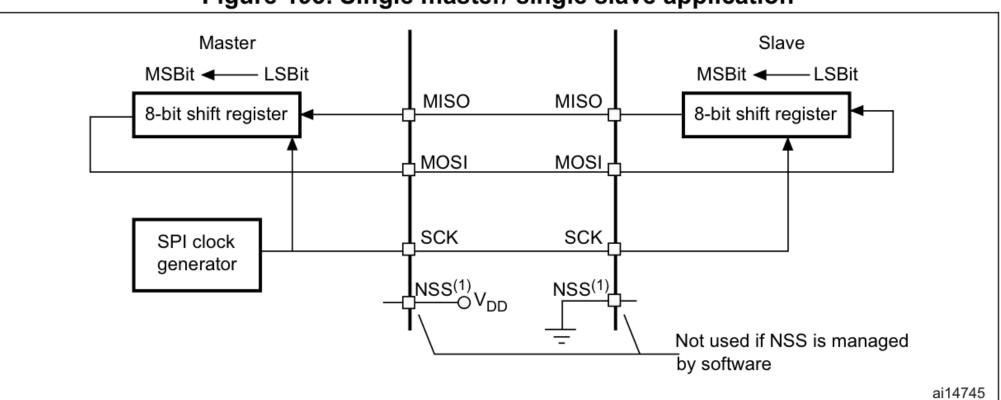
STM32F401RE Reference Manual p. 562

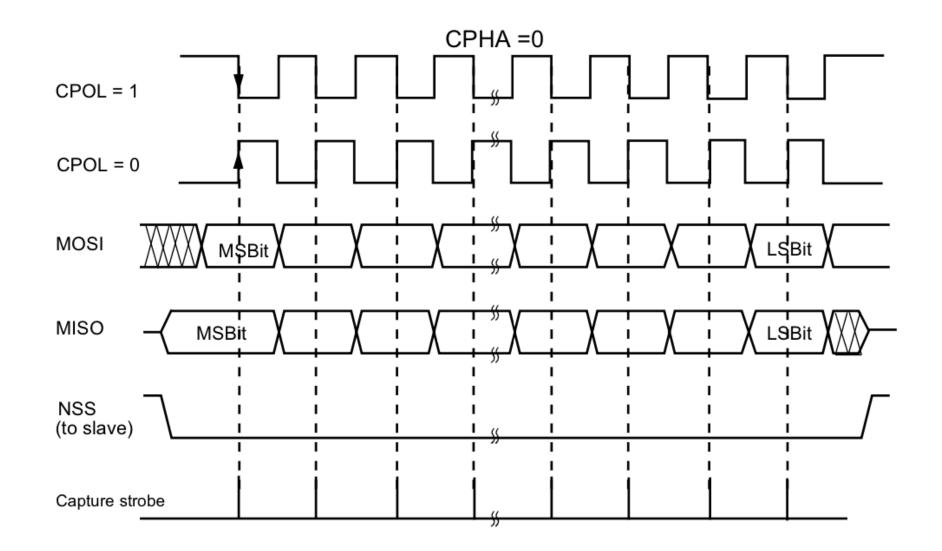
SPI Block Diagram in Detail

Buffer Data Output

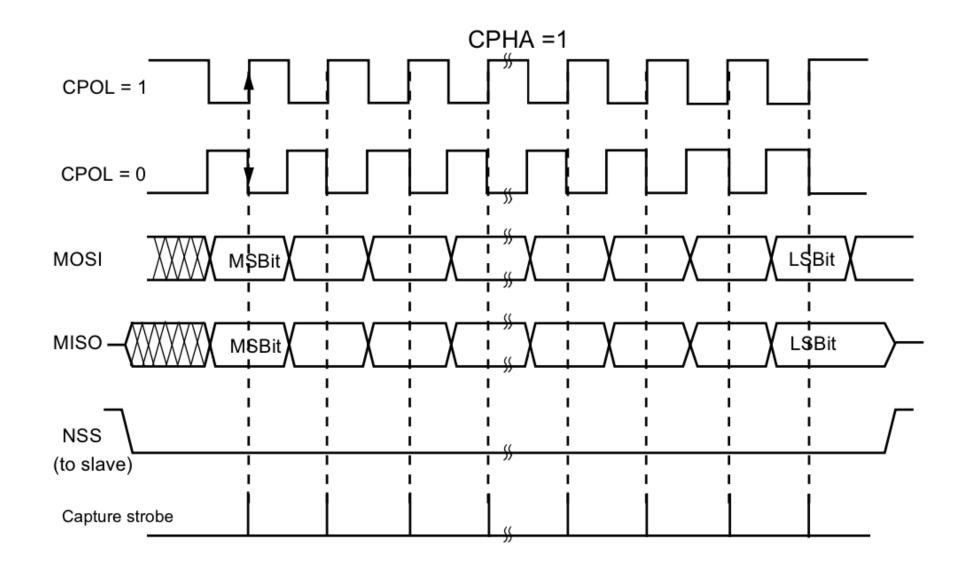
SPI on STM32

• Can be either master or slave (we will be using as master)




Figure 193. Single master/ single slave application

1. Here, the NSS pin is configured as an input.


Clock Polarity and Phase

- Clock polarity (CPOL) refers to the state of the clock line at idle
 - 0: clock is low when idle
 - 1: clock is high when idle
- Clock phase (CPHA) refers to when data is sampled vs. when new data is shifted out
 - 0: the first clock transition is the first data capture edge
 - 1: the second clock transition is the first data capture edge
- The clock transition (rising or falling) depends on the clock polarity
- 4 combinations or modes (CPOL,CPHA) = (0,0), (0,1), (1,0), (1,1)
- Must pay attention to match this mode to the slave!

Clock Phase and Polarity: Clock Phase = 0

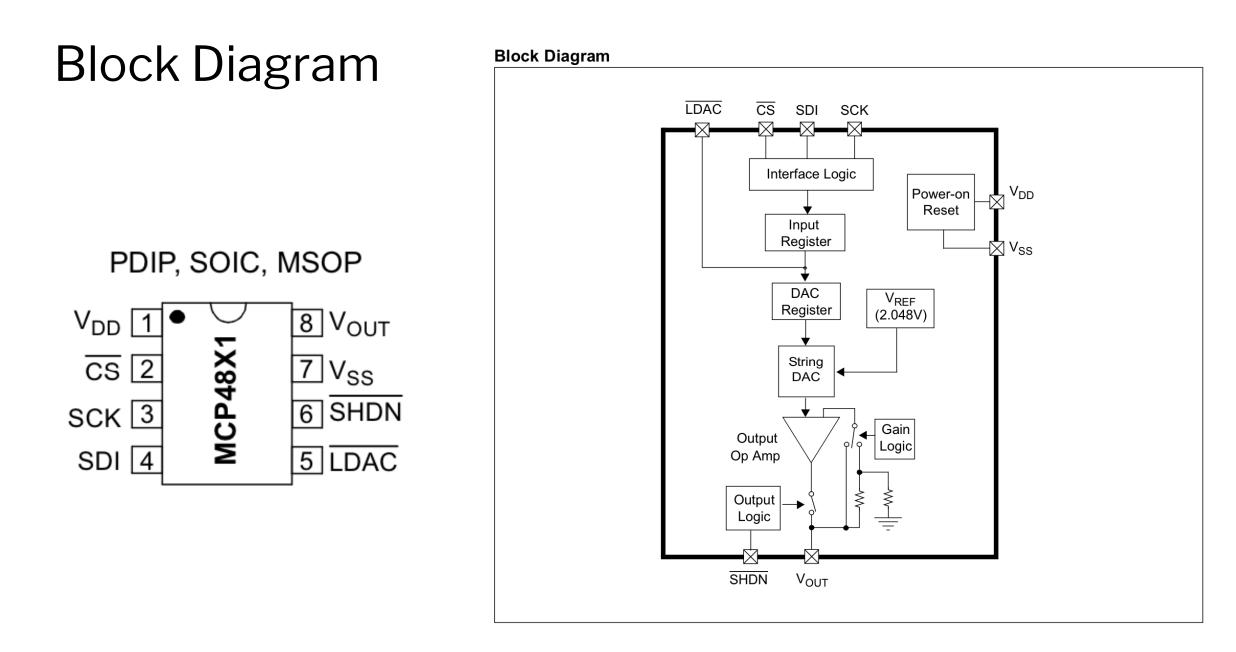
Clock Phase and Polarity: Clock Phase = 1

Basic Configuration in Master Mode

- Configure clock tree
- Turn on SPI clock domain
- Set SPI parameters
 - Clock rate using baud rate divisor
 - CPOL and CPHA to match slave
 - DFF to 8- or 16-bit data frame format
 - Set LSBFIRST bit to set whether lsb or msb is sent first (normally msb)
 - Configure the NSS pin (can either use software management or a separate GPIO set as an output and manually toggle it)
 - Set to master mode MSTR
- Enable SPI Set SPE bit to 1

MCP4801 DAC and Lab 4

Interfacing with external chip: MCP4801 DAC


8/10/12-Bit Voltage Output Digital-to-Analog Converter with Internal V_{REF} and SPI Interface

22244B.pdf

- 1.0 Electrical Characteristics
- 2.0 Typical Performance Curves
- 3.0 Pin descriptions
- ▶ 4.0 General Overview
- ▶ 5.0 Serial Interface
- ▶ 6.0 Typical Applications
- ► 7.0 Development support
- ▶ 8.0 Packaging Information

P/N	DAC Resolution	No. of Channel	Voltage Reference (V _{REF})
MCP4801	8	1	
MCP4811	10	1	
MCP4821	12	1	Internal
MCP4802	8	2	(2.048V)
MCP4812	10	2	
MCP4822	12	2	
MCP4901	8	1	
MCP4911	10	1	
MCP4921	12	1	External
MCP4902	1CP4902 8		
MCP4912	10	2	
MCP4922	12	2	

Note 1: The products listed here have similar AC/DC performances.

Electrical Characteristics

ELECTRICAL CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, V _{DD} = 5V, V _{SS} = 0V, V _{REF} = 2.048V, Output Buffer Gain (G) = 2x, RL = 5 kΩ to GND, C _L = 100 pF, T _A = -40 to +85°C. Typical values are at +25°C.							
Parameters	arameters Sym Min Typ Max Units		Conditions				
Power Requirements							
Operating Voltage	V _{DD}	2.7		5.5			
Operating Current	I _{DD}		330	400	μA	All digital inputs are grounded, analog output (V_{OUT}) is unloaded. Code = 000h	
Hardware Shutdown Current	I _{SHDN}	_	0.3	2	μA	POR circuit is turned off	
Software Shutdown Current	I _{SHDN_SW}		3.3	6	μA	POR circuit remains turned on	
Power-on Reset Threshold	V _{POR}	_	2.0	—	V		
DC Accuracy				•			
MCP4801							
Resolution	n	8	—	_	Bits		
INL Error	INL	-1	±0.125	1	LSb		
DNL	DNL	-0.5	±0.1	+0.5	LSb	Note 1	

Absolute Maximum Ratings †

V _{DD}	6.5V
All inputs and outputsV_SS-0.3V to V	_{DD} + 0.3V
Current at Input Pins	±2 mA
Current at Supply Pins	±50 mA
Current at Output Pins	±25 mA
Storage temperature65°C	to +150°C
Ambient temp. with power applied55°C	to +125°C
ESD protection on all pins \geq 4 kV (HBM), \geq 4	00V (MM)
Maximum Junction Temperature (T _J)	+150°C

Timing Specs

- Pay attention to max clock frequency.
- These specs are related to setup and hold time constraints!

AC CHARACTERISTICS (SPI TIMING SPECIFICATIONS)

Parameters	Svm	Min	Typ	Max	Parameters Sym Min Typ Max Units Conditions									
	Sym		Ч			Conditions								
Schmitt Trigger High-Level Input Voltage (All digital input pins)	V _{IH}	0.7 V DD	_	—	V									
Schmitt Trigger Low-Level Input Voltage (All digital input pins)	V _{IL}		_	0.2 V _{DD}	V									
Hysteresis of Schmitt Trigger Inputs	V _{HYS}	—	0.05 V _{DD}	_										
Input Leakage Current	I _{LEAKAGE}	-1		1	μA	$\overline{SHDN} = \overline{LDAC} = \overline{CS} = SDI = SCK = V_{DD} \text{ or } V_{SS}$								
Digital Pin Capacitance (All inputs/outputs)	C _{IN} , C _{OUT}		10	—	pF	V _{DD} = 5.0V, T _A = +25°C, f _{CLK} = 1 MHz (Note 1)								
Clock Frequency	F _{CLK}	—	—	20	MHz	T _A = +25°C (Note 1)								
Clock High Time	t _{HI}	15	_		ns	Note 1								
Clock Low Time	t _{LO}	15	—	_	ns	Note 1								
CS Fall to First Rising CLK Edge	t _{CSSR}	40		_	ns	Applies only when $\overline{\text{CS}}$ falls with CLK high. (Note 1)								
Data Input Setup Time	t _{SU}	15		_	ns	Note 1								
Data Input Hold Time	t _{HD}	10	—	—	ns	Note 1								
SCK Rise to $\overline{\text{CS}}$ Rise Hold Time	t _{CHS}	15	_	_	ns	Note 1								
CS High Time	t _{CSH}	15	—	_	ns	Note 1								
LDAC Pulse Width	t _{LD}	100			ns	Note 1								
LDAC Setup Time	t _{LS}	40		—	ns	Note 1								
SCK Idle Time before CS Fall t _{IDLE} 40 — Ins Note 1						Note 1								
Note 1: This parameter is ensured by design and not 100% tested.														

Example Transmission Waveform

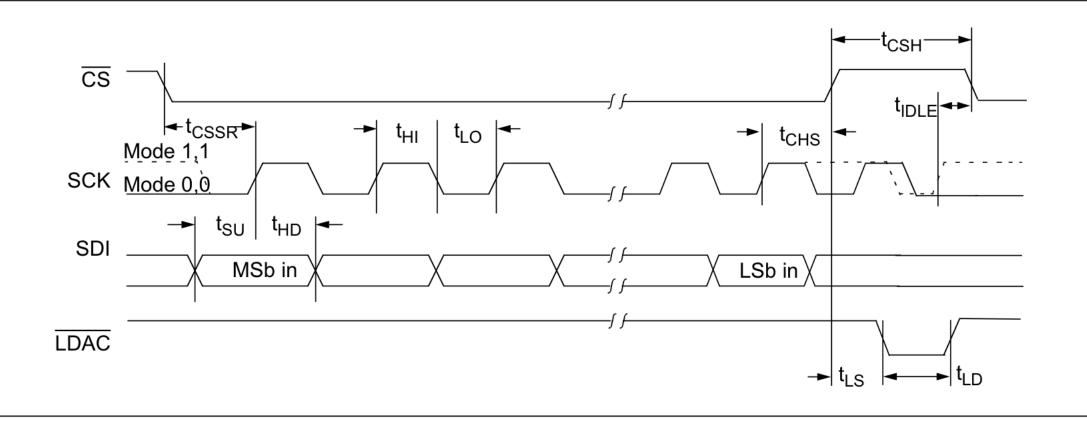


FIGURE 1-1: SPI Input Timing Data.

Pin descriptions

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1:PIN FUNCTION TABLE FOR MCP4801/4811/4821

MCP4801/4					
MSOP, PDIP, SOIC, DFN			Description		
1	1	V _{DD}	Supply Voltage Input (2.7V to 5.5V)		
2	2	CS	Chip Select Input		
3	3	SCK	Serial Clock Input		
4	4	SDI	Serial Data Input		
5	5	LDAC	DAC Output Synchronization Input. This pin is used to transfer the input register (DAC settings) to the output register (V_{OUT})		
6	6	SHDN	Hardware Shutdown Input		
7	7	V _{SS}	Ground reference point for all circuitry on the device		
8	8	V _{OUT}	DAC Analog Output		
	9	EP	Exposed thermal pad. This pad must be connected to V_{SS} in application		

DAC resolution

TABLE 4-1: LSb OF EACH DEVICE

Device	Gain Selection	LSb Size			
MCP4801	1x	2.048V/256 = 8 mV			
(n = 8)	2x	4.096V/256 = 16 mV			
MCP4811	1x	2.048V/1024 = 2 mV			
(n = 10)	2x	4.096V/1024 = 4 mV			
MCP4821	1x	2.048V/4096 = 0.5 mV			
(n = 12)	2x	4.096V/4096 = 1 mV			

EQUATION 4-1: ANALOG OUTPUT VOLTAGE (V_{OUT}) $V_{OUT} = \frac{(2.048V \times D_n)}{2^n} \times G$ Where: 2.048V = Internal voltage reference $D_n = DAC$ input code G Gain selection = 2 for \overline{GA} bit = 0 = 1 for \overline{GA} bit = 1 = = DAC Resolution n 8 for MCP4801 = 10 for MCP4811 = 12 for MCP4821 =

Serial Interface: Write Command

- Initialized by driving NCS pin low, followed by clocking four configuration bits and the 12 data bits on the rising edge of the SCK
- NCS pin then driven high

Write Command

REGISTER 5-3: WRITE COMMAND REGISTER FOR MCP4801 (8-BIT DAC)

W-x	W-x	W-x	W-0	W-x											
0	_	GA	SHDN	D7	D6	D5	D4	D3	D2	D1	D0	х	х	x	х
bit 15															bit 0

Where:

bit 15 ⁽¹⁾ 0 = Write to DAC register

1 = Ignore this command

bit 14 — Don't Care

bit 13 GA: Output Gain Selection bit

1 = 1x ($V_{OUT} = V_{REF} * D/4096$) 0 = 2x ($V_{OUT} = 2 * V_{REF} * D/4096$), where internal $V_{REF} = 2.048V$.

- bit 12 SHDN: Output Shutdown Control bit
 - 1 = Active mode operation. VOUT is available.
 - 0 = Shutdown the device. Analog output is not available. V_{OUT} pin is connected to 500 k Ω (typical).
- bit 11-0 D11:D0: DAC Input Data bits. Bit x is ignored.

Legend			
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	1 = bit is set	0 = bit is cleared	x = bit is unknown

Lab 4 Hints and Suggestions

- Configure SPI peripheral on STM32 MCU and use ADALM2000 to verify data packets
- Build circuit with MCP4801 on breadboard and double check all connections
 - Power with 3.3V!
- With the logic analyzer still connected, connect the oscilloscope to the DAC output and generate output signals

Learning Objectives

By the end of this lab you will have:

- Written C libraries to implement the SPI functionality of the STM32F401RE MCU.
- Interfaced with a digital to analog convertor (DAC) module over an SPI link.
- Written functions to use the DAC to output sine and square waves at a user-specified frequency.
- Used the logic analyzer functionality on the ADALM2000 USB oscilloscope to probe and debug serial data transmission and SPI data packets.

Summary

- Serial interfaces allow us to transfer data between peripherals with only a small number of wires – valuable when we have a limited number of physical pins!
- Serial Peripheral Interface (SPI) is a popular 4-wire, synchronous serial interface which enables full-duplex communication
- SPI can be used to interface with many different peripherals in Lab 4 you will use it to communicate with a DAC.

Lecture Feedback

- What is the most important thing you learned in class today?
- What point was most unclear from lecture today?

https://forms.gle/Ay6MkpZ6x3xsW2Eb8

